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A Model-Based Derivative-Free Optimization Algorithm for Partially Separable
Problems
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rary Applied Mathematics, China, and Key Laboratory of Computational Physical Sciences (MOE), China

We propose UPOQA, a derivative-free optimization algorithm for partially separable unconstrained problems, leveraging quadratic

interpolation and a structured trust-region framework. By decomposing the objective into element functions, UPOQA constructs

underdetermined element models and solves subproblems efficiently via a modified projected gradient method. Innovations include

an approximate projection operator for structured trust regions, improved management of elemental radii and models, a starting

point search mechanism, and support for hybrid black-white-box optimization, etc. Numerical experiments on 85 CUTEst problems

demonstrate that UPOQA can significantly reduce the number of function evaluations. To quantify the impact of exploiting partial

separability, we introduce the speed-up profile to further evaluate the acceleration effect. Results show that the acceleration benefits of

UPOQA are marginal in low-precision scenarios but become more pronounced in high-precision scenarios. Applications to quantum

variational problems further validate its practical utility.
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1 INTRODUCTION

Derivative-free optimization (DFO) [15]methods, also known as black-box optimization (BBO) or zero-order optimization

methods, are designed to find the minimum or maximum of an objective function when its derivatives are not available.

For complex problems, the objective function may not be expressed as a closed-form analytical expression but rather

as a black box that only allows function evaluations. Examples include cases where function values are obtained

from simulation or experimental observations, or from the output of software packages with unknown internal

implementations. Such objective functions often incur high evaluation costs, yield noisy values, or both.

DFO algorithms can be broadly categorized into five classes. The first class comprises direct search and pattern

search methods [35, 36], which select the next iteration point by comparing the relative merits of function values [27].

These methods typically employ specific geometric patterns for point selection. They impose minimal requirements
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2 Y. Liu et al.

on the properties of the objective function, are computationally simple, and less prone to local minima, but often

exhibit slow convergence. The second class consists of line-search-based methods, with Powell’s method [41] being a

representative example that performs line searches along conjugate direction sets. The third class includes heuristic

searchmethods, which explore the solution space following specific heuristic rules to find approximate optima. Common

algorithms in this category are simulated annealing [32] and evolutionary algorithms [17, 54], with CMA-ES being a

notable example [26]. The fourth class ismodel-based derivative-free optimization [7, 16, 29, 51]. These methods construct

a surrogate model through interpolation or regression using known function values, approximating the objective

function locally. The model is then optimized and updated within a trust-region framework to solve the original

problem. Examples include Powell’s COBYLA [43] (based on first-order models) and BOBYQA [48], NEWUOA [46] (based on

second-order models), etc. Surrogate models may also adopt other forms, such as radial basis functions [39] and moving

ridge functions (e.g., OMoRF [25]). The fifth class comprises finite-difference-based methods[1], which approximate the

true gradient using numerical differentiation and then employ gradient-based optimization algorithms.

In DFO, the primary challenge lies in the lack of structural knowledge about the problem. When the problem

lacks smoothness, convexity, or is subject to significant noise, many DFO methods essentially sample the parameter

space according to certain patterns. Such approaches are prone to the curse of dimensionality when dealing with

large-scale problems. Even if smoothness is assumed and surrogate models are constructed to accelerate convergence,

the computational cost of solving these problems may still be prohibitive [53]. To address this, many researchers have

considered structured DFO problems, such as nonlinear least squares [7, 28, 42, 58], problems with sparse Hessian

matrices [9, 10, 53] and partially separable problems [5, 11, 40, 49, 55, 60]. Exploiting these structures can significantly

reduce the number of function evaluations required for convergence.

This paper focuses particularly on unconstrained partially separable problems [22], which take the form:

min

𝑥∈R𝑛
𝑓 (𝑥) =

𝑞∑︁
𝑖=1

𝑓𝑖 (𝑥), (1)

where 𝑓1, . . . , 𝑓𝑞 are referred to as element functions (or simply elements). For each 𝑖 = 1, . . . , 𝑞, there exists a subspace

N𝑖 ⊂ R𝑛 such that for any𝑤 ∈ N𝑖 and 𝑥 ∈ R𝑛 , the following holds:

𝑓𝑖 (𝑥 +𝑤) = 𝑓𝑖 (𝑥) .

In contrast to the elements, 𝑓 is called the overall function. Let R𝑖 ≜ N⊥𝑖 , and denote 𝑛𝑖 ≜ dimR𝑖 as the elemental

dimension of 𝑓𝑖 . Each 𝑓𝑖 is essentially a function defined onR𝑖 . The corresponding projection is denoted as 𝑃R𝑖 : R𝑛 → R𝑖 ,
ensuring that for any 𝑥 ∈ R𝑛 , 𝑓𝑖 (𝑥) ≡ 𝑓𝑖 (𝑃R𝑖 (𝑥)). Without loss of generality, we assume span

(
∪𝑞
𝑖=1
R𝑖

)
= R𝑛 , as

otherwise, redundant variables would not affect the value of 𝑓 .

Partially separable structures frequently arise in optimal control problems, the discretization of partial differential

equations (PDEs) via methods like finite elements, and of other variational problems [23]. In optimal control, problems

often consist of multiple loosely coupled subsystems distributed across space and time. Similarly, problems stemming

from domain decomposition techniques applied to PDE discretizations exhibit partial separability, where each variable

primarily interacts with its neighboring regions. In quantum computing, many variational quantum problems also

demonstrate such structures, with each subfunction represented by a quantum circuit [3, 4].

In practice, the more commonly used concept is coordinate partial separability, which further requires that each 𝑓𝑖

depends only on a subset of variables

{
𝑥 𝑗 | 𝑗 ∈ I𝑖 = { 𝑗1, . . . , 𝑗𝑛𝑖 }

}
, referred to as the elemental variables of 𝑓𝑖 . In this

case, R𝑖 = span({𝑒 𝑗 | 𝑗 ∈ I𝑖 }), and we denote 𝑃R𝑖 (𝑥) as 𝑥I𝑖 . Since 𝑓𝑖 (𝑥) depends solely on 𝑥I𝑖 , we will, for simplicity,
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no longer distinguish between the notations 𝑓𝑖 (𝑥I𝑖 ) and 𝑓𝑖 (𝑥) in subsequent discussions. Due to its prevalence and

algorithmic convenience, unless explicitly stated otherwise, all references to partial separability in this paper refer

to coordinate partial separability. We further assume that each element function can be evaluated independently.

This assumption aligns with the practical context of most problems, as when each 𝑓𝑖 represents the contribution of a

subsystem, these contributions should naturally be computable separately.

The term partial in partial separability refers to the fact that the variables on which different element functions

depend may overlap. The two extremes of this property are when all elements depend on completely different variables,

such as 𝑓 (𝑥) = ∑𝑞

𝑖=1
𝑓𝑖 (𝑥𝑖 ), and when all elements depend on all variables, i.e., 𝑓 (𝑥) = ∑𝑞

𝑖=1
𝑓𝑖 (𝑥). However, most

real-world problems lie between these two cases [19, 37, 56]. In the LANCELOT package [14], the concept of partial

separability is further generalized to group partial separability and used to define the standard input format (SIF) for test

problems. Moreover, many common problem structures can be viewed as special cases of partially separable structures.

Any twice continuously differentiable function with a sparse Hessian can be transformed into a partially separable

form [22], and nonlinear least squares problems min𝑥
∑𝑁
𝑖=1 𝑟𝑖 (𝑥)2 are naturally partially separable.

The most obvious advantage of partial separability is that, given a trial point 𝑥 ∈ R𝑛 , one can always compute

the value of any element function 𝑓𝑖 (𝑥) individually without evaluating the full 𝑓 (𝑥). Conversely, even if 𝑓 (𝑥) must

be computed, all element values 𝑓1 (𝑥), . . . , 𝑓𝑞 (𝑥) can be obtained simultaneously, thereby significantly increasing the

amount of information available. Various methods have been developed to exploit partial separability. When derivatives

are available, a common approach is to employ partitioned Hessian updating schemes [6, 23, 24, 33, 57] in quasi-Newton

methods, along with techniques such as element merging and grouping [13, 30], element-wise preconditioning [18],

and parallelization [33] to reduce the computational cost of Newton steps or conjugate gradients. Conn et al. proposed

a trust-region framework [12] for solving partially separable problems, which was later extended by Shahabuddin [55]

with three algorithm variants based on different methods for solving the trust-region subproblems. Another approach

is incremental optimization [2, 30], where only a small subset of elements is optimized in each iteration.

When derivatives are unavailable, existing approaches can be broadly categorized into bottom-up and top-down

approaches, depending on whether they directly optimize the element functions or optimize the objective function.

The bottom-up approach primarily leverages the independent evaluability of elements to reconstruct information

about the objective function from element values at relatively low cost, thereby solving problem (1). A straightforward

implementation evaluates elements at grid points in R𝑛 , e.g., {𝑥 =
∑𝑛
𝑖=1 𝑐𝑖𝑒𝑖 | 𝑐𝑖 ∈ Z

}
, then assembles these evaluations

into full function values. For instance, for 𝑓 (𝑥,𝑦, 𝑧) = 𝑓1 (𝑥,𝑦) + 𝑓2 (𝑦, 𝑧), computing the values of 𝑓𝑖 at {0, 1}2 requires
only 4 evaluations but yields all 8 values of 𝑓 over {0, 1}3. If elements are independent, evaluating each element 𝑘 times

produces 𝑘𝑞 objective values from just 𝑘𝑞 evaluations. Price and Toint [49] exploited this to develop a mesh-refinement-

based direct search method that scales efficiently to thousands of dimensions. Another strategy is line-search-based,

such as Porcelli and Toint’s BFO method [40].

An alternative approach is top-down, where the algorithm primarily extracts information from complete evaluations

of 𝑓 to guide the optimization. Model-based methods often fall into this category, as the subproblems formed by

surrogate models typically generate points without a clear geometric pattern, making it unlikely to reconstruct the

objective value by computing only a few element values. Relevant work includes Bouzarkouna et al.’s p-sep lmm-CMA

method [5] and Conn and Toint’s PSDFO method [11]. The p-sep lmm-CMA method is a variant of lmm-CMA [31], where

a meta-model (a second-order polynomial regression model) is built for each element function to guide the ranking

of data points in lmm-CMA. Meanwhile, PSDFO is an interpolation-based trust-region method where each element 𝑓𝑖 is

approximated by a quadratic interpolation model𝑚𝑖 . In both methods, the primary purpose of modeling elements is to
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4 Y. Liu et al.

construct an overall model

𝑚(𝑥) =
𝑞∑︁
𝑖=1

𝑚𝑖 (𝑥), (2)

which is then used as a single surrogate model in the underlying algorithm for general optimization. Consequently,

the information available to the algorithm mainly stems from feedback on the full function 𝑓 or the overall model𝑚.

The benefits of the top-down approach are relatively indirect. Compared to using a single surrogate model, employing

multiple element models primarily reduces the total modeling cost, since evaluating 𝑓 once yields all values 𝑓1, . . . , 𝑓𝑞 ,

enabling simultaneous updates to all models in a single iteration.

Generally speaking, model-based methods exhibit superior computational efficiency compared to direct search and

pattern search approaches. In pursuit of efficiency, we adopt a top-down strategy and develop a trust-region algorithm

that employs quadratic interpolation models to approximate element functions. The algorithm is named Unconstrained

Partially-separable Optimization by Quadratic Approximation (UPOQA). The key features of UPOQA include:

(1) For interpolation modeling, UPOQA utilizes the underdetermined quadratic model based on Powell’s derivative-free

symmetric Broyden update [44], incorporating Powell’s techniques [45, 47] to enable efficient model construction

and maintenance with low algebraic complexity;

(2) For trust-region management, UPOQA assigns independent trust-region radii to each element, implements a modi-

fied projected gradient method for solving trust-region subproblems within structured trust regions, improves

upon the existing radius adjustment strategy [55], and introduces a selective update mechanism for element

models based on obtained interpolation points;

(3) In terms of accessibility, UPOQA provides a ready-to-use Python implementation with various features to enhance

flexibility and robustness, including hybrid black-white-box optimization and restart mechanism. The open-source

package is released on GitHub under the BSD 3-Clause License.

The rest of the paper is organized as follows. Section 2 presents the overall framework of UPOQA, including the

designed approximate projection operator for structured trust-region problems, the management of trust-region radius,

the criteria for selective element model updates, starting point search mechanism, and optional features (restart and

hybrid optimization). Section 3 conducts comprehensive numerical experiments on CUTEst test problems extracted via

the S2MPJ tool [21] and test cases from the quantum variational problem (17) to validate the algorithm’s effectiveness.

Section 4 concludes the work and discusses potential future research directions.

2 THE UPOQA ALGORITHM

The UPOQA algorithm is based on Powell’s trust-region framework [46, 48, 51] for solving problem (1). For each element

𝑓𝑖 , the algorithm maintains an interpolation set Y𝑖 of size at least 𝑂 (𝑛𝑖 ), along with an underdetermined quadratic

interpolation model [44] constructed from these points:

𝑚𝑘,𝑖 (𝑥I𝑖𝑘 + 𝑠) = 𝑐𝑘,𝑖 + 𝑔⊤𝑘,𝑖𝑠 +
1

2

𝑠⊤𝐻𝑘,𝑖𝑠, 𝑠 ∈ R𝑛𝑖 . (3)

We refer to𝑚𝑘,1, . . . ,𝑚𝑘,𝑞 as element models, where 𝑐𝑘,𝑖 ∈ R, 𝑔𝑘,𝑖 ∈ R𝑛𝑖 , and 𝐻𝑘,𝑖 ∈ R𝑛𝑖×𝑛𝑖 is a symmetric matrix. The

model𝑚𝑘,𝑖 is expected to sufficiently approximate the objective function within a trust region of radius Δ𝑘,𝑖 :

B𝑖 (Δ𝑘,𝑖 ) =
{
𝑥
I𝑖
𝑘
+ 𝑠 | 𝑠 ∈ R𝑛𝑖 , ∥𝑠 ∥2 ≤ Δ𝑘,𝑖

}
.
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Moreover, each model is equipped with its own trust-region radius {Δ𝑘,𝑖 }
𝑞

𝑖=1
to account for their varying reliability due

to different accuracies.

During the execution of UPOQA, as the interpolation sets are updated, the element models are also updated by

the derivative-free symmetric Broyden update [44], which has been widely employed by Powell in algorithms such as

NEWUOA [46] and BOBYQA [48]. It allows the algorithm to use only𝑂 (𝑛𝑖 ) interpolation points per model while updating the

model with𝑂 (𝑛2
𝑖
) algebraic complexity [45, 47]. This surrogate model is widely recognized as an effective second-order

approach in derivative-free methods based on interpolation models and trust regions [15].

Our work is tailored for partially separable problems. When the number of elements exceeds one, two key issues

must be addressed. First, how to solve the resulting structured trust-region subproblem:

min

𝑠∈R𝑛
𝑚𝑘 (𝑥𝑘 + 𝑠), (4)

s.t. ∥𝑠I𝑖 ∥2 ≤ Δ𝑘,𝑖 , 𝑖 = 1, 2, . . . , 𝑞,

where𝑚𝑘 ≜
∑𝑞

𝑖=1
𝑚𝑘,𝑖 is the overall model assembled from the element models {𝑚𝑘,𝑖 }

𝑞

𝑖=1
. Second, how to evaluate the

contribution of each element model to the reduction of the objective value in each iteration and accordingly adjust

{Δ𝑘,𝑖 }
𝑞

𝑖=1
. For the first issue, we employ a modified projected gradient method based on an approximate projection

operator, which will be detailed in Section 2.1. For the second issue, we directly adopt the combined separation criterion

proposed by Shahabuddin [55, Section 2.4], with minor modifications in corner cases.

Next, we briefly outline the general workflow of the UPOQA algorithm for solving problem (1). At initialization, the

algorithm first constructs the surrogate model 𝑚0,𝑖 and the interpolation set Y0,𝑖 for each element 𝑓𝑖 . Then, using

all interpolation points from {Y0,𝑖 }𝑞𝑖=1, it seeks a better starting point 𝑥0 via the method described in Section 2.4. If

successful, the objective value 𝑓 (𝑥0) will be lower than that of the user-provided point 𝑥start. In each iteration, UPOQA

first solves the trust-region subproblem (4) using the modified projected gradient method from Section 2.1, obtaining a

trial step 𝑠𝑘 . The algorithm then decides whether to accept this step based on the magnitude of ∥𝑠𝑘 ∥2.
For 𝑠𝑘 with large norms, the algorithm first computes a candidate point 𝑥𝑘 = 𝑥𝑘 + 𝑠𝑘 and updates all models and

interpolation point sets based on 𝑥𝑘 . When updating the model𝑚𝑘,𝑖 and the interpolation set Y𝑘,𝑖 , a new interpolation

point 𝑥
I𝑖
𝑘

is added to Y𝑘,𝑖 . However, this procedure is performed only if 𝑥
I𝑖
𝑘

does not compromise the poisedness of

the interpolation set Y𝑘,𝑖 . For updating the trust-region radii

{
Δ𝑘,𝑖

}𝑞
𝑖=1

, we employ the combined separation criterion

proposed by Shahabuddin [55, Section 2.4]. If the objective exhibits insufficient reduction at 𝑥𝑘 , the algorithm further

checks whether a geometry-improving step should be taken. If the conditions for a geometry-improving step are not

met, the trust-region resolution 𝜌𝑘 is reduced. The value of 𝜌𝑘 serves as a lower bound for all trust-region radii {Δ𝑘,𝑖 }
𝑞

𝑖=1
,

indicating the search precision of the algorithm at the current iteration. For 𝑠𝑘 with small norms, the algorithm will

reduce the trust-region radii and perform geometry-improvement steps. If such small-step events occur consecutively

multiple times or no geometry improvement steps are triggered, the algorithm also reduces 𝜌𝑘 .

Algorithm 1 outlines the procedure of UPOQA. Steps unrelated to the partially separable structure closely resemble those

in Powell-style model-based algorithms. For these aspects, we refer readers to the descriptions of these algorithms [46,

47, 50, 51] or the implementation of UPOQA for further details.

2.1 Structured Trust Region

UPOQA assigns an independent trust-region radius Δ𝑘,𝑖 to each element model𝑚𝑘,𝑖 . Consequently, the feasible region

of the trust-region subproblem is no longer a ball but rather an 𝑛-dimensional cylinder set defined by the projections
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6 Y. Liu et al.

Algorithm 1: The UPOQA Algorithm

Input: Objective 𝑓 , elements {𝑓𝑖 }𝑞𝑖=1, index sets {I𝑖 }
𝑞

𝑖=1
, starting point 𝑥start, initial trust-region resolution 𝜌0

Output: Approximate solution to problem (1)

1 Initialize {Y0,𝑖 }𝑞𝑖=1 and {𝑚0,𝑖 }𝑞𝑖=1 centered at 𝑥start, set 𝚫0 = [𝜌0, . . . , 𝜌0]⊤ ∈ R𝑞 ;
2 Compute an improved starting point 𝑥0 using the method described in Section 2.4;

3 for 𝑘 = 0, 1, . . . do
4 𝐹𝐺𝐼

1
, . . . , 𝐹𝐺𝐼

𝑞 ← false;
5 Solve the trust-region subproblem

min

𝑠∈R𝑛

𝑞∑︁
𝑖=1

𝑚𝑘,𝑖 (𝑥𝑘 + 𝑠),

s.t. ∥𝑠I𝑖 ∥2 ≤ Δ𝑘,𝑖 , for 𝑖 = 1, 2, . . . , 𝑞,

to obtain the step 𝑠𝑘 using the method detailed in Section 2.1 and set 𝑥𝑘 ← 𝑥𝑘 + 𝑠𝑘 ;
6 if max𝑖

(𝑠I𝑖
𝑘


2

)
≤ 𝜌𝑘/2 then

7 for 𝑖 = 1, 2, . . . , 𝑞 do
8 Δ𝑘,𝑖 ← max

(
Δ𝑘,𝑖/2, 𝜌𝑘

)
;

9 if the conditions for geometry improvement of model𝑚𝑘,𝑖 are met then
10 𝐹𝐺𝐼

𝑖
← true;

11 if entered this branch in multiple consecutive iterations or 𝐹𝐺𝐼
1

, , . . . , 𝐹𝐺𝐼
𝑞 are all false then

12 𝜌𝑘 ← 0.1𝜌𝑘 ;

13 else
14 Compute

𝑟𝑘 ←
𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 )

𝑚𝑘 (𝑥𝑘 ) −𝑚𝑘 (𝑥𝑘 )
, 𝑟𝑘,𝑖 ←

𝑓𝑖 (𝑥𝑘 ) − 𝑓𝑖 (𝑥𝑘 )
𝑚𝑘,𝑖 (𝑥𝑘 ) −𝑚𝑘,𝑖 (𝑥𝑘 )

, for 𝑖 = 1, 2, . . . , 𝑞;

15 for 𝑖 = 1, 2, . . . , 𝑞 do
16 if 𝑥I𝑖

𝑘
does not significantly deteriorate the poisedness of Y𝑘,𝑖 then

17 Select an interpolation point 𝑦
del,𝑖

𝑘
to remove from Y𝑘,𝑖 ;

18 Set Y𝑘,𝑖 ← Y𝑘,𝑖\
{
𝑦
del,𝑖

𝑘

}
∪ 𝑥I𝑖

𝑘
and update the element model𝑚𝑘,𝑖 ;

19 Adjust the trust-region radius Δ𝑘,𝑖 using the method detailed in Section 2.2;

20 if 𝑟𝑘 ≤ 0.1 then
21 for 𝑖 = 1, 2, . . . , 𝑞 do
22 if the conditions for geometry improvement of model𝑚𝑘,𝑖 are met then
23 𝐹𝐺𝐼

𝑖
← true;

24 if 𝐹𝐺𝐼
1

, , . . . , 𝐹𝐺𝐼
𝑞 are all false then

25 𝜌𝑘 ← 0.1𝜌𝑘 ;

26 Set 𝑥𝑘+1 as the point with the smaller function value between 𝑥𝑘 and 𝑥𝑘 ;

27 Perform geometry-improving steps for all element models and interpolation sets where 𝐹𝐺𝐼
𝑖

= true;

{
𝑃R𝑖 : R

𝑛 → R𝑖
}𝑞
𝑖=1

and the regions

{
B𝑖 (Δ𝑘,𝑖 ) ⊂ R𝑖

}𝑞
𝑖=1

:

S(𝚫𝑘 ) ≜

𝑞⋂
𝑖=1

𝑃−1R𝑖
(
B𝑖

(
Δ𝑘,𝑖

) )
=

{
𝑠 ∈ R𝑛 | ∥𝑠I𝑖 ∥ ≤ Δ𝑘,𝑖 , 𝑖 = 1, 2, . . . , 𝑞

}
, (5)
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Fig. 1. Generation of the surface of a Steinmetz solid.

where 𝚫𝑘 = [Δ𝑘,1, . . . ,Δ𝑘,𝑞]. As before, ∥𝑠I𝑖 ∥ is shorthand for ∥𝑃R𝑖 (𝑠)∥. When the objective takes the form 𝑓 (𝑥,𝑦, 𝑧) =
𝑓1 (𝑥, 𝑧) + 𝑓2 (𝑦, 𝑧), ∥𝑠I𝑖 ∥ uses the 𝐿2-norm, and Δ𝑘,1 = Δ𝑘,2 ≜ Δ, the set S(𝚫𝑘 ) will reduce to a Steinmetz solid, which

is the intersection of two right circular cylinders with equal radii and orthogonal axes, as illustrated in Figure 1.

When Δ𝑘,1 ≠ Δ𝑘,2, the shape of S(𝚫𝑘 ) becomes elongated, indicating that the model is more reliable in one direction

than another, thus permitting larger steps in the reliable direction. In more general cases, the geometry of S(𝚫𝑘 ) is
highly complex, making the trust-region problem

min

𝑠∈S(𝚫𝑘 )
𝑚𝑘 (𝑥 + 𝑠) =

𝑞∑︁
𝑖=1

𝑚𝑘,𝑖 (𝑥 + 𝑠), (6)

rather challenging to solve. It is straightforward to observe that the cylinder set S(𝚫𝑘 ) contains an inscribed ball with

radius Δ𝑘,min
≜ min

𝑖=1,...,𝑞
Δ𝑘,𝑖 , denoted as B(Δ𝑘,min

). Thus, a cheap alternative is to solve the problem (6) approximately

within B(Δ𝑘,min
). To address (6), Conn et al. [12] proposed a two-stage strategy. The first stage involves minimizing

𝑚𝑘 (𝑥𝑘 − 𝑡∇𝑚𝑘 (𝑥𝑘 )) within B(Δ𝑘,min
) to obtain a Cauchy step 𝑠𝐶 . If further reduction can be achieved by increasing

the step length, a subsequent minimization of𝑚𝑘 (𝑥𝑘 − 𝑡𝑠𝐶 ) is then attempted within S(𝚫𝑘 ). In another DFO method

PSDFO [11], all element models share the same trust-region radius, thereby circumventing the difficulty of handling

structured trust regions. If derivatives are available, it is reasonable to reduce computational costs by simplifying

the trust region geometry—for instance, replacing the original region with an inscribed ellipsoid or employing the

𝐿∞-norm in the constraints to transform the trust region into a cube [55]. Nevertheless, to avoid potential degradation

in subproblem solution accuracy caused by such simplifications, we prefer to maintain the trust region S(𝚫𝑘 ) in its

original form.

SinceS(𝚫𝑘 ) is the intersection of finitely many convex sets, it remains convex. To this end, we design an approximate

projection operator 𝑃S(𝚫𝑘 ) : R
𝑛 → S(𝚫𝑘 ) and employ a modified projected gradient method to solve problem (6). The

notation 𝑃S(𝚫𝑘 ) is reserved for the mathematically exact projection.

For projections onto convex sets formed by the intersection of multiple convex sets, a popular approach is to use the

averaged projection [34]. Given arbitrary closed convex sets 𝐹1, . . . , 𝐹𝑞 , the averaged projection is defined as

𝑃𝐹1,...,𝐹𝑞 ≜
1

𝑞

𝑞∑︁
𝑖=1

𝑃𝐹𝑖 ,

where 𝑃𝐹𝑖 is the projection operator from R𝑛 to 𝐹𝑖 . For any point 𝑥1 to be projected, one can iteratively compute

𝑥𝑘+1 = 𝑃𝐹1,...,𝐹𝑞 (𝑥𝑘 ) for𝑘 = 1, 2, . . . to obtain an approximation of the projection 𝑃S(𝚫𝑘 ) (𝑥1). Lewis et al. [34] proved that,
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under a set of mild conditions on 𝐹1, . . . , 𝐹𝑞 , this iteration reduces the mean squared distance

∑𝑞

𝑖=1
𝑑 (𝑥𝑘 , 𝐹𝑖 )2/𝑞 at a linear

rate of 1− 𝑐/𝑞, where 𝑐 is a constant depending on 𝐹1, . . . , 𝐹𝑞 . This convergence rate implies that𝑂 (log 𝜀/log(1 − 𝑐/𝑞))
iterations are sufficient to reduce the mean squared distance below any given tolerance 𝜀 > 0. Since log(1−𝑐/𝑞) < −𝑐/𝑞
always holds and log(1−𝑐/𝑞) approaches −𝑐/𝑞 when 𝑞 is large, the required number of iterations scales as𝑂 (𝑞 log(1/𝜀)).

Each iteration of averaged projection involves recomputing all projections 𝑃𝐹1 (𝑥𝑘 ), . . . , 𝑃𝐹𝑞 (𝑥𝑘 ). When 𝐹𝑖 is a ball

or a cylinder, computing 𝑃𝐹𝑖 (𝑥𝑘 ) costs 𝑂 (𝑛). Thus, the overall computational complexity of the averaged projection

method is 𝑂 (𝑛𝑞2 log(1/𝜀)).

Algorithm 2: Steinmetz Projection

Input: Point 𝑠0 ∈ R𝑛 , index sets {I𝑖 }𝑞𝑖=1, trust-region radii {Δ𝑖 }𝑞𝑖=1
Output: An approximation of 𝑃S(𝚫) (𝑠0)

1 for 𝑘 = 0, 1, . . . do
2 Compute 𝑣𝑖 ←

𝑠I𝑖
0


2

/Δ𝑖 for 𝑖 = 1, . . . , 𝑞;

3 if max

𝑖=1,...,𝑞
𝑣𝑘,𝑖 ≤ 1 then

4 Break

5 G𝑘 ←
{
𝑖 = 1, . . . , 𝑞 | 𝑣𝑘,𝑖 = max

𝑖=1,...,𝑞
𝑣𝑘,𝑖

}
;

6 𝑠𝑘 ← SHRINK
(
𝑠𝑘 , {I𝑖 }

𝑞

𝑖=1
, {Δ𝑖 }𝑞𝑖=1, G𝑘

)
;

To improve the computational efficiency of projection operations, we propose an alternative approximate projection

operator tailored for convex sets of the form S(𝚫), referred to as the Steinmetz projection. The procedure is outlined in

Algorithm 2, which employs a subroutine SHRINK (see Algorithm 3). For clarity, we define the violation ratio of a point

𝑠 ∈ R𝑛 with respect to the 𝑖-th element as

𝑣𝑖 (𝑠) ≜

𝑠I𝑖 
2

Δ𝑖
.

The core idea of Steinmetz projection stems from an observation: Given an index set G and a point 𝑠 ∈ R𝑛 where each

projection 𝑠I𝑖 satisfies ∥𝑠I𝑖 ∥ = 𝜇Δ𝑖 for all 𝑖 ∈ G, then scaling 𝑠 by any real factor 𝑡 yields ∥(𝑡𝑠)I𝑖 ∥ = 𝑡𝜇Δ𝑖 for all 𝑖 ∈ G.
Thus, when projecting 𝑠 onto S(𝚫), we first collect the indices of all elements with the highest violation ratios into a

set G, which by construction satisfies ∥𝑠I𝑖 ∥ = 𝜇Δ𝑖 for some 𝜇 ∈ R and all 𝑖 ∈ G. Next, we rescale 𝑠 in the subspaces

corresponding to G until another element can be added into G, repeating the process iteratively. Here, G is termed the

shrinking set. Once G encompasses all elements and the current point 𝑠 satisfies ∥𝑠I𝑖 ∥2 = 𝜇Δ𝑖 for all 𝑖 , a final scaling by

1/𝜇 ensures the resulting point lies within S(𝚫). As shown in Algorithm 2, each iteration first identifies the shrinking

set and then performs the shrinking operation.

The SHRINK subroutine (Algorithm 3) implements the shrinking operation. Assuming without loss of generality that

the given point 𝑠 lies outside S(𝚫), and given a shrinking set G = {1, 2, . . . , 𝑞} (𝑞 < 𝑞) satisfying

𝑣1 (𝑠) = · · · = 𝑣𝑞 (𝑠) > 𝑣𝑖 (𝑠), ∀𝑖 ∈ {𝑞 + 1, . . . , 𝑞}, (7)

the subroutine performs component-wise contraction in the subspace RG ≜ span

(
∪𝑖∈GR𝑖

)
. Specifically, it scales the

component 𝑠IG by a factor 𝑡∗ ∈ R, generating a new point 𝑠∗ ≜ 𝑠 + (𝑡∗ − 1)𝑠IG that satisfies either:

1 = 𝑣1 (𝑠∗) = · · · = 𝑣𝑞 (𝑠∗) ≥ 𝑣𝑖 (𝑠∗), ∀𝑖 ∈ {𝑞 + 1, . . . , 𝑞}, (8)
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Algorithm 3: Subroutine SHRINK

Input: Point 𝑠 ∈ R𝑛 , index sets {I𝑖 }𝑞𝑖=1, trust-region radii {Δ𝑖 }𝑞𝑖=1, shrinking set G
Output: Shrunk point 𝑠∗

1 Select arbitrary 𝑖 ∈ G and compute 𝑢 ←
𝑠I𝑖 

2

/Δ𝑖 ;
2 if G = {1, 2, . . . , 𝑞} then
3 𝑠∗ ← 𝑠/𝑢;
4 else
5 IG ←

⋃
𝑖∈G I𝑖 ;

6 for 𝑖 = 1, . . . , 𝑞 do
7 if 𝑖 ∈ G then
8 𝑡𝑖 ← 1/𝑢;
9 else

10 𝑡𝑖 ← max


1

𝑢
,

∥𝑠I𝑖\IG ∥2√︃
𝑢2Δ2

𝑖
− ∥𝑠I𝑖∩IG ∥2

2

;
11 𝑡∗ ← max𝑖=1,...,𝑞 𝑡𝑖 ;

12 𝑠∗ ← 𝑠 + (𝑡∗ − 1) 𝑠IG ;

or introduces an elemental index 𝑝 ∈ {𝑞 + 1, . . . , 𝑞} such that

𝑣1 (𝑠∗) = · · · = 𝑣𝑞 (𝑠∗) = 𝑣𝑝 (𝑠∗) ≥ 𝑣𝑖 (𝑠∗), ∀𝑖 ∈ {𝑞 + 1, . . . , 𝑞} \ {𝑝}, (9)

where IG ≜
⋃

𝑖∈G I𝑖 .
This mechanism enables the outer loop (Algorithm 2) to terminate the projection or subsequently expand the

shrinking set to Gnew = {1, 2, . . . , 𝑞} ∪ {𝑝}. The elemental scaling ratio 𝑡𝑖 is the maximum of two possible choices,

as computed in Steps 8 and 10 of Algorithm 3, yielding the candidate point 𝑠𝑖 ≜ 𝑠 + (𝑡𝑖 − 1)𝑠IG satisfying either

1 = 𝑣1 (𝑠𝑖 ) = · · · = 𝑣𝑞 (𝑠𝑖 ) > 𝑣𝑖 (𝑠𝑖 ) or 𝑣1 (𝑠𝑖 ) = · · · = 𝑣𝑞 (𝑠𝑖 ) = 𝑣𝑖 (𝑠𝑖 ). The final contraction ratio 𝑡∗ is then selected as

the maximum value of 𝑡1, . . . , 𝑡𝑞 ensuring satisfaction of (8) or (9). Note that the selection of trial index 𝑖 in Step 1 is

arbitrary, as the ratio

𝑠I𝑖 
2

/Δ𝑖 remains constant across all 𝑖 ∈ G due to the defining property of the shrinking set G.
Theorem 2.1 formally establishes the correctness of the SHRINK subroutine.

Theorem 2.1. Given a point 𝑠 ∉ S(𝚫), element index sets {I𝑖 }𝑞𝑖=1, trust-region radii {Δ𝑖 }𝑞𝑖=1, and a shrinking set G
satisfying condition (7), there exists 𝑝 ∈ {𝑞 + 1, . . . , 𝑞} such that the point 𝑠∗ returned by Algorithm 3 will satisfy either (8)

or (9).

Proof. Let 𝑝 = argmax𝑖∉G 𝑡𝑖 , where 𝑡𝑖 is determined by Steps 8 and 10 of Algorithm 3. Let 𝑢 =

𝑠I𝑖 
2

/Δ𝑖 for an
arbitrary 𝑖 ∈ G, noting that this value is independent of the choice of 𝑖 . Define 𝑡∗ = max𝑖=1,...,𝑞 𝑡𝑖 and 𝑠∗ = 𝑠 + (𝑡∗ − 1)𝑠IG .
We consider the size of 𝑢2Δ2

𝑝 in two cases.

First, if 𝑢2Δ2

𝑝
> 𝑢2

𝑠I�̂�\IG 2
2

+
𝑠I�̂�∩IG 2

2

holds, then we have

1

𝑢
>

∥𝑠I𝑖\IG ∥2√︃
𝑢2Δ2

𝑖
− ∥𝑠I𝑖∩IG ∥2

2

,

Manuscript submitted to ACM



10 Y. Liu et al.

and thus 𝑡𝑝 = 1/𝑢. On one hand, 𝑡𝑖 = 1/𝑢 (∀𝑖 ∈ G), and on the other hand, 𝑡𝑖 ≤ 𝑡𝑞 = 1/𝑢 (∀𝑖 ∉ G). Thus, 𝑡∗ = 1/𝑢. For
any 𝑖 ∈ G, since I𝑖 ⊂ IG , we have

𝑠
I𝑖
∗ = 𝑃R𝑖 𝑠∗ = 𝑡∗𝑠I𝑖 , ∀𝑖 ∈ G. (10)

Furthermore, by the definition of 𝑢, it follows that

𝑠
I𝑖
∗ =

1

𝑢
𝑠I𝑖 =⇒

𝑠I𝑖∗ 
2

=
1

𝑢

𝑠I𝑖 
2

= Δ𝑖 =⇒ 𝑣𝑖 (𝑠∗) = 1, ∀𝑖 ∈ G.

Meanwhile, for any 𝑖 ∉ G, since

𝑠
I𝑖
∗ = 𝑠I𝑖\IG + 𝑡∗𝑠I𝑖∩IG , ∀𝑖 ∉ G, (11)

and 𝑠I𝑖\IG ⊥ 𝑠I𝑖∩IG , we have𝑠I𝑖∗ 2
2

=

𝑠I𝑖\IG 2
2

+ 1

𝑢2

𝑠I𝑖∩IG 2
2

≤ Δ2

𝑖 =⇒ 𝑣𝑖 (𝑠∗) ≤ 1, ∀𝑖 ∉ G.

Thus, in this case, inequality (8) holds.

In the second case, when 𝑢2Δ2

𝑝
≤ 𝑢2

𝑠I�̂�\IG 2
2

+
𝑠I�̂�∩IG 2

2

holds, we have 𝑡𝑝 ≥ 1/𝑢, and thus 𝑡∗ = 𝑡𝑝 . For any 𝑖 ∈ G,
since equation (10) still holds, it follows that 𝑣𝑖 (𝑠∗) = 𝑡∗𝑣𝑖 (𝑠) = 𝑡𝑝𝑢. Therefore, all 𝑣𝑖 (𝑠∗) (∀𝑖 ∈ G) remain the same. From

equation (11), we derive

𝑠I�̂�∗ 2
2

=

𝑠I�̂�\IG 2
2

+ 𝑡2
𝑝

𝑠I�̂�∩IG 2
2

=

𝑠I�̂�\IG 2
2

+

𝑠I�̂�\IG 2
2

𝑠I�̂�∩IG 2
2

𝑢2Δ2

𝑝
−
𝑠I�̂�∩IG 2

2

=

𝑢2Δ2

𝑝

𝑠I�̂�\IG 2
2

𝑢2Δ2

𝑝
−
𝑠I�̂�∩IG 2

2

= 𝑢2Δ2

𝑝
𝑡2
𝑝
.

Thus, we have 𝑣𝑝 (𝑠∗) = 𝑡𝑝𝑢. For any 𝑖 ∉ G, we claim that 𝑣𝑖 (𝑠∗) ≤ 𝑡𝑝𝑢. Otherwise, the inequality

𝑠I𝑖∗ 
2

> 𝑡𝑝𝑢Δ𝑖 would

hold, leading to 𝑠I𝑖\IG 2
2

+ 𝑡2
𝑝

𝑠I𝑖∩IG 2
2

> 𝑡2
𝑝
𝑢2Δ2

𝑖 =⇒

𝑠I𝑖\IG 
2√︃

𝑢2Δ2

𝑖
−
𝑠I𝑖∩IG 2

2

> 𝑡𝑝 ,

which implies 𝑡𝑖 > 𝑡𝑝 . This contradicts the assumption 𝑝 = argmax𝑖∉G 𝑡𝑖 . Therefore, we have

𝑡𝑝𝑢 = 𝑣 𝑗 (𝑠∗) = 𝑣𝑝 (𝑠∗) ≥ 𝑣𝑖 (𝑠∗), ∀ 𝑖 ∈ G𝑐\{𝑝}, 𝑗 ∈ G.

Hence, inequality (9) holds. □

Note that at the initialization of Steinmetz projection, we may exclude the index sets I𝑗 of elements satisfying

𝑣 𝑗 (𝑠0) ≤ 1 from {I𝑖 }𝑞𝑖=1, since they never contribute 𝑡 𝑗 values exceeding 1/𝑢 and thus cannot affect the value of 𝑡∗.

Furthermore, Steps 2 and 5 of Algorithm 2 need not be explicitly recomputed in each iteration, as the new shrinking set

can always be obtained simply using intermediate results from the subroutine SHRINK. If
��{𝑖 | 𝑣 𝑗 (𝑠0) ≤ 1

}�� = 𝑞, then

each run of Algorithm 3 has a cost of 𝑂 (𝑛 (𝑞 − 𝑞 − |G|)). Since each run either terminates the projection or adds at

least one new member to the shrinking set, the algorithm iterates at most 𝑞 − 𝑞 times. Therefore, the computational

complexity of Algorithm 2 is

𝑂
©«
𝑞−𝑞∑︁
𝑖=1

𝑛(𝑞 − 𝑞 − 𝑖)ª®¬ = 𝑂

(
1

2

𝑛(𝑞 − 𝑞)2
)
. (12)

Meanwhile, the averaged projection method with stopping tolerance 𝜀 has a cost of 𝑂 (𝑛(𝑞 − 𝑞)2 log 𝜀). By contrast,

the Steinmetz projection does not require setting termination precision, resulting in a lower constant factor. Figure 2
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Fig. 2. Iterates generated by applying the averaged projection and the Steinmetz projection to the initial point 𝑠0, where the marked
S(𝚫) , 𝑃−1R1 (B (Δ1 ) ) , and 𝑃−1R2 (B (Δ2 ) ) represent their cross-sections in the current region.

illustrates the iterates generated by applying both averaged projection and Steinmetz projection to the initial point 𝑠0,

where the labeled S(𝚫), 𝑃−1R1 (B(Δ1)), and 𝑃−1R2 (B(Δ2)) represent their cross-sections in the current region.

It should be noted that neither the Steinmetz projection nor the averaged projection method constitutes a projection

in the mathematical sense (i.e., finding the closest point under a given norm), and it is difficult to assert which method

consistently yields better optimality for the projected points. Based on our numerical tests, we found that first applying

the averaged projection for 𝑘avg = 1 ∼ 5 iterations, followed by the Steinmetz projection, sometimes produces a point

closer to the initial point than using either method alone. For any point 𝑠 ∈ R𝑛 to be projected, we denote the resulting

projected point obtained through this combined approach as 𝑃S(𝚫)
(
𝑠; 𝑘avg

)
.

To solve the trust-region subproblem (6), we employ a modified projected gradient method (Algorithm 4), which

closely follows the truncated conjugate gradient method. The key difference arises when the iterate 𝑠𝑘 +𝛼𝑘𝑝𝑘 falls outside

S(𝚫). Instead of stopping, the algorithm performs an exact line search along the direction 𝑃S(𝚫) (𝑠𝑘 + 𝛼𝑘𝑝𝑘 ; 𝑘avg) − 𝑠𝑘
starting from 𝑠𝑘 to determine 𝑠𝑘+1. Since 𝑃S(𝚫) (·; 𝑘avg) is not an exact projection, monotonic decrease in the function

values cannot be guaranteed, making this additional line search necessary. Furthermore, the algorithm alternates

between 𝑘
(1)
avg

= 0 and 𝑘
(2)
avg

= 4 during iterations to mitigate the limitations of using a single projection operator. The

truncation radius Δ̂ in Algorithm 4 is chosen sufficiently large to ensure that the trust region is entirely contained

within the ball B(Δ̂). In addition, a comparison of UPOQA’s performance with versus without structured trust regions

is provided in Appendix B, where the non-structured version employs a spherical trust region, and the resulting

subproblem is solved via the truncated conjugate gradient method with a boundary improvement step.

2.2 Managment of Trust Region Radii

In Step 19 of Algorithm 1, we employ the combined separation criterion proposed by Shahabuddin [55, Section 2.4] to

adjust the trust region radii {Δ𝑘,𝑖 }
𝑞

𝑖=1
. Here we briefly introduce this criterion.
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Algorithm 4:Modified Projected Gradient Method for the Trust-Region Subproblem (6)

Input: Overall model𝑚, center point 𝑥 , truncation radius Δ̂ > 0, projection operator 𝑃S(𝚫) , numbers of start-up

averaged projection iterations 𝑘
(1)
avg

, 𝑘
(2)
avg
≥ 0

Output: An approximate solution to (6)

1 Set the iterate 𝑠0 ← 0;

2 Set the search direction 𝑝0 ← −∇𝑚(𝑥 + 𝑠0);
3 for 𝑘 = 0, 1, . . . until ∇𝑚(𝑥 + 𝑠𝑘 )⊤𝑝𝑘 ≥ 0 do
4 Compute 𝛼𝑘 ← argmin

{
𝑚(𝑥 + 𝑠𝑘 + 𝛼𝑝𝑘 ) | 0 ≤ 𝛼 ≤ Δ̂/∥𝑝𝑘 ∥2

}
;

5 if 𝑠𝑘 + 𝛼𝑘𝑝𝑘 falls outside S(𝚫) then
6 𝑠𝑘 ← 𝑃S(𝚫)

(
𝑠𝑘 + 𝛼𝑘𝑝𝑘 ; 𝑘

(𝑘 mod 2)
avg

)
;

7 𝑝𝑘 ← 𝑠𝑘 − 𝑠𝑘 ;
8 𝛼𝑘 ← argmin {𝑚(𝑥 + 𝑠𝑘 + 𝛼𝑝𝑘 ) | 0 ≤ 𝛼 ≤ 1};
9 𝑠𝑘+1 ← 𝑠𝑘 + 𝛼𝑘𝑝𝑘 ;

10 𝑝𝑘+1 ← −∇𝑚(𝑥 + 𝑠𝑘+1);
11 else
12 𝑠𝑘+1 ← 𝑠𝑘 + 𝛼𝑘𝑝𝑘 ;
13 𝛽𝑘 ← ∥∇𝑚(𝑥 + 𝑠𝑘+1)∥2 /∥∇𝑚(𝑥 + 𝑠𝑘 )∥2;
14 𝑝𝑘+1 ← −∇𝑚(𝑥 + 𝑠𝑘+1) + 𝛽𝑘𝑝𝑘 ;

In trust region methods, it is common practice to adjust the trust region based on the value of the reduction ratio

𝑟𝑘 = 𝛿𝑘 𝑓 /𝛿𝑘𝑚𝑘 , where

𝛿𝑘 𝑓 = 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥𝑘 ), 𝛿𝑘𝑚𝑘 =𝑚𝑘 (𝑥𝑘 ) −𝑚𝑘 (𝑥𝑘 ) .

However, when solving partially separable problems, it is infeasible to independently adjust each Δ𝑘,𝑖 solely based

on 𝑟𝑘,𝑖 . For an individual objective, we always expect the surrogate model and the objective function to decrease.

However, for coexisting element functions, the potential antagonistic relationship between them may necessitate that

we sometimes tolerate a slight deterioration in the function values of some elements. This suggests that the algorithm

should not simply encourage larger 𝑟𝑘,𝑖 values. Moreover, the cancellation issue further complicates the problem. Conn

et al. [12] first pointed out that a situation may arise where 𝛿𝑘𝑚𝑘,1, . . . , 𝛿𝑘𝑚𝑘,𝑞 have large absolute magnitudes, but

cancellation occurs, resulting in a very small absolute value for the aggregated 𝛿𝑘𝑚𝑘 . In such cases, rounding errors

in 𝛿𝑘𝑚𝑘,1, . . . , 𝛿𝑘𝑚𝑘,𝑞 can easily lead to inaccurate computation of 𝛿𝑘𝑚𝑘 and to misjudgment of the reliability of the

overall model𝑚𝑘 .

For above considerations, Shahabuddin [55, Section 2.4] proposed a scoring-based strategy. The scores consist of a

global score 𝜏𝑘 and element-wise local scores {𝜏𝑘,𝑖 }
𝑞

𝑖=1
, both taking integer values of 0, 1, or 2. By summing the two

parts, the total score (ranging from 0 to 4) determines how each element’s trust region radius Δ𝑘,𝑖 should be adjusted.

The global score 𝜏𝑘 depends solely on the magnitude of 𝑟𝑘—the larger 𝑟𝑘 , the higher 𝜏𝑘 . The element-wise score 𝜏𝑘,𝑖 is

determined by the position of the point (𝛿𝑘𝑚𝑘,𝑖 , 𝛿𝑘 𝑓𝑖 ). Figure 3 illustrates the acceptable region for assigning {𝜏𝑘,𝑖 }
𝑞

𝑖=1
,

bounded by two rays with different slopes emanating from the origin and a line with slope 1 that does not pass through

the origin. The stricter the acceptable region in which (𝛿𝑘𝑚𝑘,𝑖 , 𝛿𝑘 𝑓𝑖 ) falls, the higher 𝜏𝑘,𝑖 . The detailed scoring strategy

is described in Algorithm 5. After scoring, we set 𝜏𝑘,𝑖 = 𝜏𝑘 + 𝜏𝑘,𝑖 . The new trust region radii are then updated as follows:
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Fig. 3. The combined separation criterion proposed by Shahabuddin [55, Section 2.4] determines whether to expand the elemental
trust region radius Δ𝑘,𝑖 based on the slope 𝑟𝑘,𝑖 of the point (𝛿𝑘𝑚𝑘,𝑖 , 𝛿𝑘 𝑓𝑖 ) relative to the origin and its distance to the line 𝑟𝑘,𝑖 = 1.
The colored region in the figure represents the acceptable region for expansion operations.

Δ𝑘+1,𝑖



∈ [1, 𝜃4]Δ𝑘,𝑖 , if 𝜏𝑘,𝑖 = 4,

∈ [1, 𝜃3]Δ𝑘,𝑖 , if 𝜏𝑘,𝑖 = 3,

∈ [𝜃2, 1]Δ𝑘,𝑖 , if 𝜏𝑘,𝑖 = 2,

= 𝜃2Δ𝑘,𝑖 , if 𝜏𝑘,𝑖 = 1,

= 𝜃1Δ𝑘,𝑖 , if 𝜏𝑘,𝑖 = 0,

In our implementation, the parameters are set as 𝜃1 = 0.5, 𝜃2 = 1/
√
2, 𝜃3 =

√
2, and 𝜃4 = 2. Additionally, Step 21 in

Algorithm 5 ensures that when the overall model reduction is unsatisfactory (𝑟𝑘 < 𝜇1), at least one element’s trust

region radius undergoes substantial decrease to prevent the algorithm from stagnating at a fixed radius. Although such

cases are rare, they have indeed been observed in our numerical experiments. This step is the only modification we

made to Shahabuddin’s combined separation criterion [55, Section 2.4].

2.3 Selective Updates of Element Models

After obtaining the solution 𝑠𝑘 to the trust-region subproblem (6), it is time to update element models and interpolation

sets. For the model 𝑚𝑘,𝑖 , the new interpolation point generated by the solution 𝑠𝑘 is 𝑥
I𝑖
𝑘

= (𝑥𝑘 + 𝑠𝑘 )I𝑖 . However,
blindly adding 𝑥

I𝑖
𝑘

to the set Y𝑘,𝑖 may deteriorate the poisedness of Y𝑘,𝑖 . For example, when the objective function

is 𝑓 (𝑥,𝑦) = 𝑓1 (𝑥) + 𝑓2 (𝑦) and the starting point is (𝑥0, 𝑦0), if 𝑥0 is already very close to a local minimizer of 𝑓1, the

computed trust-region step will have vastly different scales in the subspaces corresponding to 𝑥 and 𝑦. This can cause

a drastic contraction in the geometry of the interpolation set Y1, potentially leading to numerical instability. If the

algorithm detects such a risk, it skips such updates, as implemented in Step 16 of Algorithm 1.
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Algorithm 5: Scoring Strategy for Trust Region Radius Adjustment

Input: Elemental model reductions {𝛿𝑘𝑚𝑘,𝑖 }
𝑞

𝑖=1
, elemental reduction ratios {𝑟𝑘,𝑖 }

𝑞

𝑖=1
, trust region radii {Δ𝑘,𝑖 }

𝑞

𝑖=1
,

trust region resolution 𝜌𝑘 , overall reduction ratio 𝑟𝑘 , constants 0 < 𝜇1 < 𝜇2 < 1

Output: Total scores for each element {𝜏𝑘,𝑖 }
𝑞

𝑖=1

1 𝜁𝑘 ←
∑
𝛿𝑘𝑚𝑘,𝑖<0

𝛿𝑘𝑚𝑘,𝑖∑
𝛿𝑘𝑚𝑘,𝑖≥0 𝛿𝑘𝑚𝑘,𝑖

;

2 For 𝑖 = 1, 2, set 𝜂𝑖 = −(1 − 𝜇𝑖 )𝜁𝑘 , 𝛼𝑖 ←
(𝜇𝑖 + 𝜂𝑖 ) (1 + 𝜁𝑘 ) − 2𝜁𝑘

1 − 𝜁𝑘
;

3 if 𝑟𝑘 ≥ 𝜇2 then 𝜏𝑘 ← 2 ;

4 else if 𝑟𝑘 ≥ 𝜇1 then 𝜏𝑘 ← 1 ;

5 else 𝜏𝑘 ← 0 ;

6 for 𝑖 = 1, 2, . . . , 𝑞 do
7 if 𝛿𝑘𝑚𝑘,𝑖 ≥ 0 then
8 if 𝑟𝑘,𝑖 ≥ 𝛼2 or 𝛿𝑘 𝑓𝑖 ≥ 𝛿𝑘𝑚𝑘,𝑖 − 𝜂2 (𝛿𝑘𝑚𝑘 )/𝑞 then
9 𝜏𝑘,𝑖 ← 2;

10 else if 𝑟𝑘,𝑖 ≥ 𝛼1 or 𝛿𝑘 𝑓𝑖 ≥ 𝛿𝑘𝑚𝑘,𝑖 − 𝜂1 (𝛿𝑘𝑚𝑘 )/𝑞 then
11 𝜏𝑘,𝑖 ← 1;

12 else 𝜏𝑘,𝑖 ← 0 ;

13 else
14 if 𝑟𝑘,𝑖 ≤ 2 − 𝛼2 or 𝛿𝑘 𝑓𝑖 ≥ 𝛿𝑘𝑚𝑘,𝑖 − 𝜂2 (𝛿𝑘𝑚𝑘 )/𝑞 then
15 𝜏𝑘,𝑖 ← 2;

16 else if 𝑟𝑘,𝑖 ≤ 2 − 𝛼1 or 𝛿𝑘 𝑓𝑖 ≥ 𝛿𝑘𝑚𝑘,𝑖 − 𝜂1 (𝛿𝑘𝑚𝑘 )/𝑞 then
17 𝜏𝑘,𝑖 ← 1;

18 else 𝜏𝑘,𝑖 ← 0 ;

19 𝜏𝑘,𝑖 ← 𝜏𝑘,𝑖 + 𝜏𝑘 ;
20 if 𝜏𝑘 = 0 then
21 Verify all 𝜏𝑘,𝑖 to ensure at least one element satisfies 𝜏𝑘,𝑖 ≤ 1 and Δ𝑘,𝑖 > 𝜌𝑘 . Otherwise, set 𝜏𝑘,𝑖 of the

lowest-scoring element with Δ𝑘,𝑖 > 𝜌𝑘 to 0;

In Powell’s DFO methods that based on quadratic models, the denominator 𝜎 in the update formula for the interpola-

tion system is a crucial parameter [45]. Its magnitude largely determines the impact of the update on the poisedness of

the interpolation system, and a larger value is preferred. Therefore, we decide whether to accept the new interpolation

point 𝑥
I𝑖
𝑘

intoY𝑘,𝑖 by checking the value 𝜎𝑘,𝑖 during the update of𝑚𝑘,𝑖 . We first compute 𝜎𝑘,𝑖 and multiply it by a factor

𝛾𝑘,𝑖 ≜ min

{𝑠I𝑖
𝑘


2

/𝜌𝑘 , 1
}
, where 𝑠𝑘 is the solution to the trust-region subproblem (6) solved in Step 5 of Algorithm 1.

The factor 𝛾𝑘,𝑖 penalizes situations with small step updates, as they generally contribute limited improvements to the

model’s accuracy, even if they don’t significantly compromise the system’s poisedness. Due to rounding errors, the

value of 𝜎𝑘,𝑖 may become negative. To mitigate this, we check the intermediate variables used in computing 𝜎𝑘,𝑖 to

detect such tendencies, and apply an additional penalty factor𝑤𝑘,𝑖 to the value of 𝜎𝑘,𝑖 . This penalty factor is determined

heuristically - in short, we reduce positive 𝜎𝑘,𝑖 values while enlarging negative ones. The resulting value𝑤𝑘,𝑖𝛾𝑘,𝑖𝜎𝑘,𝑖 is

then compared with a fixed threshold 𝜉 . The new interpolation point 𝑥
I𝑖
𝑘

is accepted only if 𝑤𝑘,𝑖𝛾𝑘,𝑖𝜎𝑘,𝑖 exceeds the

threshold. In UPOQA, the default threshold is set to 𝜉 = 10
−5
.
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In most cases, updates with negative 𝜎𝑘,𝑖 are automatically rejected. However, an exception occurs in extreme

situations where all candidate updates yield negative 𝜎𝑘,𝑖 values, and the algorithm will accept the update whose

𝑤𝑘,𝑖𝛾𝑘,𝑖𝜎𝑘,𝑖 is closest to zero. Only then does the additional penalty on negative 𝜎𝑘,𝑖 values matter.

2.4 Starting Point Search

As mentioned earlier, based on the element values evaluated at a certain number of interpolation points selected from

the grid {
𝑥 =

𝑛∑︁
𝑖=1

𝑐𝑖𝑒𝑖 | 𝑐1, . . . , 𝑐𝑛 ∈ Z
}
,

one can easily compute significantly more overall function values. This idea has been adopted by Price and Toint [49].

Although UPOQA cannot directly utilize this search pattern to accelerate the algorithm, it employs similar strategy to

select a better starting point for the algorithm.

UPOQA initializes interpolation sets in the same way as COBYQA [50]. Suppose Y0 = {𝑦1
0
, . . . , 𝑦𝑁

0
} is the 𝑛-dimensional

interpolation set to be initialized with a capacity of 𝑁 = 2𝑛+1, the initial trust-region radius is Δ0, and the user-specified

starting point is 𝑥start. Then, the points 𝑦
1

0
, . . . , 𝑦𝑁

0
are initialized as

𝑦𝑖
0
≜


𝑥start, if 𝑖 = 1,

𝑥start + Δ0𝑒𝑖−1, if 2 ≤ 𝑖 ≤ 𝑛 + 1,

𝑥start − Δ0𝑒𝑖−𝑛−1, if 𝑛 + 2 ≤ 𝑖 ≤ 2𝑛 + 1.

Similarly, for each elemental interpolation set Y0,𝑖 , UPOQA initializes it with 𝑥
I𝑖
start

as the center and Δ0 as the radius.

Based on the resulting sets {Y0,𝑖 }𝑞𝑖=1, UPOQA then explores a certain number of solutions of a constraint satisfaction

problem (CSP) using the minimum remaining values heuristic. In this CSP, the state is a complete point 𝑥 ∈ R𝑛 , and the

constraints require that for any 𝑖 = 1, . . . , 𝑞, 𝑃R𝑖 (𝑥) ∈ Y0,𝑖 must hold. Since the starting point search mechanism has

limited impact on improving algorithmic performance, we restrict the search to at most 5000 solutions and select the

point with the smallest objective function value as the actual starting point 𝑥0 for UPOQA.

2.5 Optional Features

Besides the procedure demonstrated in Algorithm 1, UPOQA also provides two additional functionalities to enhance its

flexibility and applicability: restart mechanism and hybrid black-white-box optimization.

2.5.1 Restart Mechanism. In model-based derivative-free methods, the trust region radius Δ or trust region resolution

𝜌 decreasing to a minimal value often indicates algorithm convergence. However, when the objective function contains

noise, the noise will dominate the function value fluctuations once Δ becomes sufficiently small. Consequently, the

interpolation model will no longer approximate the objective but model the noise instead. This leads to ineffective

descent steps and may even trigger numerical instabilities causing algorithm failure.

Restart mechanisms have been widely adopted in other areas of numerical optimization, such as the conjugate

gradient method and GMRES. Cartis et al.’s Py-BOBYQA [7] introduced this mechanism into model-based DFO methods,

with experiments demonstrating its robustness for noise. Inspired by this, UPOQA incorporates the soft restart mechanism

similar to that in Py-BOBYQA. This mechanism is only activated upon user request. When numerical singularity or

trust-region resolution depletion occurs, the algorithm resets Δ and 𝜌 to larger values, selectively replaces some existing
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interpolation points with a few randomly generated ones, and relocates the iterate to a distant position before resuming

execution.

2.5.2 Hybrid Black-White-Box Optimization. Real-world partially separable problems may exhibit more complex

structures than (1). To maximize the algorithm’s applicability, we adapt the implementation of UPOQA to handle

problems of the form

min

𝑥∈R𝑛
𝑓 (𝑥) = 𝑓0 (𝑥) +

𝑞∑︁
𝑖=1

𝑤𝑖ℎ𝑖 (𝑓𝑖 (𝑥)) , (13)

where 𝑓1, . . . , 𝑓𝑞 remain black-box functions as before, while 𝑓0 : R
𝑛 → R is a white-box function whose gradient and

Hessian can be calculated directly. Each ℎ𝑖 : R→ R is a transformation applied to the element value 𝑓𝑖 (𝑥), also treated as
white-box, and𝑤𝑖 ∈ R denotes the weight for each element. The transition from (1) to (13) requires minimal algorithmic

modifications, as the added white-box components can be directly incorporated into the trust-region subproblem

construction, yet it significantly enhances flexibility. Moreover, UPOQA allows users to dynamically update all𝑤1, . . . ,𝑤𝑞

and ℎ1, . . . , ℎ𝑞 via a callback function during execution. This enables real-time trade-offs among multiple elements

in multi-objective optimization, as well as effortless adjustment of penalty coefficients in constrained optimization

without manual restarting.

An additional advantage of this adaptation stems from UPOQA’s use of quadratic models for each black-box 𝑓𝑖 . If 𝑓𝑖

inherently and locally resembles a quadratic function, maintaining an accurate surrogatemodel becomes computationally

inexpensive, reducing unnecessary trial-and-error during optimization. Hence, knowledgeable users may preemptively

extract known non-quadratic composite parts from 𝑓𝑖 and pass them as ℎ𝑖 to the algorithm. This strategy lowers the

cost of maintaining interpolation models and ultimately decreases the number of function evaluations required for

convergence.

3 NUMERICAL EXPERIMENTS

We briefly describe our testing methodology, the preparation of test problems, and the results of numerical experi-

ments. Our primary evaluation metrics are the performance profile and data profile proposed by Moré and Wild [38],

supplemented with an additional speed-up profile to assess the acceleration effect of UPOQA when exploiting partially

separable structures. The UPOQA algorithm has been implemented as a Python library named upoqa. We conducted tests

on benchmark problems extracted from CUTEst [20] using the S2MPJ [21] tool, along with a set of quantum variational

problems. All tests were conducted on a server equipped with a 32-core Hygon C86 7285 CPU and 504 GB of RAM.

3.1 Testing Methodology

Let S denote the set of all solvers participating in the test, and P denote the set of test problems used. Each test problem

𝑝 ∈ P has a fixed starting point 𝑥0,𝑝 and an objective function 𝑓𝑝 . Given a tolerance 𝜀 ∈ (0, 1), a solver 𝑠 ∈ S is said to

converge on problem 𝑝 with tolerance 𝜀 if and only if its iterate 𝑥 satisfies

𝑓𝑝 (𝑥) ≤ 𝑓 ∗𝑝 + 𝜀
[
𝑓𝑝 (𝑥0,𝑝 ) − 𝑓 ∗𝑝

]
, (14)

where 𝑓 ∗𝑝 is the lowest function value achieved by any solver in S on problem 𝑝 . Let 𝑡𝑝,𝑠 denote the number of function

evaluations required for solver 𝑠 to converge on problem 𝑝 . If convergence is not achieved, we set 𝑡𝑝,𝑠 = ∞.
The performance profile [38] is a concept introduced to evaluate and compare different optimization algorithms. This

metric assesses which solver has an advantage in computational cost for given test problems. First, the performance
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ratio is defined as

𝑟𝑝,𝑠 ≜
𝑡𝑝,𝑠

min𝑢∈S{𝑡𝑝,𝑢 }
,

which can be viewed as a relative cost incurred by solver 𝑠 to solve problem 𝑝 . Then, the performance profile is defined

as

𝜌𝑠 (𝛼) ≜
1

card(P) card
({
𝑝 ∈ P : 𝑟𝑝,𝑠 ≤ 𝛼

})
, for 𝛼 ≥ 1,

where card(·) denotes the cardinality of a set. The metric 𝜌𝑠 (𝛼) can be interpreted as the proportion of problems in

P that solver 𝑠 can solve with a performance ratio not exceeding 𝛼 . Specifically, 𝜌𝑠 (1) represents the proportion of

problems where solver 𝑠 converges faster than all other solvers, while 𝜌𝑠 (+∞) indicates the proportion of problems that

𝑠 can solve regardless of cost. Given two solvers 𝑠1 and 𝑠2, 𝜌𝑠1 (𝛼) > 𝜌𝑠2 (𝛼) implies that under the constraints 𝑟𝑝,𝑠1 ≤ 𝛼

and 𝑟𝑝,𝑠2 ≤ 𝛼 , 𝑠1 can successfully solve more problems than 𝑠2. The value of 𝜌𝑠 (𝛼) for an individual solver is highly

dependent on the competitors present in S.
In contrast, the data profile [38] focuses more on the absolute capability of a single solver and is defined as

𝑑𝑠 (𝛼) ≜
1

card(P) card
({
𝑝 ∈ P :

𝑡𝑝,𝑠

𝑛𝑝 + 1
≤ 𝛼

})
, for 𝛼 ≥ 0,

where 𝑛𝑝 denotes the dimension of problem 𝑝 . The metric 𝑑𝑠 (𝛼) can be interpreted as the proportion of problems in

P that solver 𝑠 can solve using no more than 𝛼 (𝑛𝑝 + 1) function evaluations. Specifically, 𝑑𝑠 (0) = 0, while 𝑑𝑠 (+∞)
represents the proportion of problems that 𝑠 can solve regardless of computational cost. Given two solvers 𝑠1 and 𝑠2,

𝑑𝑠1 (𝛼) > 𝑑𝑠2 (𝛼) implies that, for each problem 𝑝 , when using no more than 𝛼 (𝑛𝑝 + 1) function evaluations, 𝑠1 can

successfully solve more problems than 𝑠2.

When UPOQA converges on a given problem, the number of function evaluations for each element may differ. This

discrepancy may arise from variations in the number of interpolation points required to initialize the surrogate models

or from whether geometry improvement steps are performed on each element model during iterations. Let 𝑡
(𝑖 )
𝑝,𝑠 denote

the number of function evaluations required for element 𝑓𝑖 when solver 𝑠 converges on problem 𝑝 , 𝑡wst𝑝,𝑠 the maximum

among 𝑡
(1)
𝑝,𝑠 , . . . , 𝑡

(𝑞)
𝑝,𝑠 , and 𝑡

avg

𝑝,𝑠 their average. If the cost of evaluating the objective function is dominated by a specific

element 𝑓𝑖∗ , the overall cost of the algorithm will be determined by 𝑡
(𝑖∗ )
𝑝,𝑠 . Hence, in the most pessimistic scenario,

the cost should be measured by 𝑡wst𝑝,𝑠 rather than 𝑡
avg

𝑝,𝑠 . This is the meaning of the superscript wst (worst-case). Unless

otherwise specified, the numerical experiments in subsequent sections generally use 𝑡wst𝑝,𝑠 to quantify the computational

cost of UPOQA. When no ambiguity arises, 𝑡wst𝑝,𝑠 may be abbreviated as 𝑡wst𝑝 .

Since UPOQA leveraging partially separable structures is often significantly faster than algorithms that do not

utilize such structures—potentially rendering comparisons between the two less meaningful—this paper introduces an

alternative metric called the speed-up profile, defined as

su(𝛼) ≜


1

card(P) card
({
𝑝 ∈ P : 1 ≤ 𝑐𝑝 ≤ 𝛼 ∧

(
𝑡
single

𝑝 < ∞∨ 𝑡wst𝑝 < ∞
)})

, for 𝛼 ≥ 1,

1

card(P) card
({
𝑝 ∈ P : 𝛼 ≤ 𝑐𝑝 < 1 ∧

(
𝑡
single

𝑝 < ∞∨ 𝑡wst𝑝 < ∞
)})

, for 0 ≤ 𝛼 < 1,

where

𝑐𝑝 ≜
𝑡
single

𝑝 /𝑡wst𝑝

𝑛𝑝 / max

𝑖=1,...,𝑞𝑝
𝑛𝑝,𝑖

(15)

and 𝑡
single

𝑝 represents the number of function evaluations needed when the objective is treated as a single element

and passed to UPOQA. Here, 𝑛𝑝,𝑖 is the dimension of the element 𝑓𝑖 for problem 𝑝 . Thus, 𝑡
single

𝑝 /𝑡wst𝑝 measures the
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actual speed-up achieved by exploiting the partially separable structure, while 𝑛𝑝/ max

𝑖=1,...,𝑞𝑝
𝑛𝑝,𝑖 serves as a predicted

speed-up ratio. To illustrate, consider an 𝑛-dimensional objective function formed by summing 𝑛/�̂� low-dimensional

subfunctions, each depending on distinct �̂� variables. The Hessian is block-diagonal with identical �̂� × �̂� blocks. For

gradient-based methods using forward-difference numerical gradients, exploiting this structure reduces per-iteration

function evaluations from 𝑂 (𝑛) to 𝑂 (�̂�)—each subgradient requires �̂� + 1 evaluations rather than 𝑛 + 1 for the full

gradient. Assuming comparable iteration counts, this induces a predicted speed-up ratio of 𝑛/�̂�. For general problems,

the elemental dimensions 𝑛1, . . . , 𝑛𝑞 may vary. In such cases, we assume that the element with largest dimension

dominates the cost, making 𝑛 / max

𝑖=1,...,𝑞𝑝
𝑛𝑖 a conservative prediction of the speed-up ratio. Notably, if any element has the

same dimension as the objective function (i.e., max

𝑖=1,...,𝑞𝑝
𝑛𝑖 = 𝑛), UPOQAmay fail to exploit any intrinsic low-dimensionality,

resulting in a predicted speed-up ratio close to 1.

The expression (15) can be interpreted as a relative speed-up ratio, indicating whether UPOQA delivers the expected

performance gain. A relative speed-up ratio greater than 1 suggests that revealing the partially separable structure

not only allows the algorithm to exploit intrinsic low-dimensionality for reduced modeling cost but also enables the

distillation of the primary nonconvexity into relatively low-dimensional elements, further lowering the actual cost. If

UPOQA fails to converge regardless of whether the partially separable structure is utilized, such cases are excluded when

computing su(𝛼).
To present the results more intuitively, we design su(𝛼) to be computed across two distinct regimes: 𝛼 ≥ 1 and

0 ≤ 𝛼 < 1. For 𝛼 ≥ 1, su(𝛼) represents the proportion of problems where UPOQA, after exploiting the partially separable

structure, achieves a relative speed-up ratio 𝑐𝑝 ≥ 1 while maintaining 𝑐𝑝 ≤ 𝛼 . A higher value in this regime is desirable,

and the corresponding curve in the speed-up profile plot should ideally cluster toward the upper-left region. Specifically,

su(+∞) quantifies the proportion of problems with 𝑐𝑝 ≥ 1. For the regime 0 ≤ 𝛼 < 1, su(𝛼) measures the proportion of

problems where 𝑐𝑝 < 1 yet UPOQA attains a relative speed-up ratio no less than 𝛼 , while su(0) indicates the proportion
of problems with 𝑐𝑝 < 1.

Furthermore, we always expect the plotted speed-up profile curve to exhibit a roughly balanced distribution across

𝛼 = 1, and to rise rapidly on both sides of it. This implies that for the majority of problems, the predicted speed-up ratio

𝑛𝑝/ max

𝑖=1,...,𝑞𝑝
𝑛𝑝,𝑖 approximates the actual speed-up ratio achieved.

3.2 Test Results on CUTEst Problems

3.2.1 Test Problems. Since its release in 1995, the CUTEst testing environment and problem set [20] has been widely

used by researchers in numerical optimization for designing, testing, and comparing both constrained and unconstrained

optimization algorithms. Each test problem is described in the standard input format (SIF), which utilizes the group

partially separable structure [14] defined as:

𝑓 (𝑥) =
∑︁

𝑖∈Gobj

𝐹𝑖 (𝑎𝑖 (𝑥), 𝜔𝑖 )
𝜎𝑖

+ 1

2

𝑥⊤𝐻𝑥, (16)

where each term 𝐹𝑖 (𝑎𝑖 (𝑥), 𝜔𝑖 ) /𝜎𝑖 is called an objective-function group, 𝐻 ∈ R𝑛×𝑛 is symmetric, G
obj

is an index set,

and 𝐹𝑖 is a linear or nonlinear function of 𝑎𝑖 (𝑥) and 𝜔𝑖 . We employ the S2MPJ tool [21] as the parser for SIF files to

create partially separable versions of these problems with Python based on the group partially separable structure (16).

In our implementation, each 𝐹𝑖 (𝑎𝑖 (𝑥), 𝜔𝑖 ) /𝜎𝑖 forms an element, and the quadratic term 𝑥⊤𝐻𝑥/2 constitutes a separate
element, together forming the partially separable structure of a problem.
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We conducted a screening of available CUTEst problems, excluding those that are inconvenient for testing or have

undesirable structures, including:

• Constrained problems;

• Problems with excessively large average elemental dimension 𝑛 =

(∑𝑞

𝑖=1
𝑛𝑖

)
/𝑞, indicating a lack of intrinsic

low-dimensionality;

• Problems with too many (𝑞 ≫ 𝑛) or too few (𝑞 = 1 or 2) elements;

• Problems requiring excessively long construction time;

• Problems that are highly difficult to optimize, where none of the solvers in S can converge within the given

evaluation budget;

• Problems with excessively small or large dimensions.

Subsequently, we selected a test set of medium-scale problems, whose basic information is provided in Table 2

in Appendix A. This set comprises 85 partially separable problems with dimensions 𝑛 ∈ [21, 100], most of which

are 50-dimensional. These problems typically contain a substantial number of elements, with many satisfying 𝑞 ≥ 𝑛.

Whether this structure is sufficiently representative of real-world applications remains debatable. In contrast, the

quantum variational problems discussed later satisfy 𝑞 ≪ 𝑛.

3.2.2 Test Results. We tested the UPOQA, UPOQA (single), BOBYQA, and L-BFGS-B (ffd) algorithms on the 85 problems

included in Table 2 in Appendix A. Here, UPOQA (single) denotes optimizing the objective function as a whole element

without exploiting the partially separable structure. The BOBYQA [48] implementation was from version 2.8.0 of Python’s

nlopt library, while L-BFGS-B was from version 1.14.1 of the scipy library, using forward-finite-difference gradients

for the objective. For each problem, the maximum number of function evaluations allowed was set tomax{1000𝑛, 10000},
with the same limit applied to each element function evaluation in UPOQA. For the convergence criterion (14), we selected

𝜀 = 10
−1, 10−3, 10−5, and 10

−7
, obtaining the performance profiles in Figure 4 and the data profiles shown in Figure 5.

Table 1 lists the number of function evaluations required for convergence on the five problems of largest dimensions in

the test set, where∞ indicates failure to converge within the evaluation budget.

Figures 4 and 5, along with Table 1, demonstrate that UPOQA achieves significant acceleration by exploiting the

partially separable structure. Across all convergence tolerances, it solves more problems with fewer evaluations. While

UPOQA (single) solves slightly fewer problems than BOBYQA and L-BFGS-B (ffd), this is understandable since

it was not specifically designed for single-objective optimization. For all tolerances, UPOQA solves at least 76.4% of

problems with fewest evaluations, reaching 90.6% at 𝜀 = 10
−1
, indicating superior efficiency for low-accuracy solutions.

Remarkably, UPOQA’s success rate declines only marginally as 𝜀 decreases. At 𝜀 = 10
−7

, it solves approximately 5% more

problems than the next best performer L-BFGS-B (ffd), while their performance was nearly identical at 𝜀 = 10
−1
.

This demonstrates UPOQA’s robustness in high-accuracy scenarios.

To further evaluate the acceleration effect of UPOQA, we present the speed-up profiles computed by UPOQA and

UPOQA (single) in Figure 6. At a low convergence tolerance (𝜀 = 10
−1

), the profile shows that among problems where

at least one algorithm converged, 73.5% exhibited relative speed-up ratios between 0.5 and 2 (i.e., the gray-shaded

region [−1, 1] on the horizontal axis), indicating reasonable alignment between predictions and empirical results. At

the same time, UPOQA achieved lower speed-up than predicted on 57.6% of problems, outperformed predictions on

35.2%, while failing to converge within the budget on the remaining 7.2%—regardless of exploiting partially separable

structures. Thus, UPOQA’s acceleration advantage is limited when only low-precision solutions are required. However,

at higher precision (𝜀 = 10
−4
), its acceleration becomes significantly enhanced, with a notably increased proportion of
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Table 1. Function evaluations required for convergence by UPOQA, UPOQA (single), BOBYQA, and L-BFGS-B (ffd) on the five largest-
dimensional problems from the test set in Table 2 in Appendix A, with convergence tolerances 𝜀 = 10

−1, 10−3, 10−5, and 10
−7. For

UPOQA, the reported evaluations are the maximum evaluations across all elements. Here, 𝑛 denotes the problem dimension, 𝑞 denotes
the number of elements in its partially separable structure, 𝑛1, . . . , 𝑛𝑞 are dimensionalities of elements, and∞ indicates failure to
converge within the evaluation budget.

Problem 𝑛 𝑞 max𝑛𝑖
∑
𝑛𝑖/𝑞 log

10
𝜀

Evaluations

UPOQA UPOQA (single) BOBYQA L-BFGS-B (ffd)

HIMMELBI 100 20 5 5.00

-1 48 68 57 113

-3 83 97 72 113

-5 885 2357 ∞ 841
-7 20237 ∞ ∞ ∞

JANNSON3 100 102 2 1.01

-1 12 113 116 154

-3 47 429 976 358

-5 83 1309 2349 562

-7 108 1850 3640 1174

LUKSAN21LS 100 100 3 2.98

-1 11 246 115 103

-3 27 1033 588 307

-5 39 1318 838 511

-7 51 1517 1098 715

LINVERSE 99 147 4 2.98

-1 51 488 489 562

-3 139 1607 1815 1735

-5 145 2880 2486 2551

-7 152 3386 3712 3622

HYDC20LS 99 99 14 7.47

-1 11 101 101 52

-3 19 101 101 52

-5 19 101 101 256

-7 27 101 101 358

problems distributed on the log
2
(𝛼) ≥ 0 side. When tolerance tightens further to 𝜀 = 10

−7
, the outperformance ratio

shows no significant change, but the proportion of problems with log
2
(𝛼) < 0 decreases markedly—a consequence of

reduced solve success rates under stricter precision demands. Overall, the acceleration benefits of UPOQA are marginal

in low-precision scenarios but become more pronounced in high-precision contexts.

3.3 Test Results onQuantum Variational Problems

With the advancement of quantum technology, the variational quantum algorithm (VQA) has garnered increasing

attention as a hybrid quantum-classical approach for solving optimization problems [8]. In brief, given an objective

function, the first step of VQA involves constructing a parameterized quantum circuit on a quantum computer to

represent this function. Classical derivative-free optimization algorithms are then employed to adjust these parameters

and ultimately find the minimum of the objective. Now, let us consider a quantum variational problem:

min

𝜃1,...,𝜃𝑝 ∈ R𝑛𝜃

𝑝∑︁
𝑖=1

𝑤𝑖

〈
𝜙𝑖

���𝑈 (𝜃𝑖 )†𝐻𝑈 (𝜃𝑖 )���𝜙𝑖 〉 + 𝜆∑︁
𝑖< 𝑗

���⟨𝜙𝑖 ���𝑈 (𝜃𝑖 )†𝑈 (𝜃 𝑗 )���𝜙 𝑗 ⟩
���2 , (17)
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Fig. 4. Performance profiles of UPOQA, UPOQA (single), BOBYQA, and L-BFGS-B (ffd) on the test problems from Table 2 in Appendix
A, with convergence tolerances 𝜀 = 10

−1, 10−3, 10−5, and 10
−7.

where 𝐻 denotes the Hamiltonian operator of the molecular system, 𝑈 (𝜃1), . . . ,𝑈 (𝜃𝑝 ) represent the parameterized

ansatz quantum circuits with parameters 𝜃1, . . . , 𝜃𝑝 respectively,𝜙1, . . . , 𝜙𝑝 are the initial quantum states,𝑤1, . . . ,𝑤𝑝 > 0

are the weights, and 𝜆 > 0 is the penalty coefficient. The goal of this problem is to determine the states corresponding

to the smallest 𝑝 energy levels of a given molecular system.

In equation (17), each term under the summation represents the measurement outcome of a quantum circuit, which

is typically quite costly. We treat each term in (17) as a black box and reformulate the problem as:

min

𝜃1, ..., 𝜃𝑝 ∈ R𝑛𝜃

𝑝∑︁
𝑖=1

𝑓𝑖 (𝜃𝑖 ) +
∑︁

1≤𝑖< 𝑗≤𝑝
𝑓𝑖 𝑗 (𝜃𝑖 , 𝜃 𝑗 ), (18)

where 𝑓𝑖 (𝜃𝑖 ) = 𝑤𝑖

〈
𝜙𝑖

���𝑈 (𝜃𝑖 )†𝐻𝑈 (𝜃𝑖 )���𝜙𝑖 〉, 𝑓𝑖 𝑗 (𝜃𝑖 , 𝜃 𝑗 ) = 𝜆
��〈𝜙𝑖 ��𝑈 (𝜃𝑖 )†𝑈 (𝜃 𝑗 )��𝜙 𝑗

〉��2
. Clearly, this is a coordinate partially

separable problem, where the objective function is 𝑛𝑝-dimensional and consists of 𝑝 (𝑝 + 1)/2 elements with a maximum

dimensionality of 2𝑛 and exhibits a dense Hessian matrix. Similar structures are common in other quantum variational

problems [3, 4].
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Fig. 5. Data profiles of UPOQA, UPOQA (single), BOBYQA, and L-BFGS-B (ffd) on the test problems from Table 2 in Appendix A, with
convergence tolerances 𝜀 = 10

−1, 10−3, 10−5, and 10
−7.
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Fig. 6. Speed-up profiles computed by UPOQA and UPOQA (single) on the test problems from Table 2 in Appendix A, with convergence
tolerances 𝜀 = 10

−1, 10−4, and 10
−7.
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Fig. 7. Objective function value descent curves when optimizing the noiseless quantum variational problem (18) for H2 and H4

molecular systems using UPOQA, UPOQA (single), BOBYQA, and L-BFGS-B (ffd).

We conducts numerical experiments on problem (18) for H2 and a model consisting of four hydrogen atoms arranged

in a square lattice, which is denoted as H4, in the STO-3G basis with UCCSD [52] ansatz circuits. The UCCSD block

pattern is repeated for three times in order to increase the expressiveness of the ansatz. We set 𝑝 = 3, indicating that

the goal is to compute the three lowest-energy excited states and their state energies, with weights set as𝑤𝑖 = 𝑖 for

𝑖 = 1, 2, 3. The set of initial states 𝜙1, 𝜙2, 𝜙3 and all molecular Hamiltonians are chosen to be the Hartree-Fock state

and low-lying single-particle excitations above it. The starting points 𝜃0,1, 𝜃0,2, 𝜃0,3 are randomly sampled according to

a uniform distribution on [−2𝜋, 2𝜋). Both experiments are performed in a noiseless environment. The experimental

code is implemented in Python using qiskit version 0.37.0, with quantum circuit designs consistent with those in the

quantum orbital minimization method (qOMM) [3]. In the H2 experiment, the interatomic distance is set to 0.735 Å, and

the penalty coefficient is empirically chosen as 𝜆 = 12. For the H4 experiment, the interatomic distance is 1.23 Å, with

𝜆 = 30.

The experimental results from both tests are shown in Fig 7. UPOQA demonstrates superior performance on both

problems, with more pronounced acceleration effects in the H2 experiment. Since the predicted acceleration rate is

𝑝/2 = 1.5, the results align well with theoretical predictions. In both experiments, all solvers encountered "plateau

periods" where the objective function value stagnated, but UPOQA consistently escaped these phases faster and achieved

solutions with fewer function evaluations. These results indicate that leveraging the internal structure of problem (18)

indeed leads to acceleration, and suggest that UPOQA could deliver outstanding performance on larger-scale problems

and other general quantum variational problems.

4 CONCLUSION

We propose the UPOQA algorithm for derivative-free optimization of partially separable problems. Based on quadratic

interpolation models and a trust-region framework, UPOQA constructs underdetermined quadratic models for each

element function, employing the Steinmetz projection and a modified projected gradient method to solve structured

trust-region subproblems. The implementation incorporates Powell’s techniques [45, 47], resulting in low iteration

costs and strong robustness. The trust-region radius management strategy is modified from Shahabuddin’s criterion [55,
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Section 2.4]. Additionally, UPOQA features practical functionalities such as starting point search, restart mechanism,

and hybrid black-white-box optimization. Comprehensive numerical experiments on CUTEst problems and a set of

quantum variational problems validate the algorithm’s effectiveness and robustness in problem-solving.

We acknowledge several aspects of UPOQA that warrant further research and improvement. The modified projected

gradient method currently exhibits limited single-step descent rates and requires excessive iterations, leading to

significant runtime overhead in some scenarios. Theoretical analysis remains incomplete, particularly regarding

convergence rates and their relationship with partially separable structures. Experimentally, we aspire to test the

algorithm on more real-world applications, as the artificially constructed partially separable structures from CUTEst

test problems may lack sufficient representativeness. Future enhancements could potentially incorporate state-of-the-

art DFO techniques such as sample averaging and regression models [7], as well as preconditioning and subspace

methods [59], which might further improve UPOQA’s performance.
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A TEST PROBLEMS

Table 2 lists all the test problems used in Section 3.2. These problems were extracted from the CUTEst problem set [20]

using the S2MPJ tool [21].

B PERFORMANCE OF UPOQA USING UNSTRUCTURED TRUST REGIONS

We also compared the performance of UPOQA with and without structured trust regions. When structured trust regions

are not employed, all the radii Δ𝑘,1, . . . ,Δ𝑘,𝑞 remain identical, and the trust-region subproblem (6) reduces to an

optimization problem within a spherical region. We solve it using the truncated conjugate gradient method with a

boundary improvement step, as implemented in COBYQA [50]. This variant of UPOQA is labeled UPOQA (non-struct).
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Fig. 8. Performance profiles of UPOQA and its unstructured-trust-region variant UPOQA (non-struct) on the test problems from
Table 2 in Appendix A, with convergence tolerances 𝜀 = 10

−3 and 10
−7.

We plot the performance profiles for both algorithms under convergence tolerances of 𝜀 = 10
−3

and 10
−7
, as shown

in Figure 8. At 𝜀 = 10
−3
, UPOQA significantly outperforms UPOQA (non-struct). With structured trust regions, UPOQA
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Table 2. CUTEst test problems used in Section 3.2, where 𝑛 denotes the problem dimension, 𝑞 denotes the number of elements, and
𝑛1, . . . , 𝑛𝑞 are the dimensions of elements.

Problem 𝑛 𝑞 max𝑛𝑖
∑
𝑛𝑖/𝑞 Problem 𝑛 𝑞 max𝑛𝑖

∑
𝑛𝑖/𝑞

ANTWERP 27 19 19 7.74 ARWHEAD 50 98 2 1.50

BDQRTIC 50 92 5 3.00 BIGGSB1 50 51 2 1.96

BROYDN3DLS 50 50 3 2.96 BROYDNBDLS 50 50 7 6.68

CHNROSNB 50 98 2 1.50 CHNRSNBM 50 98 2 1.50

COSINE 50 49 2 2.00 CURLY10 50 50 11 9.90

CURLY20 50 50 21 16.80 CURLY30 50 50 31 21.70

CVXQP1 50 50 3 2.94 CYCLOOCFLS 86 60 6 5.73

CYCLOOCTLS 90 60 6 6.00 DIXON3DQ 50 50 2 1.96

DQRTIC 50 50 1 1.00 DTOC2 88 15 6 5.87

EG2 50 50 2 1.96 ENGVAL1 50 98 2 1.50

ERRINROS 50 98 2 1.50 ERRINRSM 50 98 2 1.50

EXTROSNB 50 50 2 1.98 FLETBV3M 50 102 50 1.96

FLETCBV2 50 151 2 1.32 FLETCHCR 50 98 2 1.50

FREUROTH 50 98 2 2.00 GILBERT 50 50 1 1.00

HATFLDC 25 25 2 1.92 HIMMELBI 100 20 5 5.00

HUESmMOD 50 50 1 1.00 HYDC20LS 99 99 14 7.47

HYDCAR6LS 29 29 14 6.69 INDEFM 50 98 3 1.98

JANNSON3 100 102 2 1.01 JANNSON4 50 52 2 1.02

LEVYMONT10 50 100 2 1.49 LEVYMONT6 50 100 2 1.49

LIARWHD 50 100 2 1.49 LINVERSE 99 147 4 2.98

LUKSAN21LS 100 100 3 2.98 LUKVLI10 50 50 2 2.00

LUKVLI11 50 64 2 1.25 LUKVLI13 50 48 2 1.67

LUKVLI14 50 64 2 1.25 LUKVLI1 50 98 2 1.50

LUKVLI2 50 125 2 1.62 LUKVLI3 50 96 2 2.00

LUKVLI4C 50 120 2 1.60 LUKVLI5 52 50 3 3.00

LUKVLI8 50 40 5 4.00 LUKVLI9 50 51 50 2.45

METHANB8LS 31 31 11 6.29 METHANL8LS 31 31 11 6.29

MOREBV 50 50 3 2.96 NCB20B 50 50 20 12.78

NCB20 60 51 30 12.75 NONDQUAR 50 50 3 2.96

NONSCOMP 50 50 2 1.98 OSCIGRAD 50 50 3 2.96

OSCIPATH 50 50 2 1.98 PENALTY1 50 51 50 1.96

PENALTY2 50 100 50 1.98 QING 50 50 1 1.00

RAYBENDL 62 30 4 4.00 SANTALS 21 23 4 3.52

SBRYBND 50 50 7 6.68 SCHMVETT 50 48 3 3.00

SCOSINE 50 49 2 2.00 SINEALI 50 50 2 1.98

SINQUAD2 50 50 3 2.94 SINROSNB 50 50 2 1.98

SPARSINE 50 50 6 5.58 SPARSQUR 50 50 6 5.58

SSBRYBND 50 50 7 6.68 STRTCHDV 50 49 2 2.00

TOINTGOR 50 83 5 1.81 TOINTGSS 50 48 3 3.00

TOINTPSP 50 83 5 1.81 TOINTQOR 50 83 5 1.81

TQUARTIC 50 50 2 1.98 TRIDIA 50 50 2 1.98

VARDIM 50 52 50 2.88 VAREIGVL 51 51 50 13.88

YAO 52 52 1 1.00

achieves faster convergence on 65.8% of the problems, whereas UPOQA (non-struct) exhausts its evaluation budget

without reaching the same solution accuracy as UPOQA on 11.7% of the problems. At 𝜀 = 10
−7
, the performance gap

narrows slightly, with UPOQA converging first on 56.4% of the problems. These results demonstrate the effectiveness of

replacing the unstructured trust region with a structured one.
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