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Abstract. The contour integral--based rational filter leads to interior eigensolvers for non-
Hermitian generalized eigenvalue problems. Based on Zolotarev's third problem, this paper proves
the asymptotic optimality of the trapezoidal quadrature of the contour integral in terms of the
spectrum separation. A composite rule of the trapezoidal quadrature is derived, and two interior
eigensolvers are proposed based on it. Both eigensolvers adopt direct factorization and the multishift
generalized minimal residual method for the inner and outer rational functions, respectively. The first
eigensolver fixes the order of the outer rational function and applies subspace iterations to achieve
convergence, whereas the second eigensolver doubles the order of the outer rational function every
iteration to achieve convergence without subspace iteration. The efficiency and stability of proposed
eigensolvers are demonstrated on synthetic and practical sparse matrix pencils.
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1. Introduction. We aim to solve the large-scale interior eigenvalue problem
for non-Hermitian matrices. Such problems arise from many fields including but not
limited to electronic structure calculations, dynamic system simulations, and control
theory. Most of these applications only require part of the eigenvalues of interest, and
many of these are interior eigenvalues.

The interior non-Hermitian generalized eigenvalue problem we consider is

Axi = \lambda iBxi, \lambda i \in \scrD ,(1.1)

where \scrD is the region of interest, matrix pencil (A,B) is diagonalizable, and its eigen-
values are distributed on the complex plane. The goal is to find all eigenpairs (\lambda i, xi)
in the region \scrD . The interior eigensolver for this problem can be used to compute
eigenpairs in several regions in parallel to obtain the partial or full eigendecomposition
of the matrix of interest.

1.1. Related work. Methods for non-Hermitian generalized eigenvalue prob-
lems have been developed for decades. The QZ method [9] is a popular one in practice
for dense and small- to medium-scale matrices. When a sparse and large-scale matrix
is considered, iterative methods [7, 17] are preferred.
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1038 YUER CHEN AND YINGZHOU LI

Among iterative methods, many adopt the combination of a contour-based filter
and the subspace iteration, e.g., the Sakurai--Sugiura (SS) method [15] and variants of
the FEAST method [8, 13]. The original SS method suffers from numerical instability
due to the ill-conditioned Hankel matrix. Then Sakurai and Sugiura propose CIRR
[4], which uses Rayleigh--Ritz projection to avoid the explicit usage of the momentum
and block version SS method [5]. The number of linear systems therein is reduced,
and so is the order of the Hankel matrix. The FEAST method originally proposed
for Hermitian matrices is extended to non-Hermitian matrices and results in many
variants---dual FEAST [6], BFEAST [19], HFEAST [18], etc.

For all the contour-based filters or rational filters in the methods above, the
convergence and convergence rate highly depend on the locations and weights of poles.
Although the trapezoidal quadrature1 leads to a good convergence behavior [6], its
optimality remains unknown for non-Hermitian matrices. In this paper, we discuss the
optimality of the trapezoidal quadrature and its composite rule property. Based on
the composite rule, we propose two interior eigensolvers for non-Hermitian generalized
eigenvalue problems.

1.2. Contribution. Our contribution in this paper has two parts, the theory
part and the algorithm part. These two parts are later referred to as the filter design
and filter implementation, respectively.

In filter design, we find the optimal rational filter in the sense of spectrum sep-
aration for fast convergence of subspace iteration. By making use of the connection
with Zolotarev's third problem, we prove that when the contour is a circle, the ratio-
nal filter used in the inverse power method leads to an optimal separation, while the
trapezoidal quadrature leads to an asymptotically optimal separation.

In filter implementation, we focus on the flexibility of the trapezoidal quadrature
implementation. The main cost of the rational filter Rk(z) implementation comes
from prefactorization, e.g., LU factorization, and solving phase, e.g., forward and
backward substitution (triangular solve). In general, the cost of the prefactorization
is of higher-order complexity than that of the solving phase. The composite rule of
trapezoidal quadrature establishes a trade-off between the costs of the two.

Specifically, given a rational filter Rk(z) from the trapezoidal quadrature, we de-
rive a composite rule as Rk(z) = Rk2

(M(Rk1
(z))) for k = k1k2 and M(\cdot ) being a

M\"obius transform. Motivated by [8], two novel algorithms are proposed based on
the composite rule, both of which implement Rk(\cdot ) with an inner-outer structure.
The inner rational function Rk1(\cdot ) is implemented with direct matrix factorizations,
whereas the outer rational function Rk2

(\cdot ) is implemented via the multishift gener-
alized minimal residual method (GMRES). The first algorithm adopts the subspace
iteration framework. It substitutes matrix factorizations with the solves, which may
reduce the total runtime for large cases. The second algorithm discards the frame-
work of subspace iteration. It achieves target precision by dynamically increasing k2
and reusing Krylov subspace to avoid the increase of the computational cost. These
two algorithms hybridize the direct method and iterative method and enable us to
use computational resources more effectively. Through the numerical experiments, we
find that the second algorithm is more efficient and practical.

1.3. Organization. The rest of this paper is organized as follows. In section
2, we introduce the basic idea of the contour integral--based filter and discuss the
computational cost and memory cost of the implementation based on the simple rule

1Trapezoidal rule instead of trapezoidal quadrature is a commonly used terminology.
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INTERIOR EIGENSOLVER 1039

of trapezoidal quadrature. Later, we introduce our two novel algorithms based on
the composite rule of trapezoidal quadrature in section 3. The optimality of rational
functions is discussed in section 4, and the derivation of the composite rule is presented
in section 5. In section 6, there are some numerical experiments to examine our results
of optimality and demonstrate the efficiency of two proposed algorithms. Finally,
section 7 concludes the paper.

2. Subspace iteration with rational filter. Subspace iteration with ratio-
nal filter is a class of eigensolvers for interior non-Hermitian generalized eigenvalue
problems (1.1). All eigensolvers in this class use the subspace iteration framework and
adopt various filters, i.e., rational functions with different choices of weights and poles.
In this section, we will first review the framework of subspace iteration and introduce
the contour integral formulation of the spectral projector. Then we demonstrate the
process of deriving rational filters from numerical discretizations, alongside the cost
of implementing this kind of rational filter.

2.1. Subspace iteration. The general framework of the subspace iteration with
filter iterates between two phases: (1) refining the subspace via filter, and (2) solving
a reduced eigenvalue problem in the subspace.

In the first phase, the filter is applied to an approximate basis of the eigen-
subspace, and a refined representation of the eigensubspace is obtained. For non-
Hermitian eigenvalue problems, left and right eigensubspaces are different. We can
refine left and right eigensubspaces by applying the filter twice [6], or we can only
refine the right eigensubspace and use an extra step to obtain an approximation of
the left eigensubspace [18]. In the second phase, the original large-scale eigenvalue
problem is projected to the left and right eigensubspaces and reduced to an eigen-
value problem of a much smaller scale. Then the small-scale eigenvalue problem is
solved by classical dense eigensolvers, which results in the approximate eigenpairs of
the original problem.

Due to the potentially ill-conditioned eigenbasis of non-Hermitian matrices, the
generalized Schur vectors could be extracted to represent the eigensubspaces and
lead to a more stable scheme. Such a subspace iteration idea has been combined
with FEAST for non-Hermitian matrices and results in HFEAST [18]. Denote the
approximate basis of the right eigensubspace as U . The orthonormal basis of U is
denoted as V = orth(U). As in HFEAST [18], the orthonormal basis of the left
eigensubspace could be constructed as W = orth(AV  - \sigma BV ), where \sigma is the shift
away from the eigenvalues of (A,B). After obtaining the approximate orthonormal
basis of the left and right eigensubspaces, the reduced generalized eigenvalue problem
(W \ast AV,W \ast BV ) is solved by the QZ algorithm and yields the generalized Schur form,

P \ast 
L(W

\ast AV )PR =HA and P \ast 
L(W

\ast BV )PR =HB ,

where PL and PR are orthogonal matrices, and HA and HB are upper triangular
matrices. The approximate eigenvalues are

\~\lambda i = (HA)i,i/(HB)i,i.

We further calculate the left and right eigenvectors of (HA,HB) and denote them as
VL and VR, respectively. The approximate left and right eigenvectors of (A,B) are,
respectively,

WPLVL and V PRVR.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1040 YUER CHEN AND YINGZHOU LI

Algorithm 2.1. Subspace iteration with filter.

Input: matrix pencil (A,B), region \scrD , number of columns ncol, shift \sigma .

Output: All approximate eigenpairs (\widetilde \lambda i, \widetilde xi), \~\lambda i \in \scrD .
1: Generate random Y N\times n\mathrm{c}\mathrm{o}\mathrm{l}

2: while not converge do
3: U = \rho (B - 1A)Y
4: V = orth(U)
5: W = orth(AV  - \sigma BV )
6: [HA,HB , PL, PR, VL, VR] = qz(W \ast AV,W \ast BV )

7: \widetilde \lambda i = (HA)i,i/(HB)i,i, \widetilde xi = V PR(VR)(:, i) and Y = (\widetilde x1, . . . , \widetilde xn\mathrm{c}\mathrm{o}\mathrm{l}
)

8: end while

The overall framework of the subspace iteration in HFEAST [18] with filter \rho (\cdot ) is
summarized in Algorithm 2.1. In the rest of the paper, we adopt the subspace iteration
as in Algorithm 2.1 and focus on the design and implementation of \rho (\cdot ). In addition,
we abbreviate lines 4--7 as [Y, \widetilde \Lambda , \widetilde X] = HSRR(A,B,U,\sigma ), where \widetilde \Lambda = diag\{ \widetilde \lambda 1, . . . ,\widetilde \lambda n\mathrm{c}\mathrm{o}\mathrm{l}

\} 
and \widetilde X = (\widetilde x1, . . . , \widetilde xn\mathrm{c}\mathrm{o}\mathrm{l}

).

2.2. Contour-based filter and discretization. The basic idea of designing a
filter is to construct a matrix function whose eigenvalues are close to zero outside the
region \scrD and different from zero inside \scrD . One good choice of matrix function is the
indicator function of \scrD , which could be constructed via a contour integral enclosing
the region \scrD . The indicator function of \scrD via contour integral admits

f(z) =
1

2\pi \imath 

\oint 
\Gamma 

1

\zeta  - z
d\zeta =

\Biggl\{ 
1, z \in \scrD ,

0, z \not \in \=\scrD ,
(2.1)

where \Gamma is the positively oriented Jordan curve that encloses the region \scrD .
For a diagonalizable matrix pencil (A,B), i.e.,

AX =BX\Lambda ,

with X being the right eigenvectors and \Lambda a diagonal matrix with eigenvalues on its
diagonal, the indicator function f(z) applied to (A,B) admits

f(B - 1A) =
1

2\pi \imath 

\oint 
\Gamma 

(\zeta B  - A) - 1B d\zeta (2.2)

=X

\biggl[ 
1

2\pi \imath 

\oint 
\Gamma 

(\zeta I  - \Lambda ) - 1 d\zeta 

\biggr] 
X - 1 =X1\scrD (\Lambda )X

 - 1,

where 1\scrD (\cdot ) denotes the indicator function for region \scrD .2 In [19], a result similar to
(2.2) is proved, which leads to the theoretical foundation that the contour integral
works even if the non-Hermitian system is defective. Various numerical discretizations
of the contour integral (2.2) lead to various filters. In many applications, especially
non-Hermitian eigenvalue problems, the contour \Gamma is circular. In other applications,
the contour could be conformally mapped to a circle. Hence, in this paper, we focus
on the case that \Gamma is a circle.

2In (2.2), we implicitly assume that the eigenvalues of (A,B) do not locate on the boundary of
\scrD .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INTERIOR EIGENSOLVER 1041

We could reparameterize the circle by e\imath \theta for \theta \in [0,2\pi ). The integral (2.1),
then, is a one-dimensional integral and could be numerically evaluated by various
quadrature rules. Generally, the contour integral (2.1) can be approximated by a
numerical quadrature with k quadrature points, written as

Rk(z) =

k\sum 
i=1

w
(k)
i

p
(k)
i  - z

,(2.3)

where \{ w(k)
i \} ki=1 are weights and \{ p(k)i \} ki=1 are poles. Let

\scrR n,m = \{ P (z)/Q(z) : deg(P (z))\leq n,deg(Q(z))\leq m\} 

be the set of rational functions, where P (z) and Q(z) are polynomials and deg(\cdot )
denotes the degree of the polynomial. It is easy to see that Rk(z) \in \scrR k,k, i.e., it is a
kth-order rational function.

When the discretized contour integral is applied to (A,B), it yields a kth-order
rational matrix function

Rk(B
 - 1A) =

k\sum 
i=1

w
(k)
i (p

(k)
i B  - A) - 1B.(2.4)

One of the common choices is the trapezoidal quadrature. When the contour is a
circle, whose center is c and radius is r, the integral (2.1) numerically discretized with
k quadrature points is denoted as Rc,r,k(B

 - 1A), whose poles and weights are

p
(k)
i = re\imath \theta 

(k)
i + c, w

(k)
i = re\imath \theta 

(k)
i /k, \theta 

(k)
i = (2i - 1)\pi /k.(2.5)

The matrix function Rc,r,k(B
 - 1A) is used as the filter in this paper. We will call it

the kth-order trapezoidal quadrature.

2.3. Cost of implementation. In (2.4), the considerable computational burden

lies in solving the shifted linear systems, (p
(k)
i B  - A) - 1 for i = 1, . . . , k. When the

eigengap between the interior eigenvalues and outer eigenvalues is small, the linear
systems will be ill-conditioned, since the poles are on the contour and their distances
to eigenvalues are bounded by the eigengap. Hence, in most contour-based filters, the
shifted linear systems are solved by direct methods.

The overall computational cost is then divided into two parts: the offline factor-
ization part, e.g., LU factorization, and the online solving part, e.g., triangular solve
with the given LU factorization. The computational cost could be written as

Cfactor \times k+Capply \times k\times ncol \times T + o(Capply),

where Cfactor is the cost of a factorization, Capply is the cost of a solve, k is the number
of poles, ncol is the number of columns in Y , T is the number of subspace iterations,
and o(Capply) = o(Capply(N)) is the remaining lower-order cost. To extract the entire
eigensubspace we are interested in, it is necessary that ncol \geq s for s being the number
of eigenvalues inside. As for the memory cost, the solving complexity is the same as
its memory cost for almost all dense and sparse linear system solvers. Hence, Capply

is also used as the memory cost in storing a factorization. The cost of memory is
kCapply.

Throughout the subspace iterations, the tunable hyperparameters are k and ncol.
The dependence of T on k and ncol could be reflected by the function value Rk(\lambda i)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1042 YUER CHEN AND YINGZHOU LI

since we are essentially applying a power method with Rk(B
 - 1A). Let \sigma be a per-

mutation of 1,2, . . . ,N , such that

| Rk(\lambda \sigma 1)| \geq | Rk(\lambda \sigma 2)| \geq \cdot \cdot \cdot \geq | Rk(\lambda \sigma N
)| .

Then, the number of subspace iterations T mainly depends on the ratio,

max
i>n\mathrm{c}\mathrm{o}\mathrm{l}

| Rk(\lambda \sigma i
)| 
\Big/ 

min
\lambda \sigma i

\in \scrD 
| Rk(\lambda \sigma i

)| .(2.6)

When the ratio is greater than or equal to one, the subspace iteration would suffer
from a divergence issue. When the ratio is less than one, the smaller the ratio, the
faster the convergence. In general, larger k and ncol lead to smaller (2.6). However, k
is limited by the bottleneck of memory, especially for the large-scale problems. Then
the implementation based on the simple rule can only increase ncol to make the ratio
(2.6) smaller than one. When many outer eigenvalues are very close to the contour
and k is small, an extremely large ncol is needed for the convergence.

We refer to the formula (2.4) of Rc,r,k(B
 - 1A) as the simple rule, which differs

from the composite rule introduced in the next section.

3. Two eigensolvers based on the composite rule. The implementation
based on the simple rule (2.4) needs k matrix factorizations, which brings a huge
burden on computation and memory for large matrices. In this section, we will start
by introducing the composite rule of trapezoidal quadrature without derivation. Then
we propose two eigensolvers based on the composite rule, both of which implement
Rc,r,k(B

 - 1A) with an inner-outer structure.

3.1. The composite rule. Given a positive integer k and its integer factoriza-
tion k = k1k2 for k1 > 1 and k2 > 1, the composite rule of trapezoidal quadrature is
shown as

Rc,r,k(z) =R0,1,k2
(M(Rc,r,k1

(z))),

where M(z) = (1 - z)/z is a M\"obius transform. That means the kth-order trapezoidal
quadrature can be rewritten as a composition of a k2th-order trapezoidal quadrature
and a transformed k1th-order trapezoidal quadrature.

When k2 is even, the composite rule can be rewritten as

Rc,r,k(z) =

k2\sum 
i=1

c
(k2)
i (Rc,r,k1

(z) - s
(k2)
i ) - 1Rc,r,k1

(z),(3.1)

c
(k2)
i = - 1

k2

\sigma 
(k2)
i

1 + \sigma 
(k2)
i

, s
(k2)
i =

1

1+ \sigma 
(k2)
i

,

where \{ \sigma (k2)
i \} k2

i=1 are roots of zk2 = - 1.

3.2. Interior eigensolver with subspace iteration. Using Rc,r,k(z) as the
filter in subspace iteration requires the evaluation of Rc,r,k(B

 - 1A)Y for Y to be a
matrix of size N \times ncol. By the composite rule for Rc,r,k(z) in (3.1), the evaluation of
Rc,r,k(B

 - 1A)Y could be rewritten as

Rc,r,k(B
 - 1A)Y =

\Biggl( 
k2\sum 
i=1

c
(k2)
i (Rc,r,k1

(B - 1A) - s
(k2)
i I) - 1

\Biggr) \bigl( 
Rc,r,k1

(B - 1A)Y
\bigr) 
,(3.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INTERIOR EIGENSOLVER 1043

where the operation Rc,r,k1(B
 - 1A)Y can be written as

Rc,r,k1
(B - 1A)Y =

k1\sum 
i=1

w
(k1)
i (p

(k1)
i B  - A) - 1BY,(3.3)

where \{ w(k1)
i \} and \{ p(k1)

i \} are the weights and poles of Rc,r,k1(\cdot ).
In (3.2), there are inner and outer parts of the evaluation. For the inner part, as

in (3.3), we use direct solvers for all these linear systems for the same reason as the

simple rule. We prefactorize all linear systems and denote them as Ki = p
(k1)
i B  - A

for i= 1, . . . , k1, e.g., Ki =LiUi.
3 Once the factorizations are available, the inner part

can be addressed efficiently. The inner part (3.3) essentially applies a rational filter
of the matrix pencil (A,B) to a set of vectors Y . Without loss of generality, we treat
the inner part as an operator G acting on Y .

For the outer part, we first rewrite (3.2) using the operator G:

Rc,r,k(B
 - 1A)Y =

k2\sum 
i=1

c
(k2)
i (G - s

(k2)
i I) - 1 \widetilde Y(3.4)

for \widetilde Y =G(Y ). We notice that the eigenvalues of G are clustered, i.e., the eigenvalues
outside \scrD cluster around zero, and the eigenvalues inside \scrD cluster around one; see
Figure 2. Iterative solvers, especially GMRES, are expected to converge quickly.
Throughout this paper, we adopt GMRES [14] as the default iterative solver for (3.4)
with G being applied as an operator. Recall that GMRES is a Krylov subspace
method. By the shift-invariant property of the Krylov subspace, all k2 shifts in (3.4)
could be addressed simultaneously in the same Krylov subspace, i.e.,

\scrK n(G - s
(k2)
i I, y) =\scrK n(G,y),

(G - s
(k2)
i I)Vn = Vn(Hn,n+1  - s

(k2)
i In,n+1),

for i = 1, . . . , k2 and Vn denoting the basis of \scrK n(G,y). The multishift GMRES [1]
applies the operator G once per iteration. In all of our numerical experiments, the
multishift GMRES converges in less than one hundred iterations, and no restarting is
needed.

Using a direct solver and an iterative solver for the inner and outer part of (3.2),
we obtain an effective algorithm for the rational matrix function filter. Combining
this filter with subspace iteration leads to our first eigensolver. Algorithm 3.1 gives
the overall pseudocode, where HSRR is an abbreviation for lines 4--7 of Algorithm 2.1.

The convergence criterion for the interior eigenvalue problem can be quite tricky.
The relative error of the approximate eigenpair in our algorithms is defined as

ei = e(\~\lambda i, \~xi) =
\| A\~xi  - B\~xi

\~\lambda i\| 2
(| c| + r)\| B\~xi\| 2

,(3.5)

where c and r are the center and radius of the region \scrD . For the non-Hermitian interior
eigenvalue problem, a phenomenon called ghost eigenvalue often appears. The ghost

3Throughout the numerical section of this paper, dense LU factorization is used by default for
dense matrices A and B. If A and B are sparse matrices, we adopt the default sparse LU factorization
methods in MATLAB.
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1044 YUER CHEN AND YINGZHOU LI

Algorithm 3.1. Eigensolver: Composite rational function filter.

Input: Pencil (A,B), center c, radius r, number of eigenvalues s, shift \sigma , number of
poles [k1, k2], tolerance \tau g and \tau .

Output: The approximate eigenpair (\~\lambda i, \~xi) with \~\lambda i \in \scrD .

1: Compute \{ p(k1)
i ,w

(k1)
i \} k1

i=1, \{ c
(k2)
j , s

(k2)
j \} k2

j=1.

2: for i= 1, \cdot \cdot \cdot , k1 do

3: Prefactorize p
(k1)
i B  - A as Ki (e.g., Ki =LiUi).

4: end for
5: Construct a function for applying G to a set of vectors V .

G(V ) =

k1\sum 
i=1

w
(k1)
i K - 1

i BV (e.g., K - 1
i =U - 1

i L - 1
i ).

6: Generate an orthonormal random matrix Y N\times n\mathrm{c}\mathrm{o}\mathrm{l} with ncol \geq s.
7: while p changes or any ei of the filtered eigenpair is larger than \tau do

8: \widetilde Y =G(Y ).

9: Solve Uj = (G - s
(k2)
j I) - 1 \widetilde Y for j = 1, . . . , k2 via multishift GMRES.

10: U =
\sum k2

j=1 c
(k2)
j Uj .

11: [Y, \widetilde \Lambda , \widetilde X] = HSRR(A,B,U,\sigma ).
12: Distinguish ghost eigenvalues and filtered eigenvalues by \tau g. Update the

number of filtered eigenvalues p.
13: end while

eigenvalue is the one that appears in the region \scrD but does not converge. The ghost
eigenvalue would make it difficult to examine the convergence of subspace iterations.

One of the practical strategies is to set a tolerance \tau g as in [19], which is much
larger than the target relative error \tau . As the iteration goes, the true eigenvalues will
converge to a small relative error, while the ghost eigenvalues will not converge to the
same precision. After a few steps, there is a gap in the relative errors between the
true eigenvalues and the ghost eigenvalues. When the relative error of an approximate
eigenpair (\~\lambda i, \~xi) inside \scrD is smaller than \tau g, we treat it as a filtered eigenpair and
denote the number of filtered eigenpairs as p. When p is not changed and all relative
errors of the filtered eigenpairs are smaller than \tau , we terminate the algorithm. That
corresponds to lines 7 and 12 of Algorithm 3.1.

We now estimate the computational cost for Algorithm 3.1. In the preparation
phase before subspace iteration, the weights and poles are computed in the computa-
tional cost of O(1). For the prefactorizations of k1 linear systems, the computational
complexity is k1Cfactor and the memory required is k1Capply. In the subspace iteration
phase, the per-iteration computational cost is dominated by the multishift GMRES.
If we denote n

(j,t)
iter as the GMRES iteration number for the jth column in the tth

subspace iteration, the dominant computational cost in the GMRES is

T\sum 
t=1

n\mathrm{c}\mathrm{o}\mathrm{l}\sum 
j=1

n
(j,t)
iter \cdot k1Capply,

where k1Capply is the cost in applying G(\cdot ) to a vector.
The overall dominant computational and memory costs for Algorithm 3.1 are sum-

marized in Table 1. In the same table, we also list the computational and memory
costs for subspace iteration with k1k2th-order rational filter without using the com-
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INTERIOR EIGENSOLVER 1045

Table 1
Computational and memory complexities of the subspace iteration with the simple rational

filter and the composite rational filter. The simple rational filter is of order k1k2, and the composite
rational filter is of inner and outer order k1 and k2, respectively. Here C\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r} and C\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{y} are
factorization and solving cost for a matrix of size N \times N .

Algorithm Computation Memory

Prefact Iteration Prefact Iteration

Simple k1k2C\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r} Tn\mathrm{c}\mathrm{o}\mathrm{l}k1k2C\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{y} k1k2C\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{y} n\mathrm{c}\mathrm{o}\mathrm{l}N

Algorithm 3.1 k1C\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}
\sum T

t=1

\sum n\mathrm{c}\mathrm{o}\mathrm{l}
j=1 n

(j,t)
\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} k1C\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{y} k1C\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{y} maxTt=1

\sum n\mathrm{c}\mathrm{o}\mathrm{l}
j=1 n

(j,t)
\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} N

Ratio k2
Tn\mathrm{c}\mathrm{o}\mathrm{l}k2\sum T

t=1

\sum n\mathrm{c}\mathrm{o}\mathrm{l}
j=1 n

(j,t)
\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}

k2
n\mathrm{c}\mathrm{o}\mathrm{l}

\mathrm{m}\mathrm{a}\mathrm{x}Tt=1

\sum n\mathrm{c}\mathrm{o}\mathrm{l}
j=1 n

(j,t)
\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}

posite rule. Another row of ratio is added to indicate the acceleration from Algorithm
3.1. Clearly, both the computation and memory costs in the prefactorization phase
are reduced by a factor of k2, while the comparison for the subspace iteration part
is less clear. The ratio depends on the iteration numbers of both the subspace iter-
ation and the multishift GMRES. Another interesting thing is that as the subspace
iteration progresses, the columns of Y become closer aligned with the eigenvectors,
which means the Krylov subspaces will converge faster and so will the GMRES, as
we numerically show in Appendix A.

3.3. Composite rule eigensolver without subspace iteration. Algorithm
3.1 still adopts the framework of subspace iteration. It implements the same order
trapezoidal quadrature as the simple rule in a different way. We can take advan-
tage of the composite rule from another point of view, i.e., achieving better approx-
imation with the same number of factorizations as the simple rule. The better the
rational approximation, the fewer subspace iterations are needed. In the limit of
very accurate approximation, only one subspace iteration is enough. Making use of
the shift-invariant property of Krylov subspace, we proposed Algorithm 3.2, which
achieves better approximation with a fixed number of factorizations and discards the
framework of subspace iteration.

More specifically, the first step of Algorithm 3.2 for the initial [k1, k2] is the
same as in Algorithm 3.1, which also constructs the operator G via prefactorizations
and generates Krylov subspaces of different vectors for the computation of Rc,r,k(Y ).
When the approximate eigenpairs do not converge, Algorithm 3.2 will double k2 and
compute new shifts and weights, s

(2k2)
j and c

(2k2)
j . Importantly, Algorithm 3.2 does

not regenerate new Krylov subspaces from the approximate eigenvectors. Instead, it
computes Rc,r,2k(Y ) in the existing Krylov subspaces used for Rc,r,k(Y ) and expands
them when it is necessary. Algorithm 3.2 keeps enlarging k2 until all the approximate
eigenpairs converge. As we will show in section 6, the dimension of Krylov subspace
is not sensitive to k2 and increases mildly. In addition, we find that the shifts s

(k2)
j

are parts of the shifts s
(2k2)
j and their weights satisfy c

(k2)
j /2 = c

(2k2)
j . This means

we only need to compute Uj = (G - s
(2k2)
j I) - 1 \widetilde Y for the new shifts, then Rc,r,2k(Y )

can be computed from Rc,r,2k(Y ) = 1
2Rc,r,k(Y )+

\sum 2k2

j=k2+1 c
(2k2)
j Uj . It corresponds to

lines 9 and 10 of Algorithm 3.2.
Compared to Algorithm 3.1, Algorithm 3.2 does not regenerate Krylov subspaces

each time and enables adaptive selection of k2, which makes Algorithm 3.2 more
practical. The more interesting characteristic of Algorithm 3.2 is that it discards
the framework of subspace iteration. We find that the idea of reusing the Krylov
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1046 YUER CHEN AND YINGZHOU LI

Algorithm 3.2. Eigensolver: Composite rational function filter without subspace
iteration.

Input: Pencil (A,B), center c, radius r, number of eigenvalues s, shift \sigma , tolerance

\tau g and \tau , number of poles k1, initial k2 (k2 = k1 in default), and \^k2 = 0.

Output: The approximate eigenpair (\~\lambda i, \~xi) with \~\lambda i \in \scrD .

1: Compute \{ p(k1)
i ,w

(k1)
i \} k1

i=1, \{ c
(k2)
j , s

(k2)
j \} k2

j=1.

2: for i= 1, . . . , k1 do

3: Prefactorize p
(k1)
i B  - A as Ki (e.g., Ki =LiUi).

4: end for
5: Construct a function for applying G to a set of vectors V .

G(V ) =

k1\sum 
i=1

w
(k1)
i K - 1

i BV (e.g., K - 1
i =U - 1

i L - 1
i ).

6: Generate an orthonormal random matrix Y N\times n\mathrm{c}\mathrm{o}\mathrm{l} with ncol \geq s.

7: \widetilde Y =G(Y ), U is a zero matrix of the same size.
8: while p changes or any ei of the filtered eigenpair is larger than \tau do

9: Solve Uj = (G - s
(k2)
j I) - 1 \widetilde Y for j = \^k2 + 1, . . . , k2 via multishift GMRES in the

existing Krylov subspaces and expand it when necessary.

10: U =U/2 +
\sum k2

j=\^k2+1
c
(k2)
j Uj .

11: [Y, \widetilde \Lambda , \widetilde X] = HSRR(A,B,U,\sigma ).
12: Distinguish ghost eigenvalues and filtered eigenvalues by \tau g. Update the

number of filtered eigenvalues p.

13: \^k2 = k2, k2 = 2k2. Compute \{ c(k2)
j , s

(k2)
j \} k2

j=\^k2+1
.

14: end while

subspace for algorithm design is also shown in [3], where the authors use a single
Cayley transform for preconditioning. Instead, we use trapezoidal quadrature with
k1 poles for preconditioning. This means Algorithm 3.2 can enjoy the benefit of
parallelization, as the solving of the k1 shifted linear systems (p

(k1)
i B  - A)x = y can

be performed simultaneously.
Another feature of Algorithm 3.2 is that in the whole process of dynamically

increasing k2, we are essentially using the trapezoidal quadrature as a filter, while
Algorithm 3.1 and the simple rule both use powers of the trapezoidal quadrature. As
we show in the next section, trapezoidal quadrature is asymptotically optimal, which
contributes part of the advantages of Algorithm 3.2.

4. Asymptotically optimal contour discretization. In this section, we will
start with the definition of spectrum separation, which is a continuous version of
(2.6). Then we will study the optimal and asymptotically optimal rational filter in
the sense of spectrum separation. Two main results will be proved, i.e., the rational
function used in the inverse power method is optimal and the trapezoidal quadrature
is asymptotically optimal with respect to k. The latter one shows that Rc,r,k(z) is a
reasonable good choice.

4.1. Spectrum separation. Among various quadrature rules, the optimality
of quadrature needs to be defined based on a criterion. The convergence rate mainly
depends on (2.6). Since we do not know eigenvalues a priori, we could assume that
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INTERIOR EIGENSOLVER 1047

there is an annulus around the boundary of \scrD as a generalized eigengap of the inner
and outer eigenvalues. The inner part and the outer part are

\scrI = \{ z : | z| \leq a\} and \scrO = \{ z : | z| \geq b\} ,

where a and b are the radii of the inner and outer parts of the annulus, and \scrI contains
all the eigenvalues inside \scrD . Then the criterion is defined as

R=
supz\in \scrO | Rk(z)| 
infz\in \scrI | Rk(z)| 

.(4.1)

Hence, we would like to address the following optimization problem to obtain the
optimal weights and poles for a given k:

inf
\{ w(k)

i \} k
i=1,\{ p

(k)
i \} k

i=1

supz\in \scrO | Rk(z)| 
infz\in \scrI | Rk(z)| 

.(4.2)

We call (4.1) spectrum separation. One can see that as b/a becomes larger, it is
easier to separate the values inside and outside the annulus with rational functions.
The drawback of using a larger b is that more eigenvalues may fall into the annulus
\{ z : a\leq | z| \leq b\} and we do not explicitly know the impact of these eigenvalues on the
convergence of the subspace iteration.

4.2. Zolotarev's third problem. We introduce Zolotarev's third problem with
its related theoretical results [12, 16]. Zolotarev's third problem is about the optimal
separation of rational functions on two disjoint regions. Since contour discretiza-
tion yields a rational function, it is natural to bridge the contour discretization and
Zolotarev's third problem.

Definition 4.1. Let \scrE and \scrG be two disjoint regions of \BbbC , i.e., \scrE \cap \scrG = \emptyset .
Zolotarev's third problem is to solve the following optimal problem:

Zk(\scrE ,\scrG ) = inf
r\in \scrR k,k

supz\in \scrE | r(z)| 
infz\in \scrG | r(z)| 

.(4.3)

Zolotarev's third problem tends to find a rational function whose value on \scrE is
closest to zero and whose value on \scrG is farthest from zero. When \scrE and \scrG are two
symmetric disks with respect to the origin as in Figure 1, the solution to Zolotarev's
third problem is explicitly given in Theorem 4.2. Theorem 4.2 as shown in this paper
takes a different parameterized form from that in [16].

Fig. 1. Regions in Zolotarev's third problem when E and G are symmetric disks.
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1048 YUER CHEN AND YINGZHOU LI

Theorem 4.2. Let \scrS = \{ z \in \BbbC : | z  - 1+\ell 
2 | \leq 1 - \ell 

2 \} ,0 < \ell < 1. Then the rational
function

R
(Z)
k (z) =

\biggl( 
z  - 

\surd 
\ell 

z +
\surd 
\ell 

\biggr) k

attains the infimum of Zolotarev's third problem Zk(\scrS , - \scrS ) and the infimum is equal

to ( 1+
\surd 
\ell 

1 - 
\surd 
\ell 
) - 2k.

The explicit solution to Zolotarev's third problem as in Theorem 4.2 is the key to
proving the asymptotical optimality in the sense of spectrum separation with respect
to k of the trapezoidal quadrature. The rational function in Theorem 4.2 is referred
to as Zolotarev's third function in the rest of this paper.

4.3. Compact form for \bfitR 0,1,\bfitk (\bfitz ). In order to connect Zolotarev's function
and the trapezoidal quadrature of the contour integral and derive the composite for-
mula in section 5, we establish an identity that relates R0,1,k(z) and R0,1,1(z

k). The
relation heavily relies on the symmetry of the trapezoidal quadrature on the circle.

Let us start with toy cases k = 2,4. The trapezoidal quadrature of the unit
circular contour with two poles could be rewritten as

R0,1,2(z) =
1

2

\biggl( 
e

\imath \pi 
2

e
\imath \pi 
2  - z

+
e

3\imath \pi 
2

e
3\imath \pi 
2  - z

\biggr) 
=

1

2

2e\imath \pi 

e\imath \pi  - z2
=

1

1+ z2
=R0,1,1(z

2).

Here we use the symmetry of poles and weights with respect to the origin to derive
the compact form of R0,1,2(z) and find that R0,1,2(z) is equivalent to R0,1,1(z

2). Let
us further derive the compact form of R0,1,4(z),

R0,1,4(z) =
1

4

\biggl( 
e

\imath \pi 
4

e
\imath \pi 
4  - z

+
e

7\imath \pi 
4

e
7\imath \pi 
4  - z

+
e

3\imath \pi 
4

e
3\imath \pi 
4  - z

+
e

5\imath \pi 
4

e
5\imath \pi 
4  - z

\biggr) 
=

1

2

\biggl( 
e

\imath \pi 
2

e
\imath \pi 
2  - z2

+
e

3\imath \pi 
2

e
3\imath \pi 
2  - z2

\biggr) 
=R0,1,2(z

2) =R0,1,1(z
4),

where, in the second equality, we combine the first two and last two terms, and in
the last equality, we adopt the compact form of R0,1,2(z). From the derivation of the
compact forms of R0,1,2(z) and R0,1,4(z), we could directly extend the derivation to
obtain the compact form of R0,1,k(z) = R0,1,1(z

k) for k = 2m, m \in \BbbN +. Fortunately,
the compact form holds for any k \in \BbbN +. The result is summarized in Lemma 4.3.

Lemma 4.3. For all k \in \BbbN +, let k roots of zk = - 1 be \sigma 
(k)
i for i= 1, . . . , k. Then

the compact form of R0,1,k(z) admits

R0,1,k(z) =
1

k

k\sum 
i=1

\sigma 
(k)
i

\sigma 
(k)
i  - z

=
1

1+ zk
=R0,1,1(z

k).(4.4)

Proof. We first prove two equalities, (4.5) and (4.6), and then derive the compact
form of R0,1,k(z).

The k roots of the kth degree polynomial zk + 1 are denoted as \sigma 
(k)
i for i =

1,2, . . . , k. A kth- order polynomial with k roots takes the form ak
\prod k

i=1(z  - \sigma 
(k)
i ),

where ak is the coefficient in the leading order. Comparing with the leading-order
coefficient in zk + 1, we know ak = 1 and have

zk + 1=

k\prod 
i=1

(z  - \sigma 
(k)
i ).(4.5)
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INTERIOR EIGENSOLVER 1049

Then we prove the second equality,

 - 1

k

k\sum 
i=1

\sigma 
(k)
i

k\prod 
j=1,j \not =i

(z  - \sigma 
(k)
j ) = 1.(4.6)

The left-hand side of (4.6) is a (k - 1)th degree polynomial. For equality (4.6) to hold,
we only need to make sure that the equality holds on k different points. Specifically,
we examine this on \sigma 

(k)
i for i= 1, . . . , k and obtain

 - \sigma 
(k)
i

k

k\prod 
j=1,j \not =i

(\sigma 
(k)
i  - \sigma 

(k)
j ) = - \sigma 

(k)
i

k
lim

z\rightarrow \sigma 
(k)
i

zk + 1

z  - \sigma 
(k)
i

= - \sigma 
(k)
i

k

k(\sigma 
(k)
i )k - 1

1
= 1,

where the first equality is due to (4.5) and the continuity of (zk + 1)/(z  - \sigma 
(k)
i ), the

second equality comes from the L'H\^opital rule of complex functions, and the last
equality holds since \sigma 

(k)
i is a root of zk + 1.

Finally, we derive the compact form of Rk(z) as in Lemma 4.3:

R0,1,k(z) =
1

k

k\sum 
i=1

\sigma 
(k)
i

\sigma 
(k)
i  - z

=
 - 1

k

\sum k
i=1 \sigma 

(k)
i

\prod k
j=1,j \not =i(z  - \sigma 

(k)
j )\prod k

i=1(z  - \sigma 
(k)
i )

=
1\prod k

i=1(z  - \sigma 
(k)
i )

=
1

zk + 1
=R0,1,1(z

k),

where the second equality adopts (4.6) and the fourth equality adopts (4.5).

A related compact form without detailed derivation can be found in [5]. The
compact form Lemma 4.3 can be further generalized to Rc,r,k(z) and results in the
compact form

Rc,r,k(z) =
1

1+ ( z - c
r )k

.

4.4. Optimal solution and the asymptotic optimality of trapezoidal
quadrature. In this section, we prove that if we know the desired spectrum ex-
plicitly, the rational function used in the inverse power method achieves the infimum
of (4.3) for \scrE =\scrO and \scrG = \scrI . On the other hand, the rational function Rc,r,k(z) from
the trapezoidal quadrature discretization of the contour integral achieves asymptotic
optimality of (4.3).

Theorem 4.4. The rational function z - k achieves the infimum of (4.3) for \scrE =\scrO 
and \scrG = \scrI . And the infimum equals (ab )

k.

Proof. We address Zolotarev's third problem with region \scrI and \scrO , i.e., Zk(\scrO ,\scrI ).
Define a M\"obius transform M(z) = \gamma z - \alpha 

z - \beta such that

M( - b) = 1, M( - a) = - 1, M(a) = - \ell , M(b) = \ell .

The parameters \gamma , \alpha , \beta , and \ell are determined by a and b. They satisfy

\alpha =
\surd 
ab, \beta = - 

\surd 
ab, \gamma =

\surd 
b - 

\surd 
a\surd 

b+
\surd 
a
, \ell =

\biggl( \surd 
b - 

\surd 
a\surd 

b+
\surd 
a

\biggr) 2

.

It can be verified that M(\scrI ) =  - \scrS and M(\scrO ) = \scrS for \scrS in Theorem 4.2. Then the

composition of the M\"obius transform and Zolotarev's function R
(Z)
k (M(z)) achieves

the infimum of Zk(\scrO ,\scrI ) and is denoted as
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1050 YUER CHEN AND YINGZHOU LI

R
(A)
k (z) =R

(Z)
k (M(z)) = z - k.(4.7)

The infimum of \scrI is taken when | z| = a, and the supremum of \scrO is taken when | z| = b.
Then the infimum of the ratio is (ab )

k.

Theorem 4.4 gives the optimal rational function in solving (4.3). The rational
function z - k therein combined with subspace iteration corresponds to the well-known
inverse power method. Further, the radius of \scrD or the diameter of the annulus is not
included in the optimal rational function. Hence, we conclude that, in the sense of
convergence rate of subspace iteration, the optimal interior eigensolver is the inverse
power method, assuming the center of the desired region \scrD is explicitly known.

The optimal rational function z - k, on the other hand, only has one pole and
cannot be written as a sum of low-order rational functions in the form of (2.3). The
inverse power method then has to be executed sequentially and cannot benefit from
the parallelization of distinct poles. In the following, we argue that, although the
trapezoidal quadrature of the contour integral is not the optimal rational function, it
achieves asymptotic optimality.

We consider that the contour is the boundary of \scrI . By Lemma 4.3, the discretiza-
tion can be rewritten as

R0,a,k(z) =
1

1+ ( za )
k
.

By the maximum modulus principle, the infimum of \scrI and the supremum of \scrO are
taken when | z| = a and | z| = b. In region \scrI , | za | 

k \leq 1. The absolute value of
the denominator can be viewed as the distance between  - 1 and ( za )

k. By simple
computation, the infimum is achieved when z = a. Similarly, the supremum of \scrO is
achieved when z = k

\surd 
 - 1b from the fact that | za | 

k > 1 in \scrO . The spectrum separation
(4.1) is

R=
2

( ba )
k  - 1

\sim 2
\Bigl( a
b

\Bigr) k
,

which asymptotically decays with respect to k at the same rate as that in Theorem
4.4. The above discussion is summarized in the following corollary.

Corollary 4.5. The trapezoidal quadrature discretization of the contour integral
on the boundary of \scrG = \scrI results in the rational function

1

\bigg/ \biggl[ 
1 +

\bigl( z
a

\bigr) k\biggr] 
.(4.8)

The spectrum separation (4.1) of the trapezoidal quadrature is 2/[( ba )
k  - 1], which

achieves the same decay rate as the infimum of (4.3) for \scrE =\scrO and \scrG = \scrI .
Although the trapezoidal quadrature used to approximate the contour integral

is not the optimal rational function of (4.3), the ratio asymptotically achieves the
optimal one up to a constant prefactor 2. Hence, we call Rc,r,k(z) the nearly optimal
rational function for (4.3). The advantage of the trapezoidal quadrature over z - k is
that Rc,r,k(z) can be efficiently parallelized. Specifically, the solving of the k shifted

linear systems (p
(k)
i B  - A)x = y can be performed simultaneously, while the solving

of z - k has to be performed subsequently.

5. Composite rule of trapezoidal quadrature. In this section, a composite
rule of trapezoidal quadrature is derived. Let us start from c = 0 and r = 1. We
repurpose Rk(z) as R0,1,k(z) in the rest of this paper.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Given a positive integer k and its integer factorization k = k1k2 for k1 > 1 and
k2 > 1, we aim to rewrite the kth-order rational function Rk(z) as a composition of
two k1th and k2th rational functions, Rk1

(z) and \^Rk2
(z) = Rk2

(M(z)), where M(\cdot )
is a M\"obius transform function. Precisely, the composite function admits Rk(z) =
\^Rk2

(Rk1
(z)) =Rk2

(M(Rk1
(z)).

According to Lemma 4.3, we have a natural composite expression as

Rk1k2
(z) =R1(z

k1k2) =Rk2
(zk1).

For the desired composite rule to hold, we should let M(Rk1
(z)) = zk1 . Now we

determine the coefficients of M(z) = (az  - b)/(cz  - d) such that M(Rk1
(z)) = zk1

holds. For | z| \not =\infty , substituting Rk1(z) = 1/(1+ zk1) into the expression of M(z), we
obtain

M(Rk1(z)) =
a - b(1 + zk1)

c - d(1 + zk1)
= zk1

\Leftarrow \Rightarrow dz2k1 + (d - c - b)zk1 + (a - b) = 0.

The above equality holds for all z. Hence we have solutions of coefficients satisfying
d = 0 and a = b =  - c. These solutions of coefficients lead to the unique M\"obius
transform function

M(z) =
1 - z

z
.(5.1)

One can verify that M(Rk1
(z)) = zk1 holds for | z| =\infty . In Figure 2, the mapping of

Rk1(z) and M(Rk1(z)) are illustrated.
Throughout the above derivation, we conclude that Rk1k2(z) =Rk2(M(Rk1(z))).

A generalized composite rule is given in Theorem 5.1 for \Gamma with center c and radius r.
In Theorem 5.1, we compose R0,1,k2

(\cdot ) and M(\cdot ) together and rewrite it as the sum
of first-order rational functions. Such a summation form could later be used directly
in the algorithm design.

Theorem 5.1. Given a positive integer k and its integer factorization k = k1k2,
the rational function Rc,r,k(z) admits the following composite rule:

Rc,r,k(z) =R0,1,k2
(M(Rc,r,k1

(z))),

where M(\cdot ) is the M\"obius transform (5.1). When k2 is even, the rational function
Rc,r,k(z) further admits the summation form

Rc,r,k(z) =

k2\sum 
i=1

c
(k2)
i

\bigl( 
Rc,r,k1(z) - s

(k2)
i

\bigr)  - 1
Rc,r,k1(z),

c
(k2)
i = - 1

k2

\sigma 
(k2)
i

1 + \sigma 
(k2)
i

, s
(k2)
i =

1

1+ \sigma 
(k2)
i

,

(5.2)

where \{ \sigma (k2)
i \} k2

i=1 are roots of xk2 = - 1. When k2 is odd,

Rc,r,k(z) =

k2 - 1\sum 
i=1

c
(k2)
i

\bigl( 
Rc,r,k1

(z) - s
(k2)
i

\bigr)  - 1
Rc,r,k1

(z) +
1

k2
Rc,r,k1

(z),(5.3)

where \sigma 
(k2)
k2

= - 1.

Proof. We can use the equation z = ry + c to transfer the contour discretization
on an arbitrary circle into the case of the unit circle around the origin. The rational
function then admits

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 2. We plot the mapping on [ - 2,2] + [ - 2,2] \ast \imath . There are 201 equally spaced points in the
direction of the real part and the imaginary part, 40401 points in total. The outer points are those
| z| > h = 1.1, and the inner points are those | z| \leq 1 where the contour is | z| = 1. We fix the figure
window at [ - 3,3]+ [ - 3,3] \ast \imath except for the top right figure which is shown at [ - 2.5,3.5]+ [ - 3,3] \ast \imath .
We let k1 = k2 = 8, and the poles in all figures are the poles of Rk1k2

(z). The original eigengap is
almost invisible; see the top left figure. From the top right figure, R8(z) maps the inner part to be
close to 1 and the outer part to be close to 0, and the poles are mapped to the line Real(z) = 0.5.
A clearer comparison of pre- and postmapping eigengaps is shown as the difference between the top
left figure and bottom left figure. The composite mapping successfully maps the outer part close to
0 and the inner part close to 1 or modulus greater than 1; see bottom right figure.

Rc,r,k(z) =R0,1,k(y).(5.4)

Combining this with R0,1,k1k2
(z) =R0,1,k2

(M(Rc,r,k1
(z))), we have

Rc,r,k(z) =R0,1,k1k2(y) =R0,1,k2(M(R0,1,k1(y))) =R0,1,k2(M(Rc,r,k1(z))).(5.5)

Now we turn to prove the summation form. When k2 is even, \sigma 
(k2)
i \not = - 1 holds. With

Lemma 4.3, the summation form is

Rc,r,k1k2
(z) =R0,1,k2

(M(Rc,r,k1
(y))) =

1

k2

k2\sum 
i=1

\sigma 
(k2)
i

\sigma 
(k2)
i  - 1 - Rc,r,k1

(y)

Rc,r,k1
(y)

=
1

k2

k2\sum 
i=1

\sigma 
(k2)
i Rc,r,k1(y)

(1 + \sigma 
(k2)
i )Rc,r,k1

(y) - 1

=
1

k2

k2\sum 
i=1

\sigma 
(k2)
i

1 + \sigma 
(k2)
i

\biggl( 
Rc,r,k1

(z) - 1

1 + \sigma 
(k2)
i

\biggr)  - 1

Rc,r,k1
(x)

=

k2\sum 
i=1

c
(k2)
i (s

(k2)
i  - Rc,r,k1

(z)) - 1Rc,r,k1
(z),

(5.6)
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where

c
(k2)
i = - 1

k2

\sigma 
(k2)
i

1 + \sigma 
(k2)
i

, s
(k2)
i =

1

1+ \sigma 
(k2)
i

.(5.7)

When k2 is odd, the term associated with \sigma 
(k2)
k2

= - 1 in summation form is equal to
1
k1
Rc,r,k1(z).

The poles of the rational function Rc,r,k(z) are transferred into the poles of
R0,1,k2

(M(z)) by the inner operator Rc,r,k1
(z). This is detailed in Proposition 5.2.

Proposition 5.2. For any p
(k)
i being a pole of Rc,r,k(z), there exist s

(k2)
j for

1\leq j \leq k2, such that

Rc,r,k1(p
(k)
i ) = s

(k2)
j ,(5.8)

where s
(k2)
k2

could be infinite when k2 is odd.

Proof. By Lemma 4.3, we know

Rc,r,k1
(p

(k)
i ) =R0,1,k1

(\sigma 
(k)
i ) =

1

1+ (\sigma 
(k)
i )k1

=
1

1+ \sigma 
(k2)
j

= s
(k2)
j .(5.9)

6. Numerical experiment. In this section, we will demonstrate the efficiency
and stability of the two algorithms through three experiments. The first experiment
shows the advantage of the trapezoidal quadrature over another quadrature, Gauss
quadrature. The latter two experiments show the computational benefit of applying
Algorithm 3.1 and Algorithm 3.2. This paper focuses on filter design rather than
proposing a novel projection technique. Hence the projection techniques used in Al-
gorithm 3.1, Algorithm 3.2, and the simple rule remain identical. Since the estimation
of the number of eigenvalues is beyond the scope of this paper, we assume s is known
and set the number of columns ncol > s in all numerical experiments.

In our experiments, we set the parameters for the convergence criterion that have
been discussed in section 3.2 to \tau g = 10 - 2 and \tau = 10 - 8. The former one serves as the
tolerance for distinguishing the ghost eigenvalues, while the latter one is the target
precision of eigenpairs. The \sigma in HSRR is set as c, which is the center of the circular
contour \Gamma .

The direct solver is the lu function in MATLAB with four outputs under the
default setting, which leads to a sparse LU factorization for sparse matrices. The
triangular solves are performed by ``\setminus "" in MATLAB, which can handle multiple right-
hand sides simultaneously. All programs are implemented and executed with MAT-
LAB R2022b and are performed on a server with Intel Xeon Gold 6226R CPU at 2.90
GHz and 1 TB memory. In performance experiments, we report the single-thread
wall time.

6.1. Asymptotically optimal rational filter. First, we show the spectrum
separation (4.1) for the trapezoidal quadrature, Gauss quadrature, and the optimal
one in Theorem 4.4. The numerical results are illustrated in Figure 3. Here, we set
a = 1 and b = 1.1. The infimum of \scrI and supremum of \scrO for the Gauss quadrature
are not known as a closed form, so we use the discretization of 1000 points in both
directions of real and imaginary part on [ - 1.5,1.5]+ [ - 1.5,1.5] \cdot \imath to estimate (4.1) of
the Gauss quadrature. Only even k is adopted as we perform the Gauss quadrature
on the upper semicircle and lower semicircle separately. Such a Gauss quadrature

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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0 50 100

10-5

100

Trapezoidal

Gauss

optimal

Fig. 3. The separation ratio (4.1) for various quadrature rules with increasing numbers of poles.
The number of poles k ranges from 2 to 128. The trapezoidal quadrature shows the same slope as
the optimal ratio, while the Gauss quadrature behaves differently.
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-1000 -500 0
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-2000

0

2000

4000

(b)

Fig. 4. (a) Patterns of G and C when nx = 10. (b) Eigenvalue distribution.

discretization that preserves the symmetry will perform better than the one that
performs the Gauss quadrature on the whole circle directly.

From Figure 3, we find that the trapezoidal quadrature always outperforms the
Gauss quadrature. The figure also shows that the trapezoidal quadrature attains the
same rate with respect to k as the optimal one, as the slope of the straight line of the
trapezoidal quadrature is the same as that of the optimal one.

We remark that the convergence behavior depends on the distribution of eigenval-
ues. Our analysis in section 4 views the desired spectrum and the undesired spectrum
as a disk and the complement of a disk, while the eigenvalues of a matrix are discrete
points in these regions. It is possible that the discrete eigenvalues avoid all bad areas
in both the numerator and the denominator of (4.1) with Gauss quadrature and have
a small ratio R of (4.1). In such a case, the rational filter with Gauss quadrature could
outperform the rational filter with trapezoidal quadrature for some matrices. Without
prior knowledge of the distribution of eigenvalues, the trapezoidal-quadrature-based
filter is a near-optimal choice.

6.2. Composite rule with subspace iteration. We compare Algorithm 3.1
against HFEAST with k1 = k2 = 8 and k= k1 \cdot k2 = 64.

The class of non-Hermitian generalized eigenvalue problems comes from the model
order reduction tasks [2, 11] in the circuit simulation [10]. Matrices are constructed
based on quasi-two-dimensional square power grids of size nx \times nx \times 10. The non-
Hermitian matrix pencil is (G,C), and the pattern and distribution of eigenvalues
for nx = 10 are shown in Figure 4. One can find the matrix construction details in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Table 2
Matrix information. Columns show sizes and the number of nonzeros (nnz) of the G+C matrix

for various nx. The centers and radii of target regions are included, and each encloses 20 eigenvalues.
The last column includes the runtime ratio of one matrix factorization and one triangular solve.

nx Size nnz (c, r) C\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}/C\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{y}

10 1,220 7,440 ( - 200 + 1000\imath ,90) 33.706

100 120,020 776,040 ( - 101 + 22\imath ,3) 47.903
200 480,020 3,112,040 ( - 24 + 4.7\imath ,2.1) 71.119

400 1,920,020 12,464,040 ( - 5.3 + 1\imath ,0.9) 118.037

1 2

10
-10

10
-8

10
-6

Composite

Simple

1 2 3
10

-8

10
-6

10
-4 Composite

Simple

1 2 3 4 5
10

-10

10
-8

10
-6

10
-4

Composite

Simple

Fig. 5. Convergence of the simple rule and the composite rule.

Appendix B. Table 2 lists information about matrices used in our numerical experi-
ments as well as their target regions. The last column of Table 2 includes the runtime
ratio of one matrix factorization and one triangular solve. In all cases, there are 20
eigenvalues in their target regions and we adopt ncol = 24. Reference eigenvalues are
calculated by eigs in MATLAB. The stopping criterion of GMRES is 10 - 9. The con-
vergence behaviors are illustrated in Figure 5. Runtime is reported in Table 3. The
italic values therein are estimated numbers since the simple rule runs out of memory
for those settings.

Figure 5 shows that the composite rule converges in a similar fashion to the simple
rule. This indicates that both the GMRES and the direct solver achieve sufficiently
good accuracy. In most cases we have tested, the subspace iteration converges effec-
tively when many poles are used, i.e., usually in a few iterations.

The composite rule establishes a trade-off between the number of matrix factor-
izations and the number of triangular solves in GMRES. Table 3 shows a comparison
of the simple rule and the composite rule in two parts: runtime and memory. As
shown in the last column of Table 2, the runtime ratio between the factorization and
the triangular solve grows as the matrix size increases, which is because the matrix
factorization is of higher-order complexity compared to that of the triangular solve.
Hence, reducing the number of factorizations as in the composite rule would be ben-
eficial for large matrices.

However, as shown in all cases of Table 3, the simple rule outperforms the com-
posite rule in total runtime, because the solving time dominates. The domination
comes from the increased number of subspace iterations, which is due to the denser
spectrum of the larger case. It is hard to tell when the composite rule outperforms the
simple rule for a specific case. The guidance is that when the factorization time dom-
inates, the composite rule can help us substitute the solving time for the factorization
time, which reduces the total runtime.

Regarding the memory cost, the simple rule costs about k2 times more than the
composite rule. In these examples, we find that the simple rule with nx = 400 already
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Table 3
Runtime (second) of the simple rule and the composite rule for matrices in Table 2. Italic

values are estimated due to the out-of-memory limit. ``Comp"" means the composite rule.

nx Total Factorization Solving

Simple Comp Simple Comp Simple Comp

10 1.5\times 100 2.8\times 100 6.2\times 10 - 1 7\times 10 - 2 5.6\times 10 - 1 1.9\times 100

100 1.0\times 103 2.5\times 103 4.1\times 102 5.1\times 101 6.0\times 102 2.3\times 103

200 9.0\times 103 2.8\times 104 3.4\times 103 4.2\times 102 5.6\times 103 2.6\times 104

400 5 .9 \times 104 2.2\times 105 2 .9 \times 104 3.6\times 103 3 .1 \times 104 2.1\times 105

1 816 32 64 128
0

0.5

1

1.5

2

2.5

1 816 32 64 128
0.2

0.4

0.6

0.8

1

1 816 32 64 128
0

0.2

0.4

0.6

0.8

1

Fig. 6. Relative runtime of Algorithm 3.1 with k1 = 8 and various k2. k2 = 1 represents the
simple rule. The runtime is scaled by the runtime of Algorithm 3.1 with k1 = k2 = 8 and n\mathrm{c}\mathrm{o}\mathrm{l} = 24.
We do not plot the point that fails to converge. The star marks denote those subspace iterations
that converge in more than one iteration, whereas the triangle marks denote those without subspace
iteration. (Color figure available online.)

exceeds our memory limit, whereas the composite rule can solve eigenvalue problems
with nx = 400 or even larger. Another benefit of the composite rule is that it allows
us to utilize Rc,r,k(B

 - 1A) for large k with limited memory.

6.3. Composite rule without subspace iteration. This experiment aims to
show that with large k2, the composite rule will converge without subspace iteration,
and the GMRES iteration number does not increase dramatically when k2 increases.
Such an observation means the strategy doubling k2 each time in Algorithm 3.2 would
be affordable compared to the case with optimal k2. Throughout this section, we reuse
matrix pencils in section 6.2. We perform three algorithms in this section: the simple
rule with k = 8, the composite rule with k1 = 8, and various choices of fixed k2
(Algorithm 3.1) and Algorithm 3.2 with k1 = 8. Also, various choices of the numbers
of columns are explored.

We set the simple rule to have no more than 100 subspace iterations, while for the
composite rule, the limitation is 10. We also terminate Algorithm 3.1 when in the first
subspace iteration all eigenpairs converge to target tolerance \tau for relative error. All 20
eigenpairs inside are filtered, and the relative errors are less than \tau for the composite
rule. Figure 6 illustrates the relative runtime of Algorithm 3.1 for various k2, and
Table 4 reports details of the simple rule and Algorithm 3.2. The relative runtime of
Algorithm 3.2 could be read from Figure 6 from those first triangle marks at k2 being
a power of two. Table 4 shows more details of the simple rule and Algorithm 3.2. We
can estimate the niter for the cases of the simple rule that all eigenpairs of interest
are filtered but the relative error cannot decrease to target \tau within 100 subspace
iterations, from the equation e\lfloor n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}/100\rfloor = \tau . We use italic numbers to distinguish
estimated niter from the real one.

In Table 4, all three choices of ncol overestimate the actual number of eigenvalues
in the region. The simple rule with a fixed k = 8 fails to converge when ncol is
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Table 4
Details of the simple rule and Algorithm 3.2. The column p shows the number of filtered

eigenpairs, i.e., the number of approximate eigenpairs inside the region whose relative error is less
than \tau g. The column e shows the relative error when the algorithm converges or the limitation of
subspace iteration is attained. The column n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} shows the times of applying G to a set of vectors
for the simple rule, while for Algorithm 3.2, the column n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} shows the maximum GMRES step of
different vectors since the GMRES step will change with the vector. When not all eigenpairs are
filtered, we use ``-"" for e and n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}, since the algorithm will fail to filter the eigenpairs of interest
even if we run the algorithm with infinite n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}, or n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} would be no less than 400 for the target
precision \tau , which can be derived by two equations e\lfloor n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}/100\rfloor = \tau and 4

\surd 
\tau = \tau g < e.

(nx, n\mathrm{c}\mathrm{o}\mathrm{l}) Simple Composite
p e n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} p e n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}

(100,21) 19 - - 20 1.0\times 10 - 10 39

(100,22) 20 7.7\times 10 - 9 64 20 9.6\times 10 - 11 39

(100,24) 20 7.0\times 10 - 9 35 20 4.8\times 10 - 11 39

(200,21) 20 2.0\times 10 - 4 217 20 3.1\times 10 - 9 51
(200,22) 20 4.2\times 10 - 7 126 20 1.9\times 10 - 10 51

(200,24) 20 8.2\times 10 - 9 57 20 2.9\times 10 - 11 51

(400,21) 19 - - 20 2.3\times 10 - 9 87

(400,22) 19 - - 20 3.5\times 10 - 9 87

(400,24) 20 7.0\times 10 - 9 46 20 2.3\times 10 - 9 87

not sufficiently large, e.g., ncol = 21,22. In contrast, Algorithm 3.2 converges in
all scenarios. Based on this experiment and other experiments we tried but did
not list in the current paper, the convergence of the simple rule is sensitive to the
choice of two hyperparameters, k and ncol, while the convergence of Algorithm 3.2 is
more robust. In the worst-case scenario, when the given region is enclosed by many
unwanted eigenvalues, extremely large ncol would be needed to resolve the convergence
issue in the simple rule. When the simple rule and Algorithm 3.2 converge, the
latter outperforms the former for small ncol; see all the red curves and blue curves in
Figure 6. From green curves, we know that when ncol increases, these two methods
become comparable on runtime.

Figure 6 also explores the optimal choice of k2 without subspace iteration, i.e., the
first triangle marks on each curve. We find that the optimal k2 is not necessarily 2pk1
as in Algorithm 3.2. Besides the factorization cost, the dominant computational cost
of the composite rule is the multishift GMRES iteration number, i.e., the number of
applying G (3.2). Increasing k2 would add more shifts to the multishift GMRES but
not necessarily increase the iteration number, and the extra cost of orthogonalization
is negligible compared to that of applying G. In all curves in Figure 6, we observe that,
after their first triangle marks, the relative runtime mostly stays flat and increases
extremely slowly. Hence, even if Algorithm 3.2 is not using the optimal k2, the
runtime of Algorithm 3.2 is almost the same as that with optimal k2. We conclude
that Algorithm 3.2 is an efficient and robust eigensolver and is more preferred than
Algorithm 3.1.

Remark 6.1. We remark on the hyperparameter choices in Algorithm 3.2. Given
a matrix pencil and a region, an overestimation ncol of the number of eigenvalues s is
required. If we perform factorizations and triangular solves sequentially, we may need
to choose a proper k1 depending on whether factorizations are more expensive than
those of triangular solves. In the view of parallelization, the k1 factorizations and
the corresponding triangular solves are ideally parallelizable. Hence, we would set k1
as large as possible to fully use the computation resource and reduce the GMRES
iterations.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7. Conclusion. This paper finds the optimal rational function in the sense of
spectrum separation via Zolotarev's third function. The optimal rational function
leads to the traditional inverse power method in numerical linear algebra. Discretizing
the contour integral with the standard trapezoidal quadrature results in an asymp-
totically optimal rational function. Further, we derive the composite rule of the
trapezoidal quadrature, i.e., Rc,r,k(z) = R0,1,k2

(M(Rc,r,k1
(z))) for k = k1k2 being a

positive integer factorization and M being a M\"obius transform.
Based on the composite rule, we propose two eigensolvers for the generalized non-

Hermitian eigenvalue problems, Algorithm 3.1 and Algorithm 3.2. Both algorithms
adopt direct matrix factorizations for the inner rational function evaluation and mul-
tishift GMRES for the outer rational function. Compared to the simple rule with the
same number of poles, both composite rule--based algorithms reduce the number of
factorizations and reduce the memory requirement. This is of fundamental importance
when matrices are of large scale. The difference between the two composite algorithms
is the subspace iteration. In Algorithm 3.1, both k1 and k2 are hyperparameters, and
the algorithm adopts the subspace iteration to converge to desired eigenpairs. In con-
trast, Algorithm 3.2 is designed without subspace iteration. Algorithm 3.2 adopts k1
as a hyperparameter and gradually increases k2 until the rational function approxi-
mation is accurate enough, and the algorithm converges to desired eigenpairs without
subspace iteration. As k2 increases in Algorithm 3.2, by the property of multishift
GMRES, the number of GMRES iterations, i.e., the number of applying G, increases
very mildly. Hence, compared to the simple rule and Algorithm 3.1, Algorithm 3.2 is
a robust and efficient eigensolver.

We demonstrate the efficiency of the proposed algorithms by synthetic and prac-
tical generalized non-Hermitian eigenvalue problems. Numerical results show that
Algorithm 3.1 outperforms the simple rule only if the matrix factorization is much
more expensive than the triangular solve. The convergence of Algorithm 3.2 is not
sensitive to hyperparameter ncol. In terms of the runtime, Algorithm 3.2 either out-
performs or is comparable to the simple rule. A suggestion for the hyperparameter
choices of Algorithm 3.2 is also provided based on both the analysis and numerical
results.

Appendix A. GMRES iteration number. As we mentioned in subsection
3.2, the convergence of the multishift GMRES method accelerates as the subspace
iteration progresses. Table 5 reports the number of triangular solves in both the
simple and the composite rules, and the GMRES iteration number in the composite
rule. The normalized last column of Table 5 is visualized in Figure 7.

Table 5 shows that the number of triangular solves in each subspace iteration of
the simple rule stays constant, whereas that for the composite rule decreases. Notice
that the niter decays much slower than the number of triangular solves in the composite
rule. That is because different columns converge to eigenvectors with different rates.

Appendix B. Construction of matrix. Matrices are constructed based on
quasi-two-dimensional square power grids of size nx \times nx \times 10. The non-Hermitian
matrix pencil is (G,C) taking the block form as

G=

\biggl[ 
G11 G12

G21 0

\biggr] 
, C =

\biggl[ 
Cc 0
0 L

\biggr] 
.

In particular, G11 represents the conductance matrix as G11 =Lnx
\otimes Inx

\otimes I10+Inx
\otimes 

Lnx
\otimes I10 + 1

10Inx \otimes Inx \otimes L10, where Ln is a weighted one-dimensional Laplacian
matrix of size n\times n as

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 7. Normalized solving cost in the composite rule. In each test matrix, the bars show the
number of triangular solves in each subspace iteration, which are normalized by the number of
triangular solves in the first subspace iteration.

Table 5
Number of triangular solves of the simple rule and composite rule in each subspace iteration

are shown in the ``Solving"" columns, respectively. The column ``n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}"" shows the number of GMRES
iterations in each subspace iteration. Italic values are estimated since the required memory is beyond
our machine memory.

nx Simple Composite

Solving n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} Solving

10 [1536,1536] [32,22] [6128,3200]

100 [1536,1536,1536] [39,32,31] [7488,5504,4472]
200 [1536,1536,1536,1536,1536] [51,43,38,37,37] [9680,7784,6504,6296,5392]

400 [1536 ,1536 ,1536 ,1536 ,1536 ] [86,84,75,67,58] [16328,13968,10552,6896,3952]

Ln =
n

100

\left[       
1  - 1
 - 1 2  - 1

. . .
. . .

. . .

 - 1 2  - 1
 - 1 1

\right]       
n\times n

and In is an identity matrix of size n\times n. The off-diagonal blocks of G admit G12 =
 - G\top 

21 \in \BbbR 10n2
x\times (20+2n2

x) with entries being \pm 1 or zero. The first 20 columns of G12

correspond to the 20 input ports located at the two edges, specifically at positions
(\cdot ,1,1) and (\cdot , nx10). The corresponding rows in these columns contain a positive one.
The remaining 2n2

x columns of G12 correspond to inductors. We uniformly randomly
pick 2n2

x interior nodes from grid nodes and add an inductor with their neighbor
nodes on the same layer. The corresponding G12 part is the incidence matrix of the
inductor graph. Matrix L is a diagonal matrix of size 20 + 2n2

x. The first 20 \times 20
block of L is zero. The latter 2n2

x\times 2n2
x block has diagonal entries uniformly randomly

sampled from [0.5,1.5] \cdot nx \cdot 10 - 4 being the inductance of inductors. The submatrix
Cc represents capacitors in the circuit. For each node, we add a grounded capacitor
with capacitance uniformly randomly sampled from [0.5,1.5] \cdot 10 - 3, which means Cc

is a diagonal matrix whose elements are equal to the capacitances.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/1

0/
25

 to
 2

02
.1

20
.2

35
.1

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1060 YUER CHEN AND YINGZHOU LI

Acknowledgment. We thank Chao Yang for the helpful discussions.

REFERENCES

[1] T. Bakhos, P. K. Kitanidis, S. Ladenheim, A. K. Saibaba, and D. B. Szyld, Multiprecon-
ditioned GMRES for shifted systems, SIAM J. Sci. Comput., 39 (2017), pp. S222--S247,
https://doi.org/10.1137/16M1068694.

[2] P. Gross, R. Arunachalam, K. Rajagopal, and L. Pileggi, Determination of worst-case ag-
gressor alignment for delay calculation, in ICCAD'98: Proceedings of the 1998 IEEE/ACM
International Conference on Computer-Aided Design, 1998, pp. 212--219, https://doi.org/
10.1145/288548.288616.

[3] R. Huang, J. Sun, and C. Yang, Recursive integral method with Cayley transformation,
Numer. Linear Algebra Appl., 25 (2018), e2199, https://doi.org/10.1002/nla.2199.

[4] T. Ikegami and T. Sakurai, Contour integral eigensolver for non-Hermitian systems: A
Rayleigh-Ritz-type approach, Taiwanese J. Math., 14 (2010), pp. 825--837, https://doi.
org/10.11650/twjm/1500405869.

[5] T. Ikegami, T. Sakurai, and U. Nagashima, A filter diagonalization for generalized eigen-
value problems based on the Sakurai--Sugiura projection method , J. Comput. Appl. Math.,
233 (2010), pp. 1927--1936, https://doi.org/10.1016/j.cam.2009.09.029.

[6] J. Kestyn, E. Polizzi, and P. T. P. Tang, FEAST eigensolver for non-Hermitian problems,
SIAM J. Sci. Comput., 38 (2016), pp. S772--S799, https://doi.org/10.1137/15M1026572.

[7] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users' Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software Environ.
Tools 6, SIAM, Philadelphia, 1998, https://doi.org/10.1137/1.9780898719628.

[8] Y. Li and H. Yang, Interior eigensolver for sparse Hermitian definite matrices based on
Zolotarev's functions, Commun. Math. Sci., 19 (2021), pp. 1113--1135, https://doi.org/
10.4310/CMS.2021.v19.n4.a11.

[9] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems,
SIAM J. Numer. Anal., 10 (1973), pp. 241--256, https://doi.org/10.1137/0710024.

[10] F. N. Najm, Circuit Simulation, Wiley-IEEE Press, 2010.
[11] A. Odabasioglu, M. Celik, and L. T. Pileggi, PRIMA: Passive reduced-order intercon-

nect macromodeling algorithm, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 17
(1988), pp. 645--654, https://doi.org/10.1109/43.712097.

[12] P. P. Petrushev and V. A. Popov, Rational Approximation of Real Functions, Ency-
clopedia Math. Appl. 28, Cambridge University Press, 1988, https://doi.org/10.1017/
CBO9781107340756.

[13] E. Polizzi, Density-matrix-based algorithm for solving eigenvalue problems, Phys. Rev. B, 79
(2009), 115112, https://doi.org/10.1103/PhysRevB.79.115112.

[14] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003,
https://doi.org/10.1137/1.9780898718003.

[15] T. Sakurai and H. Sugiura, A projection method for generalized eigenvalue problems using
numerical integration, J. Comput. Appl. Math., 159 (2003), pp. 119--128, https://doi.
org/10.1016/S0377-0427(03)00565-X.

[16] G. Starke, Near-circularity for the rational Zolotarev problem in the complex plane, J. Approx.
Theory, 70 (1992), pp. 115--130, https://doi.org/10.1016/0021-9045(92)90059-W.

[17] G. W. Stewart, A Krylov--Schur algorithm for large eigenproblems, SIAM J. Matrix Anal.
Appl., 23 (2001), pp. 601--614, https://doi.org/10.1137/S0895479800371529.

[18] G. Yin, A harmonic FEAST algorithm for non-Hermitian generalized eigenvalue problems,
Linear Algebra Appl., 578 (2019), pp. 75--94, https://doi.org/10.1016/j.laa.2019.04.036.

[19] G. Yin, R. H. Chan, and M.-C. Yeung, A FEAST algorithm with oblique projection for
generalized eigenvalue problems, Numer. Linear Algebra Appl., 24 (2017), e2092, https://
doi.org/10.1002/nla.2092.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/1

0/
25

 to
 2

02
.1

20
.2

35
.1

0 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/16M1068694
https://doi.org/10.1145/288548.288616
https://doi.org/10.1145/288548.288616
https://doi.org/10.1002/nla.2199
https://doi.org/10.11650/twjm/1500405869
https://doi.org/10.11650/twjm/1500405869
https://doi.org/10.1016/j.cam.2009.09.029
https://doi.org/10.1137/15M1026572
https://doi.org/10.1137/1.9780898719628
https://doi.org/10.4310/CMS.2021.v19.n4.a11
https://doi.org/10.4310/CMS.2021.v19.n4.a11
https://doi.org/10.1137/0710024
https://doi.org/10.1109/43.712097
https://doi.org/10.1017/CBO9781107340756
https://doi.org/10.1017/CBO9781107340756
https://doi.org/10.1103/PhysRevB.79.115112
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1016/S0377-0427(03)00565-X
https://doi.org/10.1016/S0377-0427(03)00565-X
https://doi.org/10.1016/0021-9045(92)90059-W
https://doi.org/10.1137/S0895479800371529
https://doi.org/10.1016/j.laa.2019.04.036
https://doi.org/10.1002/nla.2092
https://doi.org/10.1002/nla.2092

	Introduction
	Related work
	Contribution
	Organization

	Subspace iteration with rational filter
	Subspace iteration
	Contour-based filter and discretization
	Cost of implementation

	Two eigensolvers based on the composite rule
	The composite rule
	Interior eigensolver with subspace iteration
	Composite rule eigensolver without subspace iteration

	Asymptotically optimal contour discretization
	Spectrum separation
	Zolotarev's third problem
	Compact form for R0,1,k(z)
	Optimal solution and the asymptotic optimality of trapezoidal quadrature

	Composite rule of trapezoidal quadrature
	Numerical experiment
	Asymptotically optimal rational filter
	Composite rule with subspace iteration
	Composite rule without subspace iteration

	Conclusion
	Acknowledgment
	References
	 Appendix A. GMRES iteration number
	 Appendix B. Construction of matrix

