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ABSTRACT: We propose a state-averaged orbital optimization scheme for improving the accuracy of excited states of the
electronic structure Hamiltonian for use on near-term quantum computers. Instead of parameterizing the orbital rotation operator in
the conventional fashion as an exponential of an antihermitian matrix, we parameterize the orbital rotation as a general partial unitary
matrix. Whereas conventional orbital optimization methods minimize the state-averaged energy using successive Newton steps of the
second-order Taylor expansion of the energy, the method presented here optimizes the state-averaged energy using an orthogonally
constrained gradient projection method that does not require any expansion approximations. Through extensive benchmarking of
the method on various small molecular systems, we find that the method is capable of producing more accurate results than fixed
basis FCI while simultaneously using fewer qubits. In particular, we show that for H2, the method is capable of matching the
accuracy of FCI in the cc-pVTZ basis (56 qubits) while only using 14 qubits.

1. INTRODUCTION
One of the early applications for quantum computers is
expected to be the electronic structure problem;1 however, the
error stemming from the basis set truncation in the second
quantization formulation will likely present a major obstacle for
realizing accurate solutions for academically and industrially
relevant chemical systems.2−4 If no resource reduction
techniques are employed, then one qubit is needed for each
spin−orbital. As a result of the limited number of qubits on
current hardware, experimental demonstrations have been
limited to small molecules represented by small basis sets.5−8

Several methods have been developed for more compact basis
set representations in both classical and quantum settings.
Explicitly correlated methods9−12 apply a similarity trans-
formation to the problem Hamiltonian that has an explicit
dependence on the coordinates of the electrons. The intuition
behind this is that such basis sets may be able to efficiently
capture effects from electron−electron interactions which are
often the cause of the inefficiency of fixed single-particle basis
set representations.13,14 Downfolded effective Hamiltonian
techniques15−19 take a full orbital space Hamiltonian, unitarily

transform it according to an excitation operator that includes
excitations outside of a given active space, and then project it
onto the active space. Through this process, an effective
Hamiltonian is produced that includes correlation effects from
outside the active space but which is low dimensional and acts
only on the active space. Orbital optimization methods20−26

introduce the elements of a similarity transformation to be
optimized in conjunction with the parameters of an eigensolver
minimization problem. These two minimization problems are
typically solved in an alternating fashion, until some stopping
criteria are reached. Orbital optimization schemes such as
quantum CASSCF25 operate by representing the orbital
rotation as an exponential of an M × M antihermitian matrix,
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approximating this exponential operator by a second-order
Taylor expansion, performing successive Newton steps using
this approximation until convergence of the energy is achieved,
then choosing an active space of N < M orbitals in which to
solve for the eigenvalues and eigenstates. In this work, we
extend the OptOrbVQE20 method previously proposed by the
authors, which finds the ground state in an optimized basis, to
the problem of finding excited states of electronic structure
Hamiltonians. The main differences between OptOrbVQE and
other orbital optimization ground-state solvers can be
summarized as follows. Instead of parameterizing the orbital
rotation operator as an M × M exponential operator and
carrying out successive Newton steps, we parameterize it
directly as an M × N partial unitary matrix. This allows us to
take advantage of modern optimization techniques that have
been developed in recent years which have orthogonality
constraints built in.27−31 Such optimization methods render
the conventional exponential parameterization as one choice of
parameterization rather than a strict requirement. We note that
aside from access to a wider range of optimization techniques,
this approach comes with other potential advantages. The first
is that the partial unitary transformation has NM constrained
parameters, rather than the (M − 1)(M − 2)/2 independent
parameters in the antihermitian matrix that appears in
CASSCF. This results in a net reduction of the size of the
parameter space involved for many problems, particularly when
M ≫ N. This may ease the convergence procedure.
Additionally, the partial unitary nature of the parameterization
implies that unlike CASSCF, we do not need to resort to the
use of heuristics or chemical intuition when choosing the
postoptimization active space. The dimensionality of the
partial unitary matrix handles this automatically during the
optimization procedure. We also note that there is a sense in
which the dimensionality of this partial unitary operator is a
degree of freedom that we can control. For example, we still
retain the option to optimize a full M × M unitary matrix using
orthogonally constrained optimizers and use heuristics to
choose the active space of N orbitals. Alternatively, we could
optimize over the set of M × m partial unitaries for N < m < M
and use heuristics to choose an active space of N orbitals from
the space of m orbitals. This flexibility can be seen as an
advantage in and of itself. Furthermore, the use of an
orthogonally constrained projected gradient descent method31

in conjunction with this orbital optimization procedure has
been numerically demonstrated to be more adept at avoiding
local minima and achieving better accuracy than CASSCF in a
previous work by two of the authors of this work in a classical
computing context.24 This offers clear motivation for the
continued study of this method in a broader range of contexts
such as generalization to excited states and incorporation into
quantum eigensolvers. For example, in a previous work by the
authors, it was demonstrated that the convergence quality of
state-averaged eigensolvers such as SSVQE in a fixed basis is
highly sensitive to the ansatz expressiveness and choice of
circuit initialization (compared to the ground-state VQE
problem and the overlap-based qOMM excited-state solver).32

In this work, we investigate the extent to which analogous
observations hold true for the orbital-optimized case as well.
Given that there is potentially a nontrivial interplay between
the choice of basis (which is furthermore variable in orbital
optimization) and the ability of any given ansatz to express the
solution, this relation should be investigated.

2. EXCITED-STATE QUANTUM EIGENSOLVERS
Hybrid quantum-classical variational methods for finding
eigenvalues of chemical Hamiltonians operate by classically
minimizing an objective function constructed from quantities
measured on a quantum computer. For example, to find the
ground state of a Hamiltonian Ĥ, we would first prepare a
parameterized state |ψ(θ)⟩ on the quantum computer, measure
the expectation value of Ĥ, and carry out the minimization
problem

Hmin ( ) ( )| |
(1)

classically. This is the original formulation of the variational
quantum eigensolver33,34 (VQE). In order to extend this
method to low-lying excited states, the mutual orthogonality of
these states must be accounted for. Several methods have been
proposed that accomplish this. SSVQE35 and MCVQE36 are
state-averaged approaches which apply a parameterized circuit,
Û(θ), to a set of mutually orthogonal initial states {|ψi⟩} and
then minimize an objective function of the form

f w U HU( ) ( ) ( )
i

i i i= | |†

(2)

where {wi} is a set of positive, real-valued weights. The main
difference between MCVQE and SSVQE is that MCVQE
chooses the weights {wi} to be equal, whereas SSVQE chooses
them not to be equal. At first glance, this difference seems
trivial; however, it should be noted that unequal weights
correspond to a global minimum composed of the low-lying
eigenvectors, whereas an equal weighting corresponds to a
global minimum composed of states which span the low-lying
eigenspace. MCVQE adds a classical postprocessing step which
diagonalizes these states in this low-dimensional eigenspace to
acquire the low-lying eigenvectors. It is unclear which of these
approaches is advantageous or if their convergence is
equivalent in practice. Other excited-state methods such as
qOMM32 and VQD37 take overlap-based approaches to
enforcing the mutual orthogonality of the solution by including
penalty terms in the objective function which vanish when
pairs of states are orthogonal. Thus, the orthogonality is
enforced only at the global minimum rather than at every point
in the cost function landscape.

3. STATE-AVERAGED ORBITAL OPTIMIZATION
In OptOrbVQE, we take the electronic structure Hamiltonian
in its Fermionic second-quantization representation

H h a a v a a a a
1
2p q

M

pq p q
p q r s

M

pqrs p q s r
, 1 , , , 1

= +
=

†

=

† †

(3)

and rotate the set of M orbitals {ψ1, ψ2, ..., ψM} according to
the partial unitary transformation V̂

Vi
j

M

ji j=
(4)

resulting in a new set of N < M orbitals , , ..., N1 2{ }. This is
equivalent to transforming the Hamiltonian as
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H V h V V a a

v V V V V a a a a

( )

1
2

p q
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p q

M

pq pp qq p q

p q r s

N

p q r s

M

pqrs pp qq ss rr p q s r

, 1 , 1

, , , 1 , , , 1

=

+

= =

†

= =

† †

(5)

The orbital optimization then corresponds to minimizing
the expectation value of this Hamiltonian with respect to a
fixed quantum state U( ) ref| provided by a quantum
eigensolver. The total minimization problem is then given by

U H V Umin ( ) ( ) ( )

V M N( , )

ref ref| |†

(6)

where M N( , ) is the set of M × N real partial unitary
matrices. The simplest way to generalize this problem is to
consider eq 2 to be a function of both θ and V̂

f V w U H V U( , ) ( ) ( ) ( )
i

i i iref, ref,= | |†

(7)

and minimize the resulting state-averaged analogue problem of
eq 6

f Vmin ( , )

V M N( , ) (8)

Such state-averaged analogues of CASSCF-like orbital
optimization schemes21,26 have previously been explored in
the literature. Thus, we expect a state-averaged analogue of
OptOrbVQE to also perform well. It is worth noting that an
overlap-based orbital optimization objective function has been
proposed in the classical literature,38 which allows for a
separate optimal basis to be computed for each excited state.
The authors claim that this allows for more accurate excitation
energies to be computed. The method assumes the availability
of the CI coefficients found by the eigensolver, which would
require exponentially expensive full-state tomography to
acquire in the quantum computing setting.
The total minimization problem in eq 8 is divided into two

subproblems: minimization with respect to the ansatz
parameters θ and minimization with respect to V̂. These two
subproblems are solved in an alternating fashion, where one is
fixed, while the other is varied. The optimal parameters for one
subproblem are then used for the initialization of the next run
of the other until some global stopping criteria are met. For
example, for a given optimal V̂, we can compute H V( ) and
carry out a quantum excited-state solver to find an optimal θ in
the rotated basis. For a given θ found by a quantum excited-
state solver, we can compute the 1- and 2-RDMs with respect
to each state in the set of computed excited states U( ) iref,{ | }
, then vary eq 8 with respect to V̂. The optimization with
respect to θ is handled via one of several known quantum
excited-state solvers such as SSVQE,35 MCVQE,36 VQD,37 or
qOMM.32 The optimization with respect to V̂ (keeping θ
fixed) is carried out using an orthogonally constrained
optimization procedure. In this work, we use an orthogonally
constrained projected gradient method,31 which has a
parameter update step defined as

V V f Vorth( ( ))n n n1 =+ (9)

where f V( ))n is the gradient of eq 7 with respect to V̂ with
fixed θ, η is a step size which is chosen adaptively in an
alternating Barzilai−Borwein fashion, and the orth function is
defined as24,31

A AQ Qorth( ) 1/2= † (10)

Here, Q is a matrix whose columns are the eigenvectors of A†A
and Λ is a diagonal matrix whose entries are the eigenvalues of
A†A. As was done for OptOrbVQE, we explicitly state the
superscript and subscript notation used for the total problem
to avoid confusion:

• The subscript l will index the iteration number in the
minimization problem where V̂ is varied.

• The subscript m will index the iteration number in the
minimization problem where θ is varied.

• The subscript n will index a global “outer loop” iteration
number that characterizes how many times both
subproblems have been carried out.

• The superscript opt will denote the optimal parameter
found in each subproblem for a given outer loop
iteration number.

We now give an explicit step-by-step procedure for the total
problem:

• Set n = 0. Choose an initial partial unitary Vn l0, 0= = , an
initial set of ansatz parameters θn=0,m=0, and a stopping
threshold ϵ.

• Calculate H V( ) on a classical computer and run a
quantum eigensolver algorithm to obtain n

opt.

• If f V f V( , ) ( , )n n
opt

n n
opt

1 1
opt

2
opt| | < , halt the algo-

rithm. Else, continue to the next step.
• Measure the 1- and 2-RDMs with respect to the set of
states U( )n

opt
ref,i{ | } on a quantum computer.

• Using the 1- and 2-RDMs from the previous step,
minimize eq 8 with respect to Vn to obtain Vn

opt
.

• Set n = n + 1, V Vn l n1, 0
opt=+ = , and θn+1,m=0 = n

opt.
Optionally, a small random perturbation can be added to
the latter two quantities. Repeat steps 2−6.

Step 5 requires the use of a classical optimizer, which
constrains V̂ to be a partial unitary. Several methods which do
this exist,27−30 but in our work, we use an orthogonal
projection method.31 In general, θ and Vn l1, 0+ = could be any
real vector and real partial unitary, respectively; however, it is
intuitive to use information from the nth outer loop iteration
to inform this choice. In our work, we choose θn+1,l=0 = n

opt

and V Vorth( Rand(M, N))n l n1, 0
opt= ++ = , where Rand(M, N)

is an M × N matrix whose elements are sampled from a normal
distribution with average 0 and standard deviation 0.01.
Additionally, although eq 8 is written as a state-averaged
function of θ, step 2 does not necessarily need to be carried out
using a state-averaged quantum eigensolver. The only
requirement is that the solver returns solution states to be
used for the calculation of 1- and 2-RDMs. Overlap-based
methods such as qOMM32 and VQD37 could be used;
however, for our work, we test MCVQE36 and SSVQE.35 We
further note that because the method derives an optimized
basis of N < M orbitals from an initial large basis of M orbitals,
it cannot match or exceed the accuracy obtained by solving the
eigenvalue problem in the full M orbital active space. This is
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intuitive from the perspective that the ansatz and orbital
rotation parameters constitute a joint variational space.
Restricting the variational space will, in general, restrict the
maximum attainable accuracy. In particular, it is known that
orbital optimization methods, in general, are not efficient at
capturing correlation effects arising from Coulomb repulsion
between electrons. For this, one could consider combining the
orbital optimization scheme with other methods such as
explicitly correlated methods.9−11

4. NUMERICAL RESULTS
The code used for our numerical simulations is an extension of
the functionality provided by the open source package Qiskit.39

Qiskit provides an implementation of VQE,33,34 which we have
modified to produce implementations of SSVQE35 and
MCVQE.36 The code for the state-averaged orbital optimiza-
tion is a modification of the code used in our ground-state
orbital optimization work,20 with the main modification being

the objective function to be minimized. The Qiskit package
versions used are Qiskit-Aer version 0.12.0, Qiskit-Nature
version 0.4.5, and Qiskit-Terra version 0.23.2. The 1- and 2-
body integrals are obtained through the PySCF40 electronic
structure driver in Qiskit, which uses PySCF to perform a
restricted Hartree−Fock problem to obtain the unoptimized
molecular integrals. Configuration interaction circuits are
obtained in two steps. First, the truncated Hamiltonians are
constructed from the 1- and 2-body integrals using the Slater−
Condon rules,1 which are then exactly diagonalized using
NumPy.41 The reasons why we do not use PySCF’s
configuration interaction implementation are 2-fold: (1)
PySCF does not have an CIS implementation and (2) we
have found that PySCF’s CISD implementation does not
always produce orthogonal CI wave functions, with fidelity
between two states being as large as on the order of 10−1, even
in the case where the corresponding eigenvalues are not
degenerate. This is problematic for quantum algorithms such

Figure 1. Convergence of orbital optimization methods for H2 using various numbers of spin−orbitals (taken from the cc-pVQZ basis) as a
function of the outer loop iteration. ΔE is the difference between the average energy and that of FCI in the cc-pVTZ basis (56 spin−orbitals).
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as SSVQE and MCVQE which require that the initial states be
mutually orthogonal.
This statevector can then be used to initialize a circuit using

Qiskit’s arbitrary statevector initialization implementation. We
note that although this particular implementation requires the
storage of an exponentially large statevector in classical
memory, in principle configuration interaction-state prepara-
tion on a quantum computer could be done in a completely
sparse manner with resources scaling polynomially with the
number of qubits. For example, it has been shown that Givens
rotations are universal for preparing chemically motivated
states with the Jordan−Wigner mapping.42 The authors also
give a general procedure for preparing an arbitrary statevector.
In Appendix B, we give an explicit example of how the
particular case of arbitrary CIS statevectors can be prepared on
a quantum computer, which may be of independent interest.
Whether or not an efficient analogous procedure can be
developed for CISD states is not discussed here; however, in
our simulations, we include CISD initializations to investigate
whether or not doing so would lead to further improvement.
We also utilize an “excited Hartree−Fock” initialization that
consists of the Hartree−Fock state and the lowest energy
singly excited states from it. In this paper, we will refer to this
initialization as just “Hartree−Fock” or “HF”. In Qiskit, one
can use any ansatz circuit as a base pattern to be repeated n
times, increasing the circuit depth and number of parameters
by a factor of n. In our simulations, we use Qiskit’s
implementation of the UCCSD ansatz43 as a circuit block
pattern to be repeated for various values of n. We denote this
as n-UCCSD. The classical optimizer used for all test instances
is L-BFGS-B.44 The FCI reference values are calculated using
CDFCI,45 and all orbital-optimized tests are run using Qiskit’s
AerSimulator in noiseless statevector mode unless stated
otherwise. In Section 4.5, we make slight adjustments to this
methodology when calculating a potential energy surface of H4.

4.1. H2. We begin with our results for the simplest model
tested, the first three energy levels of H2 at the near-
equilibrium bond distance of 0.735 Å, which are given in
Figure 1. We use cc-pVQZ (120 spin−orbitals) as the starting
basis and reduce the active space for even numbers of spin−
orbitals from 4 to 14 using the proposed orbital optimization
scheme. The difference between the average orbital optimized
energy and that of FCI (over the ground and excited states) in
the cc-pVTZ basis is plotted as a function of the outer loop
iteration. Tests using both 2- and 3-UCCSD are included to
investigate the effect of increasing the ansatz expressiveness in
the algorithm. Both eigensolvers are initialized with config-
uration interaction singles (CIS) states. SSVQE is additionally
tested using the Hartree−Fock initialization.
It is evident that orbital optimization has the potential to

achieve more accurate average energies than FCI in the cc-
pVDZ basis (20 spin−orbitals) and can even approach cc-
pVTZ quality values, but this is highly dependent on the
choice of eigensolver, ansatz, and number of optimized spin−
orbitals. A minimum of 8 spin−orbitals are needed to achieve a
higher accuracy than cc-pVDZ. At this point, OptOrbMCVQE
can do this for both 2- and 3-UCCSD, although
OptOrbSSVQE cannot. Using 10 spin−orbitals, both
eigensolvers surpass cc-pVDZ for both 2- and 3-UCCSD,
although MCVQE offers roughly a 5 mHartree improvement
over SSVQE for 2-UCCSD. When 3-UCCSD is used, MCVQE
offers a measurable but negligible improvement over SSVQE.
At 14 spin−orbitals, cc-pVTZ quality results are achievable.

Also notable is the effect that increasing the active space has on
not only the quality of convergence but its rate of convergence.
Note that for 8 and 10 spin−orbitals, the convergence appears
to plateau, hovering just above cc-pVDZ accuracy for several
iterations before rapidly surpassing it. This behavior is not
present at 12 and 14 spin-orbitals, with the energy quickly
converging to near or at cc-pVTZ accuracy for the majority of
tests run. As a side note, we note that the 14 spin−orbital tests
using 3-UCCSD with a CIS initialization were stopped
manually at iterations 10 and 13 for SSVQE and MCVQE,
respectively, as the runtime for these simulations proved to be
the longest among these tests. However, we note that given
that nearly all of the energy convergence occurred within the
first 2 or 3 iterations, allowing the simulations to continue
would likely not have resulted in further improvement.

4.2. H4. We now present the results for the first three energy
levels of H4, a toy system composed of four hydrogen atoms
arranged in a square with a nearest-neighbor distance of 1.23
Å. The starting basis set is cc-pVQZ (240 spin−orbitals) and
an active space of 8 optimized spin−orbitals is used. Both 2-
and 3-UCCSD are tested as ansatzes and both CIS and CISD
are tested as initializations. SSVQE is additionally tested using
the Hartree−Fock initialization. The results are listed in Figure
2.

We can see that for this system, orbital optimization can be
used to achieve a more accurate average energy than the 6-31G
basis (16 spin−orbitals), despite the fact that it is utilizing half
the number of spin−orbitals. Convergence approaching the
FCI cc-pVDZ (40 spin−orbitals) accuracy was not observed in
our testing. Between the three different algorithmic choices
considered (the eigensolver, the initialization, and the ansatz),
increasing the ansatz expressiveness from 2-UCCSD to 3-
UCCSD had the most significant effect on the converged
accuracy. Changing the initialization from CIS to CISD offered
a clear improvement when used with the 3-UCCSD ansatz;
however, the same is not true for 2-UCCSD. With 2-UCCSD,
OptOrbSSVQE using CISD converges quickly to a local
minimum, whereas OptOrbSSVQE using CIS converges
(albeit comparatively slowly) to a more accurate average
energy. The final converged values for OptOrbMCVQE are

Figure 2. Convergence of orbital optimization methods for H4 using 8
optimized spin−orbitals (taken from the cc-pVQZ basis) as a function
of the outer loop iteration. ΔE is the difference between the average
energy and that of FCI in the 6-31G basis (16 spin−orbitals).
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similar between CIS and CISD when using 2-UCCSD. Note
also that for instances using the same ansatz and initialization,
using MCVQE as the eigensolver typically offers an improve-
ment over SSVQE. The one exception to this is using CISD
with 3-UCCSD, where the difference between these two
converged values is negligible.

4.3. LiH. We now present the results for the first two energy
levels of LiH at a near-equilibrium interatomic distance of
1.595 Å. The starting basis set is cc-pVTZ (88 spin−orbitals),
and an active space of 12 optimized spin−orbitals is used. Both
1- and 2-UCCSD are used to assess the effect of the ansatz
expressiveness. CIS and CISD initializations are tested for
MCVQE, whereas SSVQE additionally tests the Hartree−Fock
initialization. The results are shown in Figure 3.

The most notable feature of this plot is that orbital-
optimized solvers can achieve more accurate results than FCI
using much larger basis sets. For example, most tests run for
this system outperform FCI 6-31G (22 spin−orbitals) using
only 12 spin−orbitals. Depending on the choice of solver,
ansatz, and initialization, some instances also outperform FCI
cc-pVDZ (36 spin−orbitals). The second notable feature is
that ansatz expressiveness (typically) has a greater influence on
the final accuracy than does the choice of initialization. The 1-
and 2-UCCSD tests almost form two cleanly separated
accuracy tiers, except for OptOrbMCVQE using 1-UCCSD
with a CISD initialization, which achieves a higher accuracy
than MCVQE using CISD with 2-UCCSD. The choice of
initialization has a greater impact when the less expressive 1-
UCCSD ansatz is used and has little impact when the ansatz is
sufficiently expressive to approximate the solution states well.
The third notable feature is that OptOrbMCVQE typically
outperforms OptOrbSSVQE when using the same ansatz and
initialization, with the one exception being when CISD and 2-
UCCSD are used. This effect is most noticeable when the less
expressive 1-UCCSD analogue is used.

4.4. BeH2. We now present the results for the first two
energy levels of BeH2 with a linear geometry at the near-
equilibrium Be−H distance of 1.3264 Å. We find the full
system with 14 spin−orbitals and 6 electrons to be intractable

for our computational budget, so we freeze two electrons in the
Hartree−Fock orbitals with the lowest energy and compare the
active space energy against that of FCI using the same frozen
core approximation. Because we do not wish for the quality of
the frozen core approximation across different basis sets to
influence the comparison against FCI values, here we will only
compare the orbital optimized results starting with the cc-
pVQZ basis with an active space of 12 spin−orbitals against
FCI in the cc-pVQZ basis using an active space of 228 spin−
orbitals. Because of the wide disparity in active space size, we
do not expect the orbital optimized tests to approach chemical
accuracy compared to FCI; however, we may still gain some
insight as to what portion of the full basis set energy is
attainable using a small active space and what kind of
improvement orbital optimization offers over a naive approach
which chooses a fixed active space based on Hartree−Fock
orbital energies. These results are given in Figure 4.

4.5. H4 Noisy Binding Curve. In this section, we use
OptOrbMCVQE to compute the potential energy surface
resulting from uniformly stretching the nearest-neighbor
interatomic distance of the H4 toy model. We find that this
potential energy surface is difficult for state-averaged solvers
such as MCVQE to accurately describe in the STO-3G basis,
even when starting from CISD states. This is especially true for
stretched geometries, where MCVQE often converges to local
minima. Thus, this may serve as an interesting test bench for
orbital-optimized state-averaged eigensolvers such as OptO-
rbMCVQE. We study both MCVQE (STO-3G with 8 spin−
orbitals) and OptOrbMCVQE (cc-pVTZ with 8 spin−
orbitals) in the noiseless case as well as in the case where
noise arises from statistical sampling. These results are
compared against the exact FCI values in the STO-3G and
cc-pVTZ basis sets for comparison. The methodology is largely
the same as in previous sections with some notable exceptions.
The first is that we now use the COBYLA46 optimizer for the
eigensolver subroutine as we find that it is more robust to noise
than L-BFGS-B. Furthermore, we use PySCF’s FCI imple-
mentation to generate exact comparison values. As opposed to
previous sections, where we studied various initializations and
ansatz expressiveness, here we restrict ourselves to CISD

Figure 3. Convergence of orbital optimization methods for LiH using
12 optimized spin−orbitals as a function of the outer loop iteration.
ΔE is the difference between the average energy and that of FCI in
the cc-pVDZ basis (36 spin−orbitals).

Figure 4. Convergence of orbital optimization methods for BeH2
using 12 optimized spin−orbitals as a function of the outer loop
iteration. ΔE is the difference between the average energy and that of
FCI in the cc-pVTZ basis.
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initializations with the 3-UCCSD ansatz. As we will present the
individual energy levels instead of the state-averaged energy,
this simplifies the presentation of the data. OptOrbMCVQE
uses cc-pVTZ as the starting basis and uses an active space of 8
spin−orbitals. MCVQE uses the 8 spin−orbital STO-3G basis.
For the tests which incorporate statistical sampling noise, we
use 106 shots per observable evaluation using Qiskit’s
approximate treatment of sampling noise, which assumes a
Gaussian distribution for observable measurements and returns
the variance σ. We estimate the error associated with these
measurements for a number of shots n as

n
. We find that the

variance returned by Qiskit is typically on the order of 1 ×
10−1. Figure 5a shows the absolute energies for the binding
curve for the first two energy levels of H4 for OptOrbMCVQE
and MCVQE. STO-3G (8 spin−orbitals) and cc-pVTZ (112
spin−orbitals) are included for comparison (Figure 5b). Note
that OptOrbMCVQE uses cc-pVTZ as its starting basis but
uses an active space of 8 spin−orbitals. Thus, these (along with
the other tests in this work) represent an aggressive reduction
in the active space size.
We can see that while OptOrbMCVQE offers a significant

increase in the absolute energies over MCVQE on the fixed
STO-3G basis, its relative accuracy compared to the full cc-
pVTZ value is still on the order of 10−2 for many geometries.
This demonstrates that although orbital optimization offers a
compact basis set representation, basis sets beyond the
minimal basis will still clearly be required in order to approach
chemical accuracy in the infinite basis set limit. Interestingly,
we also note that the potential energy surface of the orbital-
optimized tests is much more smooth in comparison to the
fixed-basis MCVQE tests. MCVQE in the STO-3G basis
clearly struggles to reliably converge to the exact values,
particularly for interatomic distances of 1.6 Å and larger. The
jump in energies around 2.0 Å for OptOrbMCVQE similarly
indicate that the method is likely converging to local minima
for stretched bond distances, although this effect is qualitatively

less severe than in the fixed basis case. We also note that as one
would expect, the effect of noise arising from statistical
sampling is to degrade the energy accuracies by an amount on
the milli-Hartree level. Encouragingly, the majority of the
additional accuracy attained through orbital optimization
persists despite the presence of this noise.

5. DISCUSSION AND CONCLUSIONS
In this paper, we have proposed an orbital optimization
scheme which uses a state-averaged approach to compute
excited states of electronic structure Hamiltonians. We have
shown that this method can achieve more accurate results than
FCI using much larger fixed basis sets. We also investigated the
effects of the choice of quantum eigensolver, ansatz
expressiveness, and state initialization. While exceptions to
these trends can be found in our results, we can make the
following general observations:

• Increasing the ansatz expressiveness offers the most
significant effect among these factors.

• MCVQE often offers an improvement in accuracy over
SSVQE for lower ansatz expressiveness. When higher
expressiveness is used, the difference is often less
significant.

• CIS initializations often offer an improvement over
Hartree−Fock initializations; however, the advantage of
using CISD over CIS is unclear. There are several
instances of CISD initialized tests achieving a lower
accuracy than their CIS (and even Hartree−Fock)
counterparts.

The first of these is not surprising. The alternative
expressiveness is what primarily determines the variational
flexibility of the quantum eigensolver at each outer loop
iteration. The second observation can be explained by noting
that for a given initialization and ansatz, the solution space of
SSVQE is more restricted than that of MCVQE. The solution
space of SSVQE with unequal weights consists of the low-lying

Figure 5. Potential energy surface of the first two energy levels of H4 corresponding to uniformly stretching nearest-neighbor interatomic distances.
(a) Absolute energies for OptOrbMCVQE (cc-pVTZ, 8 spin−orbitals) and MCVQE (STO-3G, 8 spin−orbitals) along with the FCI values in the
STO-3G and cc-pVTZ basis sets for comparison. (b) Relative accuracies of E0 and E1 for the various methods compared to their exact FCI values in
the full cc-pVTZ basis (112 spin−orbitals). Error bars are included but are small.
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eigenvectors themselves, whereas the solution space of
MCVQE consists of the subspace spanned by the low-lying
eigenvectors. MCVQE utilizes a postprocessing step involving
a low-dimensional diagonalization problem in this subspace.
This additional variational flexibility may ease the convergence
process and allow it to partially compensate for an
insufficiently expressive ansatz. The third point, while less
easily explained than the other two, can be conjectured about.
While the initialization does have an effect on ansatz
expressiveness as it determines which excitation operators in
the UCCSD ansatz act nontrivially, it is not as variationally
flexible as the parameterized ansatz itself is. Furthermore, this
state is computed in the initial basis set guess, which is usually
low quality compared to that of the optimized basis set. Thus,
there is no guarantee that CISD computed in this initial basis
will continue to be advantageous over CIS for successive basis
set rotations. This is less likely to be the case when compared
to the Hartree−Fock initial state, which consists of only one
Slater determinant and remains the same in the Jordan−
Wigner qubit encoding for all basis sets.
One compelling and well-motivated extension of this work

would be to take a state-specific orbital optimization approach
rather than a state-averaged one. State-specific orbital
optimization (as the name implies) optimizes a different
basis set for each excited state individually rather than
optimizing one basis set for an ensemble of excited states by
minimizing its average energy. State-specific orbital optimiza-
tion has been developed in the context of classical orbital
optimization algorithms;38 however, this particular method
relies on a full CI expansion of the wave function at every outer
loop iteration. In the quantum computing setting, such an
explicit wave function expansion (as opposed to the expect-
ation value of observables used here) would involve
exponentially costly tomography and classical storage. These
CI wave function expansions are used to compute the overlap
of two different excited states in two different basis sets and
uses them to enforce their orthogonality. In the quantum
computing setting, one would have to develop a method that
can compute these overlaps without access to CI expansions or
that does not require overlaps at all. This is an interesting
problem and will be a direction for future investigation.

■ APPENDIX A. EXCITED-STATE INITIALIZATIONS
AND ANSATZ EXPRESSIVENESS

Here, we test the effects of various initialization choices and
levels of ansatz expressiveness on the convergence of MCVQE
and SSVQE on a fixed minimal basis. These tests serve to
illustrate our motivation for our particular choices in the
orbital optimized tests in Section 4 of the main text. By
“initialization”, we mean the choice of nonparameterized
subcircuit prepended to the parameterized ansatz. The ansatz
parameters themselves are initialized to zero, as this

corresponds to the identity subcircuit. Thus, this allows us to
explore various chemically motivated initializations. MCVQE
is tested with configuration interaction single (CIS) and
configuration interaction single and double (CISD) state
initializations. SSVQE is tested with CIS and CISD as well as
an “excited Hartree−Fock” initialization used in a previous
study by the authors.32 This initialization applies single-particle
Fermionic excitations to the Hartree−Fock state and chooses
the resulting Slater determinants with the lowest energy to
initialize the circuit. Such states are orthogonal and can thus be
used with both MCVQE and SSVQE. The alternative
expressiveness is varied by varying the number of times the
base UCCSD circuit pattern is repeated, where we denote the
circuit consisting of n UCCSD repetitions as n-UCCSD. L-
BFGS-B is the optimizer used for these tests.
Table 1 shows the final average energy accuracy for the first

three states of H4 at a nearest-neighbor distance of 1.23 Å for
various choices of the eigensolver, state initialization, and
UCCSD expressiveness. We can see that Hartree−Fock and
CIS initializations fail to produce an accuracy greater than 10−2

Ha for any eigensolver or level of ansatz expressiveness.
Furthermore, increasing the ansatz expressiveness offers no
meaningful improvement for these initializations. On the other
hand, the CISD initialization offers the ability to achieve
greater than chemical accuracy. With 2-UCCSD, both
eigensolvers fall just short of chemical accuracy, but increasing
the ansatz to 3- and 4-UCCSD offers further improvements.
Thus, we can see that there is motivation for developing
circuits that correspond to CISD states.
We now compare the speed of convergence between

MCVQE and SSVQE for the four test instances in Figure 6
that were able to surpass chemical accuracy. Figure 6 plots the
state-averaged energy accuracy as a function of the number of

Table 1. Final Accuracy of the Average Energy for H4 for Given Choices of Eigensolver, Initialization, and UCCSD Ansatz
Expressiveness

UCCSD repetitions

eigensolver initialization 1-rep 2-rep 3-rep 4-rep

MCVQE CIS 4.25 × 10−2 3.85 × 10−2 3.70 × 10−2 3.70 × 10−2

MCVQE CISD 5.16 × 10−3 2.16 × 10−3 2.53 × 10−4 3.73 × 10−8

SSVQE HF 5.78 × 10−2 4.67 × 10−2 3.70 × 10−2 3.70 × 10−2

SSVQE CIS 4.26 × 10−2 3.81 × 10−2 3.70 × 10−2 3.70 × 10−2

SSVQE CISD 5.41 × 10−3 2.45 × 10−3 1.56 × 10−4 3.67 × 10−8

Figure 6. Convergence of the state-averaged energy accuracy (ΔE).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c01297
J. Chem. Theory Comput. 2024, 20, 3131−3143

3138

https://pubs.acs.org/doi/10.1021/acs.jctc.3c01297?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01297?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01297?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c01297?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01297?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


objective function evaluations. We can see that for all four
instances, the state-averaged energy plateaus for many
iterations before escaping and converging to (or closer to)
the global minimum. This is consistent with previous studies
which include SSVQE by the authors.32 Notably, MCVQE is
less prone to this issue.

■ APPENDIX B. CIS STATE PREPARATION
Here, we give an example of how configuration interaction
single (CIS) states can be prepared as a quantum circuit on a
quantum computer by using Givens rotations. It was proven
that Givens rotations form a universal set of gates for
chemically motivated statevectors.42 The authors accomplish
this constructively by giving a procedure for preparing an
arbitrary state using Givens rotations controlled on the states
of multiple qubits. They comment that for particular classes of
states, the resources involved may be reduced by controlling
the rotation only on certain qubit subsets. What remains to be
done is to work out the details of how to apply this idea to
specific classes of CI statevectors (CIS, CISD, CISDT, etc.) in
a way that is as gate efficient as possible. Here, we give an
example of how both dense and sparse CIS statevectors can be
mapped to quantum circuits using Givens rotations.
We briefly note that the CIS state preparation circuit

outlined in the MCVQE proposal paper36 assumes a particular
encoding where the reference state from which electrons are
being excited is encoded as the “all-zero” state |00···0⟩ where
the qubit registers encode the occupation number of orbitals
unoccupied in the reference state but not those occupied in the
reference state. Thus, the singly excited wave function
components contain no information about the particular
Hartree−Fock occupied orbital from which the electron was
excited. Here, we seek a CIS state preparation circuit in the
Jordan−Wigner encoding where the reference state is the
Hartree−Fock state and the occupation number of orbitals
occupied in this state are included for all wave function
components. Thus, each singly excited wave function
component does contain information about the occupied
Hartree−Fock orbital from which the electron was excited.
The matrix representation of a Givens rotation involving

qubits n and m with angle θ is given by42

G ( )

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

nm =

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz
(11)

where the basis ordering is |0⟩m|0⟩n, |0⟩m|1⟩n, |1⟩m|0⟩n, |1⟩m|1⟩n.
or notational convenience, we will often omit the subscript n
and m labels on qubit registers. We can also make use of
Givens rotations controlled by the state of a target qubit t,
which we denote by CtGnm(θ). This gate can be represented as

C G I( ) 0 0t nm t nm= | | (12)

G1 1 ( )t nm+| | (13)

We also note that we adopt the convention of Qiskit where
in the Jordan−Wigner encoding the qubits are ordered
according to spin and Hartree−Fock energy. Orbitals with
the same spin are ordered from right to left in the ascending
Hartree−Fock energy. Thus, the relevant action of a Givens
rotation is

G ( ) 01 cos( ) 01 sin( ) 10nm | = | + | (14)

We do not have to consider the action of Givens rotations
on the state |10⟩ as we are interested in exciting particles to
orbitals of higher energies from the lower ones. The circuit
notation for the single-excitation Givens rotation is given by42

We want to construct a circuit from Givens rotations which
produces the state

C CCIS HF
p q

p
q

q pHF
,HF HF

| = | + |
(16)

where |ϕq ← ϕp⟩ means the computational basis state
produced by exciting an electron from orbital ϕp to orbital
ϕq from the Hartree−Fock ground state. HF and HF denote
the set of orbitals occupied and unoccupied in the Hartree−
Fock state, respectively. We can solve for the coefficients Cp

q

classically then set them equal to the parameterized coefficients
of the wave function expansion produced by a circuit
composed of Givens rotations. This produces a set of
equations which can be solved to find the Givens angles
which produce the circuit that prepares arbitrary CIS states.
B.1. Example 1: 3 Particles, 6 spin−orbitals
We now give an example for the particular case where we want
to generate the CIS wave function with 6 spin−orbitals and 3
particles, where all possible single-particle excitations are
considered. The circuit for accomplishing this is given by eq
17where the register labeled a is an ancilla qubit and those
labeled qi are data qubits used to store the CIS state. CNOT
gates with an open dot instead of the typical filled dot denote a
CNOT gate where the NOT operation is controlled on the
target qubit being in the state |0⟩ instead of |1⟩. Although it is
not explicitly given in the circuit due to space constraints, each
Givens rotation has its own parameter. The controlled phase
gate P (implicitly P(λ)) is given in matrix form by

P

e

( )

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 i

=

i

k

jjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzz

where the columns and rows are ordered as |00⟩,|01⟩,|10⟩,|11⟩.
We will see later that we need λ to be 0 or π. λ = 0 corresponds
to a 2-qubit identity gate, in which case, we could omit this
gate entirely, whereas λ = π corresponds to a controlled-Z gate.
We denote this gate as P in order to keep full generality. The
purpose of the final sequence of CNOT gates is to disentangle
the ancilla qubit from the data qubits, putting the final state in
the form |CIS⟩⊗|0⟩. The final state of the data qubits is given
in eq 18
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We denote the angle which first adds the component |ϕq ←
ϕp⟩ to the overall wave function as p

q. By setting these
coefficients equal to those of the CI wave function expansion
given in eq 16, we arrive at the following set of equations in eq
19

e C

C

C

C

C

C

C

C

C

C

cos cos cos

cos cos sin cos

cos cos sin sin cos

cos cos sin sin sin

cos sin cos

cos sin sin cos

cos sin sin sin

sin cos

sin sin cos

sin sin sin

i
2
3

1
3

0
3

HF

2
3

1
3

0
3

0
4

0
3

2
3

1
3

0
3

0
4

0
5

0
4

2
3

1
3

0
3

0
4

0
5

0
5

2
3

1
3

1
4

1
3

2
3

1
3

1
4

1
5

1
4

2
3

1
3

1
4

1
5

1
5

2
3

2
4

2
3

2
3

2
4

2
5

2
4

2
3

2
4

2
5

2
5

=

=

=

=

=

=

=

=

=

= (19)

The recursive structure of this circuit allows us to solve all of
these parameters analytically in a recursive way. We can
partition these 10 equations into 3 blocks of 3 equations and 1
block with 1 equation according to the occupied Hartree−
Fock orbital from which the excitations are generated. We start
with p = 2 and solve for , , and2

5
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2
3 in that order. This has
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The equations corresponding to p = 1 are the same in
structure to those of p = 2, except that the left-hand side is
multiplied by a constant factor of cos θ23, a quantity that we
solved for in the p = 2 equations. We define α2 = cos 2

3 and
divide both sides of these equations by α2. We arrive at a
second set of solutions
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The p = 0 block of equations also has the same form, but the
left side is multiplied by a factor of cos cos1 2 1

3
2
3= . We

divide by sides of each equation in this block by α1α2 and
arrive at the solution for this third block
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(22)

This leaves only the parameter λ to solve. The magnitude of
CHF will match that of α2α1α0 due to the normalization
conditions, but the two may differ by a factor of either +1 or
−1. The parameter λ will determine this phase. If the phase of
the two quantities matches, then λ = 0 and the phase gate can
be omitted entirely. If the two differ by a phase of −1, then λ =
π.
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B.2. Example 2: Sparse 2 Particles, 6 Spin−Orbitals
The previous example dealt with the particular case of 3
particles and 6 spin−orbitals where every single-particle
excitation from any occupied Hartree−Fock orbital is possible.
We now give an example for a different number of particles
and spin−orbitals for the case where the CIS wave function is
sparse and some of the coefficients are zero. This demonstrates
that we can also generate approximate CIS wave functions at
lower circuit depth in a straightforward, systematic way by
omitting certain excitations if their CI coefficients are below a
specified threshold.
Here, we suppose that we are preparing a CIS state of a

system with 2 particles and 6 spin−orbitals, where ϕ1 can only
be excited to {ϕ2, ϕ5} and ϕ0 can only be excited to ϕ4. The
circuit for doing so is given in eq 23

This results in the data qubits being put in the state
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This leads to the following set of equations
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We solve for , ,1
5

1
2

0
4, and λ recursively in that order. The

solution is given by
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B.3. General Procedure
Based on the particular examples given, we can observe a
general procedure for any number of particles and spin−
orbitals. We first partition the spin−orbitals into two sets HF
and HF, the set of spin−orbitals occupied and unoccupied in
the Hartree−Fock reference state, respectively. For each

p HF, we generate an ordered set Lp of orbitals

q HF for which the CI amplitude Cp
q is not zero or is

not below a desired truncation threshold. These orbitals are
ordered in ascending Hartree−Fock energy. For every spin−
orbital in each Lp, we map the orbital indices q to new indices
np

q. This is simply so that we may write down a general
analytical expression for the gate sequence which reflects the
fact we may not want or need the full, dense CI wave function.
np

q is the index of the list Lp which was mapped from the
original index of the spin−orbital ϕq, e.g., the original set of
unoccupied orbitals from which a particular occupied orbital
may be given by {ϕ3, ϕ6, ϕ8}, but we map this ordered set to
the list indices {0, 1, 2}.
The general sequence of gates is given in eq 27
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The rightmost terms denote the fact that for the set of
excitations from the first occupied spin−orbital, we do not
have to apply the Givens rotations conditioned on the state of
the ancilla qubit. Without loss of generality, we may take ϕ0 to
be the orbital which has the longest list Lp of possible excited
orbitals. This will reduce the circuit depth, as compiling
controlled Givens rotations into a sequence of 1- and 2-qubit
basis gates will in general be more expensive than regular
Givens rotations. After this, we apply a NOT gate to the ancilla
qubit conditioned on the state of the qubit from which we just
generated excitations being |0⟩. This marks all data qubit wave
function components that are not the Hartree−Fock
component so that future Givens rotations will not apply
excitations to these components. We then repeat this with
Givens rotations controlled on the state of the ancilla for all of
the other Hartree−Fock occupied orbitals. If there is an orbital
for which there are no possible excitations, we simply skip it.
We then apply a phase gate P(λ) to any of the Hartree−Fock
occupied orbitals conditioned on the state of the ancilla. This
applies the relative phase eiλ to the Hartree−Fock component
of the wave function. Finally, for each of the Hartree−Fock
occupied orbitals, we apply a NOT gate controlled by the state
of the ancilla. This disentangles the data qubits from the ancilla
qubit, so that the final result is a product state of these
registers.
Finally, we give a general procedure for mapping the CI

coefficientsCp
q to Givens rotation angles p

q. In order to do this,
we temporarily reindex the CI coefficient indices in the same
way that we did for the general circuit expression. For each Lp,
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we map the orbital indices q → np
q. Here, Cp

np
q
is the reindexed

CI coefficient mapped from Cp
q for list Lp. The sequence of

steps for this procedure can be given by
(1) For each p HF (In the corresponding order applied

in the circuit):
(a) If length (Lp) = 1
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(c) If length (Lp) > 2
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(2) Solve for λ
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Here, for the sake of notational convenience, we define

∏p′<0αp′ = 1.
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