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ABSTRACT: We develop a multithreaded parallel coordinate descent full
configuration interaction algorithm (mCDFCI) for the electronic structure
ground-state calculation in the configuration interaction framework. The
FCI problem is reformulated as an unconstrained minimization problem
and tackled by a modified block coordinate descent method with a
deterministic compression strategy. mCDFCI is designed to prioritize
determinants based on their importance, with block updates enabling
efficient parallelization on shared-memory, multicore computing infra-
structure. We demonstrate the efficiency of the algorithm by computing an
accurate benchmark energy for the chromium dimer in the Ahlrichs SV basis
(48e, 42o), which explicitly includes 2.07 × 109 variational determinants.
We also provide the binding curve of the nitrogen dimer under the cc-pVQZ
basis set (14e, 110o). Benchmarks show up to 79.3% parallel efficiency on
128 cores.

1. INTRODUCTION
Understanding the chemical properties of molecules relies on
solving the many-body time-independent electronic Schrö-
dinger equation. However, traditional methods, such as density
functional theory (DFT) or coupled-cluster with single,
double, and perturbative triple excitations (CCSD(T)), often
struggle to accurately describe the electronic structure of
strongly correlated systems. This limitation is particularly
evident in molecules with transition metals or those in
nonequilibrium geometries.
Full configuration interaction (FCI) provides a numerically

exact solution under a predefined basis set by describing the
wave function as a superposition of all possible Slater
determinants. However, FCI methods scale exponentially
with the number of orbitals and electrons, leading to the
curse of dimensionality. To overcome this challenge and apply
FCI methods to large systems, it becomes necessary to
compress the wave function. This can be achieved by
employing different wave function ansatze, such as the matrix
product state (MPS) in the density matrix renormalization
group (DMRG) method,1−5 or by representing the wave
function as a population of random particles, as in the full
configuration interaction quantum Monte Carlo (FCIQMC)
method.6−10 Another approach involves selecting important
Slater determinants, guided by the extensive sparsity of the FCI
wave function.11 The method we describe in this paper falls
into this category, which is known as the selected CI method.
A variety of selected CI methods have been developed,

starting from the earliest work in 1973 known as Configuration

Interaction using a Perturbative Selection done Iteratively
(CIPSI),12 to recent advancements including Adaptive
Sampling CI (ASCI),13 Heat-bath CI (HCI),14 Semistochastic
Heat-bath CI (SHCI),15,16 Coordinate Descent FCI
(CDFCI),17 Fast Randomized Iteration method for FCI
(FCI-FRI),18 Reinforcement Learning CI (RLCI),19 and
others. These methods share the common iterative approach
of expanding a primary configuration space, filtering
determinants based on some importance estimate, and
computing the leading eigenpair to obtain an enhanced
approximation of the wave function until convergence is
achieved. Typically, Epstein−Nesbet second-order perturba-
tion theory is further employed in the secondary space to
account for the remaining correlation that is not captured by
the variational SCI treatment. Selected CI variants significantly
reduce the computational cost of FCI by diminishing the
dimension of the primary SCI space compared to the N-
electron Hilbert space, while they differ by having distinct
selection principles and implementations.
This paper extends the coordinate descent FCI (CDFCI)17

method previously proposed by one of our authors and his
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collaborators, which provides selection rules from an
optimization perspective. Initially, it transforms the FCI
eigenvalue problem into an unconstrained minimization
problem, with local minima corresponding to the ground
state of the system. Next, it employs the coordinate descent
method for the following advantages: (i) The gradient of the
objective function provides a natural determinant selection
rule, adding important determinants into the variational space
until it reaches the memory limit; (ii) The special structure of
the problem allows us to perform an exact line search,
accelerating the energy convergence; (iii) in each iteration,
updating only one coordinate of the optimization vector
involves only one column of the Hamiltonian matrix, avoiding
operations with the entire Hamiltonian matrix, thus reducing
the computation cost associated with unappreciative determi-
nants. The CDFCI method obtains the ground-state energy
and wave function without explicitly extracting the Hamil-
tonian submatrix for direct diagonalization. This makes
immense room for the storage of the wave function, making
it possible for larger systems and more accurate approxima-
tions. The effective determinant selection rule and the low
storage cost are the main reasons why CDFCI becomes a
competitive FCI solver.
Although CDFCI demonstrates accelerated performance in

experiments, its parallelization capability is restricted by the
inherent sequential nature of the method. In this paper, we
present a novel algorithm to address the minimization
problem, which extends the update of one coordinate to
multiple coordinates per iteration. To achieve this, the
algorithm introduces an additional search dimension to enable
the exact line search. This extension not only accelerates
convergence but also opens up new possibilities for
parallelization. Benefiting from fully parallelizable coordinate
updates, our new algorithm achieves an accuracy of 10−5 Ha
for C2 and N2 using the cc-pVDZ basis in 10 and 30 min
respectively, nearly 20 times faster than the single-threaded
version reported in the original CDFCI work. When compared
to the multi-threaded version of the original CDFCI that
supports parallel hash table updates, our algorithm delivers a
3.0 × speedup. Additionally, it computes the ground state of
all-electron Cr2 with Ahlrichs SV basis in 5.8 days, matching
the accuracy of the original CDFCI, which previously required
one month for the same task.
In the rest of this paper, we present the algorithm in Section

2 and discuss the implementation details in Section 3. In
Section 4, we demonstrate the accuracy and the parallel
efficiency of our method by applying it to various molecules,
including C2, N2 and Cr2. The binding curve of N2 under the
cc-pVQZ basis is also characterized. Finally, we conclude and
look ahead to future work in Section 5.

2. METHODOLOGY AND APPROACH
In this section, we begin by reviewing the reformulation of the
FCI eigenvalue problem as a nonconvex optimization
problem.17,20 Following this, we describe in detail the
multicoordinate descent methods to address the FCI problem.
2.1. Problem Formulation. With a complete set of one-

electron spin−orbitals {χp}, the many-body Hamiltonian
operator can be expressed using second quantization as
follows:

= +† † †H t a a v a a a a
1
2p q

pq p q
p q r s

pqrs p q s r
, , , , (1)

where †ap and ap̂ represent the creation and annihilation
operators, respectively, for spin−orbital p. The coefficients tpq
and vpqrs correspond to one- and two-electron integrals. The
ground-state energy of Ĥ is determined by solving the time-
independent Schrödinger equation:

| = |H E0 0 0 (2)

where E0 represents the ground-state energy, i.e., the lowest
eigenvalue of Ĥ, and |Φ0⟩ is the associated ground-state wave
function. We assume, without loss of generality, that E0 is
negative and nondegenerate, meaning the eigenvalues of Ĥ are
ordered as E0 < E1 ≤ E2 ≤···.
The full configuration interaction (FCI) method starts from

a truncated finite spin−orbital subset { } =p p
n

1
orb , where norb

denotes the number of orbitals, and this subset is usually
obtained from a Hartree−Fock procedure. The wave function
is approximated as a linear combination of Slater determinants,

| = | = | ···
= =

c D c
i

N

i i
i

N

i i i i0
1 1

n

FCI FCI

1 2 (3)

with 1 ≤ i1 < i2 < ···< in ≤ norb. Here, n = nelec denotes the
number of electrons in the system, and NFCI is the dimension
of FCI variational space, which represents the total number of

configurations, and is of order ( )n
n

orb

elec

i
k
jjj y

{
zzz.

Following this, the Schrödinger equation (2) is discretized
into a matrix eigenvalue problem

=H Ec c0 (4)

where H is a real symmetric NFCI × NFCI matrix, with entry Hi,j
= ⟨Di|Ĥ|Dj⟩, and c is a vector of dimension NFCI, with entry ci.
The problem (eq 4) is known as the FCI eigenvalue problem.
The second-quantized Hamiltonian operator defined in (eq

1) signifies that Hi,j is zero if transforming |Di⟩ into |Dj⟩
involves altering more than two occupied spin−orbitals.
Consequently, H has n n( )elec

2
orb
2 nonzero entries per row,

which is much smaller than NFCI in terms of order, thus leading
to an extreme sparsity structure in the matrix H.
Selected CI methods12−15 target a submatrix of H and use its

lowest eigenpair as an estimate for the FCI eigenvalue
problem. Now, instead of performing direct diagonalization
on the submatrix of H, we consider the following optimization
problem

= +f Hc ccmin ( ) min
c c

T

F

2

NFCI (5)

with the same Hamiltonian matrix H as defined above. The
gradient of the objective function is

= +f Hc c c c c( ) 4 4( )T (6)

It is shown that20 ± E v0 0 are the only two local
minimizers, where v0 is the normalized eigenvector corre-
sponding to the smallest eigenvalue E0 < 0. Suppose we have
an estimate c ̂ of the solution c* of problem (eq 5), by simply
normalizing c,̂ we can obtain an approximate solution of the
FCI eigenvalue problem.
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In this work, we follow the idea of coordinate descent,
extending one coordinate update per iteration to multiple
coordinates, and add an additional scaling factor to enable
exact line search, which is undoubtedly more beneficial to
convergence. We also follow the compression strategy in
CDFCI, which improves the efficiency of the algorithm and
controls the memory footprint so that CDFCI can converge in
a subspace. Below, we describe our algorithm in detail.
2.2. Algorithm. The multicoordinate descent method is an

iterative optimization technique similar to the original
coordinate descent method. However, instead of modifying a
single coordinate of the optimization variable c in each
iteration, we update k coordinates simultaneously and
introduce a scaling factor γ.
Let us denote c( ) as the vector c at the current iteration .

We also define = { } { }i i N, ..., 1, ...,k
( )

1
( ) ( )

FCI as the set
of k distinct coordinates chosen for the update in this iteration.
The update rule for each component of c is given by

++c
c a i

c

, if ,

, otherwise
i

i i

i

( 1)
( ) ( ) ( ) ( )

( ) ( )

l
m
oooo
n
ooo

(7)

where ( ) is a scaling factor, and ai
( ) is the corresponding step

size. Each entry ci
( ) is initially scaled by ( ). For the specific

coordinates i included in the set ( ), ci
( ) is then further

updated by adding a step size to the current value.
In matrix form, the update rule can be expressed as

++c c a( 1) ( ) ( ) ( )
( ) (8)

where ×N kFCI is defined as = [ ]e e, ...,i ik1
, with

= { }i i, ..., k1 and 1 ≤ ij ≤ NFCI. In other words, consists
of columns from the identity matrix corresponding to the
selected coordinates. Essentially, it projects the elements of
a k( ) into the higher-dimensional space of c N( ) FCI,
inserting zeros for the coordinates not included in ( ).
In Section 2.2.1, we discuss how we select the k coordinates

in each iteration. Next, in Section 2.2.2, we explain how we
choose the scaling scalar ( ) and the stepsize vector a( ), so that
they give the best descent value in the objective function. Each
local update actually provides an energy estimate for the global
problem.
Following the algorithmic design in CDFCI,20 we store an

additional vector b in memory, which approximates Hc with
differences only in the coordinates that are compressed. This
will facilitate both picking coordinates and choosing the
stepsize. In Section 2.2.3, we show how we update b and c as
well as other quantities after each iteration, where we insert a
compression strategy that keeps the memory footprint
affordable. Finally, in Section 2.2.4, we provide the complete
pseudocode, along with a discussion of possible choices for
initialization and stopping criteria.

2.2.1. Coordinate Selection. The selection rule of
coordinates follows the largest gradients rule: the k coordinates
with the largest absolute value of (eq 6) are considered. In
other words, choose k coordinates, in which

= |[ ] | =i f j kcarg max ( ) , 1, ...,j
i i i

i
,..., j1 1 (9)

where [∇f(c)]i denotes the i-th coordinate of ∇f(c) = 4Hc +
4(cTc)c.
Since in the algorithm design, the vector b is stored as a

compressed representation of Hc, at iteration , the
approximated gradient of the objective function can be easily
obtained by a linear combination of b( ) and c( ). In addition,
we consider only the determinant set ( )H

( ) which is defined
as

{ }i N j H( ) 1 : such that 0H i j
( )

FCI
( )

,

where ( ) denotes the set of coordinates selected during the
-th iteration.
Therefore, the actual coordinate selection rule at iteration

is

= | + |

=

i b c

j k

c carg max 4 4(( ) ) ,

1, ...,

j
i

i i i

i i
( )

( )

,...,

( ) ( ) T ( ) ( )

H

j

( 1)

1
( )

1
( )

(10)

Our coordinate selection method is built on the concept of
an active space, which is a carefully chosen subset of the full
configuration space. This active space includes only the most
important determinants, that are expected to contribute the
most to the solution. To construct this space efficiently, we
limit our consideration to determinants that are connected to
the current iterate by the creation or annihilation of up to two
electrons. This restriction helps to avoid including determi-
nants that are far removed in configuration space, which would
contribute minimally to the final solution. This approach
enhances computational efficiency by focusing resources on
the most relevant determinants, ensuring that the optimization
process is both effective and efficient.

2.2.2. Optimal Scaling and Stepsize Selection. Once we
have selected ( ), the k coordinates to update, we minimize
the objective function with respect to the scaling scalar ( ) and
the stepsize vector a( ):

= ++ + +f Hc c c( ) ( )( 1) ( 1) ( 1) T
F

2

(11)

where = ++c c a( 1) ( ) ( ) ( )
( ) . In the following, we describe

how we perform an exact line search in a (k+1)-dimensional
subspace so that ( ) and a( ) are both globally optimal.
Let =y c c( )( ) ( ) T ( )

( ) ( ) , which sets the entries in
coordinate set ( ) to zeros. Define

=y y y y/ , if 0,
0, otherwise

( ) ( ) ( ) ( )l
moo
noo

so that we always have =y y y( ) ( ) ( ) regardless of whether

=y 0( ) .
The update of c given in (eq 8) can be rewritten as

= + =+ Qc c a z( 1) ( ) ( ) ( ) ( ) ( )
( ) (12)

with Q( ) and z( ) defined as follows:
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[ ] × +Q y
N k( ) ( ) ( 1)

( )
FCI

(13)

+
z

y

c a( )
( )

( ) ( )

( ) T ( ) ( )
( )

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (14)

Figure 1 demonstrates how the vector c is updated in each
iteration.

If y( ) 0, Q( ) is an orthogonal matrix and an orthogonal

basis for the (k+1)-dimensional search space. If =y 0( ) ,

=Q Q I( ) 0
k

( ) T ( )
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ, which means the last k columns of Q( )

form an orthogonal basis for the k-dimensional search space.
Now consider splitting the optimization problem (11) into

two parts as follows:

= +

= +

+ +

= +

+

= + +

+ + +

+ +

+ +

+ +

f H

Q Q H

I Q Q H

Q H Q

I Q Q H

Q HQ

c c c

c c

c c

c c

z z

( ) ( )

( ( ) )( ( ) )

( ( ) )( ( ) )

( ) ( ( ) )

( ( ) )

( ) ( ) constant

( 1) ( 1) ( 1) T
F

2

( ) ( ) T ( 1) ( 1) T
F

2

( ) ( ) T ( 1) ( 1) T
F

2

( ) T ( 1) ( 1) T ( )
F

2

( ) ( ) T
F

2

( ) T ( ) ( ) ( ) T
F

2

(15)

The third equal i ty fo l lows from the fact that
=+I Q Q c( ( ) ) 0( ) ( ) T ( 1) , and the last equality is derived

from eq 12. In addition, the term I Q Q H( ( ) )( ) ( ) T
F

2
is

considered as a constant because it does not depend on z( ),
and therefore neither on ( ) nor a( ).
We choose z( ) to be the optimal solution to the local

minimization problem

=

= +

+

+

f

Q HQ

z z

zz

arg min ( )

arg min ( )

z

z

( )

( ) T ( ) T
F

2

k

k

1

1 (16)

The minimum is attained when20

= ±z v( ) ( )
( ) (17)

where Q HQ(( ) )min
( ) ( ) T ( ) is the minimal eigenvalue of

matrix Q HQ( )( ) T ( ) and v ( ) is the corresponding eigenvector.
The eigenvalue ( ) is guaranteed to be negative as long as
(c(1))T H c(1) < 0 (see Appendix A for proof and Section 2.2.4
for the discussion of initialization).
The problem (eq 16) consists of two parts: assembling the

Q HQ( )( ) T ( ) matrix and calculating its leading eigenpair. To
start, we see that,

= [ ]

=

Q HQ H

H H

H H

y
y

y y y

y

( ) ( )

( ) ( )

( ) T ( )
( ) T

T
( )

( ) T ( ) ( ) T

T ( ) T

( )

( )

( )

( ) ( ) ( )

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (18)

If y 0( ) , each block is computed as described below.

1. Hy y( )
( ) T ( )

: i t i s e v a l u a t e d b y

+

(
)

c b

c H c

c b( ) 2 i i i

i j i i j j

y

1 ( ) T ( ) ( ) ( )

,
( )

,
( )

( ) 2 ( )

( )

2. =H Hy y(( ) ) k( ) T T T ( )
( ) ( ) : its i-th entry is

evaluated by ( )b H ci j i j jy

1 ( )
,

( )
( ) ( )

3. ×H k kT
( ) ( ) : it is the submatrix of H with index

set ( ). For i j, ( ), the entry Hi,j is evaluated on the
fly by Hi,j= ⟨Di|Ĥ|Dj⟩.

In the other case when =y 0( ) , only the matrix block
HT

( ) ( ) is nonzero.
When k is not too large, the smallest eigenpair of

Q HQ( )( ) T ( ) can be easily retrieved by default LAPACK
eigensolvers21 for selected eigenvalues. Once this is complete,
z( ) is computed according to eq 17. By eq 14, we have

=
z

y
y, if 0,

1, otherwise

( )
1

( )

( )
( )

l
m
oooooo

n
oooooo (19)

and

=a z c( )( )
2:

( ) ( ) T ( )
( ) (20)

where z1
( ) denotes the first entry of z, and z k

2:
( ) the rest

of the vector. Note that for the case of =y 0( ) , z1
( ) would

always be zero, and ( ) can be any value. For simplicity, we just
set = 1( ) .

2.2.3. Variable Update and Coefficient Compression. After
obtaining the scaling factor ( ) and the stepsize a( ) from the
procedure described in Section 2.2.2, vectors c and b are
updated by

Figure 1. Update of vector c when k = 3. After three coordinates i, j, k
are picked (in yellow), these coordinates of c( ) are zeroed out and the

resulting y( ) is normalized to y
( )

(in light blue). The coefficients ai
( )

and zi
( ) represent the i-th element of vectors a( ) and z( ) respectively.
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++c c a( 1) ( ) ( ) ( )
( ) (21)

and

++ Hb b a( 1) ( ) ( ) ( )
( ) (22)

It should be noted that in the actual implementation, +c( 1) is
not updated exactly as shown above. Instead, we store the
scaling factor γ and modify only the relevant entries of c( ),
while most entries remain unchanged. For a detailed
description of the implementation, please refer to Section 3.
Through the above update rules (eq 21) and (eq 22), the

number of nonzero elements in c and b will continue to grow.
Specifically, the growth rate for b is much faster than c in the
beginning, because the number of entries involved in updating
b in (eq 22) is much greater than updating c in (eq 21). This
process can be seen as continuously adding determinants to
the variational space, the selected subspace of the full CI space
where we approximate the ground state. If we continue to
iterate without compression, the variational space will
eventually expand to the full CI space, which is obviously
not feasible for large systems. To this end, we propose a
compression strategy that targets b. The update of +b( 1) for a
certain coordinate i will be discarded if both of the following
conditions are satisfied: (i) if =b 0i

( ) , indicating that the
determinant |Di⟩ has not been selected before; (ii) +bi

( 1)

, with + +
+Hb a( 1) ( 1)

( 1) , meaning that the update is
relatively small. For any determinant |Di⟩ deemed unimportant,
as long as both bi and ci remain zero, it will not be selected
during the coordinate selection step. Thus, the size of
variational space is controlled, and the wave function vector
will converge into a subspace of the full CI space, consisting
only of limited number of important determinants.
Notably, despite compressing the vector b, bi remains

accurate for every determinant |Di⟩ with nonzero coefficients in
c, meaning it was selected at least once during the coordinate
selection step. This is achieved by recalculating +bi

( 1) for each
selected determinant |Di⟩ selected at the -th iteration, using
the following formula:

= =+ + +b H H cci i
j i

i j j
( 1)

,:
( 1)

( )
,

( 1)

H (23)

Once a determinant |Di⟩ is selected and recalculated,
updates to bi will not be discarded again according to the
compression rule. Therefore, b is only compressed for
determinants that have not yet been added to the variational
space. This ensures that the Rayleigh quotient (cTHc)/(cTc),
is accurately maintained in each iteration by

=Hc c

c c

c b

c c

( )

( )

( )

( )

( ) T ( )

( ) T ( )

( ) T ( )

( ) T ( )

since the compressed terms bi always have associated ci = 0 and
therefore do not contribute to the sum.
Both the numerator and denominator are stored in memory,

and updated in each iteration via the following straightforward
update rules:

+
+

+ +c c c c a c
a a

( ) ( ) ( ) 2 ( ) ( )
( )

( 1) T ( 1) ( ) 2 ( ) T ( ) ( ) ( ) T ( )

( ) T ( )
( )

(24)

and

+
+

+ +

H
c b c b a b

a a
( ) ( ) ( ) 2 ( ) ( )

( )

( 1) T ( 1) ( ) 2 ( ) T ( ) ( ) ( ) T ( )

( ) T ( )
( )

(25)

2.2.4. Proposed Multicoordinate Descent FCI Method.
The following outlines the complete procedure for the
multicoordinate descent FCI method.

1. Initialize (0), the set of determinants preselected before
computation begins. In our case, we choose

= {| }D(0)
HF , which introduces only one nonzero

entry in c(1), simplifying the computation of b(1). Set
= 1, initialize c(1), and compute b(1)=Hc(1). Other

initial vectors may be chosen, provided that (c(1))THc(1)
< 0 holds.

2. Select the index set = { }i i, ..., k
( )

1
( ) ( ) according to

(eq 10).
3. Evaluate the matrix Q HQ( )( ) T ( ) following (eq 18).

Compute its lowest eigenvalue and corresponding
eigenvector z( ), and then obtain the scaling factor ( )

using (eq 19) and the stepsize vector a( ) via (eq 20).
4. Update +c( 1), +b( 1), + +c c( )( 1) T ( 1) and + +c b( )( 1) T ( 1)

according to (eq 21), (eq 22), (eq 24) and (eq 25). Use
the compression technique based on a predefined
threshold τ. Recalculate +bi

( 1) for i ( ) as in (eq 23).
5. Repeat steps 2−4 with + 1 until either a stopping

criterion or the maximum iteration number is reached.
In our implementation, we adopt the stopping criterion
proposed in OptOrbFCI.22 The moving average S of the
stepsize norm is tracked using a decay factor of α = 0.99,

++ +S S a(1 )( 1) ( ) ( 1)

The algorithm halts when +S( 1) falls below a specified
tolerance level. Other stopping criteria, such as
monitoring the change of the Rayleigh quotient or the
ratio of the number of nonzero coefficients in b and c,17

may also be applied.

3. COMPUTATIONAL IMPLEMENTATION AND
COMPLEXITY ANALYSIS

We will now provide implementation details of the algorithm,
focusing on computationally expensive components and
numerical stability issues, while conducting complexity analysis
in the same time. In the following analysis, we denote

=N imax ( )H i H as the maximum number of nonzero entries
in columns of the Hamiltonian matrix, which scales as

n n( )elec
2

orb
2 . We claim that the per-iteration complexity of

our algorithm is +kN k( )H
3 , and +N k( )H

3 for each
thread with shared memory parallelism.
The sparse vectors c and b are stored in a hash table that

allows parallel read/write operations23 as in previous work.17

For each entry of the hash table, its key is the Slater
determinant |Di⟩ encoded by an norb-bit binary string, and its
value is a pair of double floating-point numbers ci and bi. Three
additional scalars are also stored in memory and updated in
each iteration: the inner products cTc, cTb and the scaling
factor γ. All the three quantities are stored in quadruple-
precision floating point format to mitigate accumulated
numerical errors, ensuring accuracy unless the number of
iterations exceeds 1016.17
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Note that the Hamiltonian matrix is never stored in
memory: indeed, we evaluate each Hamiltonian entry on-the-
fly. Different from other selected CI methods, this significantly
reduces the storage cost of our algorithm, and allows us to
utilize all available storage capacity to store the ground-state
coefficient vector c and its associated b = Hc related to the
residual.
Our implementation utilizes shared memory parallelism

based on OpenMP. Specifically, we enable k threads where k is
the number of coordinates we choose to update in each
iteration.
In the coordinate pick stage (described in Section 2.2.1),

each thread handling determinant |Di⟩ examines determinants
in i( )H to select k determinants with the largest value of
[∇f(c)]i. This step has a complexity of N( )H for each thread,
and kN( )H in total. After this, the main thread selects the k
largest determinants from k2 gathered from all the threads.
In the subproblem solve stage (described in Section 2.2.2),

we begin by constructing the (k+1)-dimensional matrix
Q HQ( )( ) T ( ) in (eq 18). It is evident that computing

Hy y( )
( ) T ( )

and H yT ( )
( ) involves only k( )2 cost, whereas

for HT
( ) ( ), we need to evaluate k2 Hamiltonian entries,

each with complexity n( )orb . For the subsequent eigenvalue
problem, we want to retrieve the smallest eigenvalue and its
corresponding eigenvector of a (k+1)-dimensional symmetric
matrix. A robust eigensolver like MRRR21 yields such eigenpair
at a cost of +k Tk( )3 2 where T is the number of iteration
steps, which is usually comparable to k.
Unfortunately, MRRR only guarantees that the extreme

eigenvalue is converged to double precision, without
guaranteeing the accuracy of each entry in the eigenvector.
This could be problematic because the magnitudes of
coordinates in the eigenvector can vary widely, and the small
values of the stepsize vector might only have an accuracy of
10−8. To address this issue, we employ one step of inverse
iteration conducted in quadruple precision to improve the
accuracy of eigenvector, which again has a complexity of k( )3 .
Finally, during the variable update stage (described in

Section 2.2.3), each thread is assigned to calculate a local
update of b in the form Δbi = H:,iai. Compression occurs at the
thread level, skipping updates of coordinate j if bj = 0 and Δbij
≤ τ. In this process, each thread constructs H:,i, the i-th column
of H, which is subsequently used to recalculate +bi

( 1) as
described in (eq 23). The complexity of the variable update
step remains N( )H per thread, resulting in a total complexity
of kN( )H . The prefactor is dominated by the computation
cost of a single Hamiltonian entry, which scales with n( )orb .
In the proposed algorithm, two synchronization points occur

in each iteration: one after coordinate selection and another
after the variable update. Specifically, update (eq 23) is
performed sequentially following the parallel execution of (eq
21) and (eq 22), ensuring all updates are completed and
maintaining data consistency across threads.
Table 1 gives a summary of computational cost for each step

per thread and in total.

4. NUMERICAL EXPERIMENTS
In this section, we conduct a series of numerical experiments to
demonstrate the efficiency of the proposed algorithm−

multicoordinate descent FCI method (mCDFCI). First, we
compute the ground-state energy of N2 using three different
basis sets: cc-pVDZ, cc-pVTZ, and cc-pVQZ. As the number
of orbitals increases, the calculated energies become more
accurate, but the computational cost also rises. We test the
computations using different numbers of cores and demon-
strate the strong parallel scaling for big systems. Subsequently,
we compare the convergence curve and computation time with
the original CDFCI method, as well as other methods, namely
SHCI, DMRG and iS-FCIQMC (initiator semistochastic
FCIQMC). After that, we turn our eyes on a bigger system,
the chromium dimer Cr2 under the Ahlrichs SV basis at r = 1.5
Å, with 48 electrons and 84 spin−orbitals. This is a well-known
multireference system because of the spin coupling of the 12
valence electrons. Finally, we benchmark the binding curve of
nitrogen dimer under the cc-pVQZ basis, which consists of 220
spin−orbitals.
In all experiments, the orbitals and integrals are calculated

via restricted Hartree−Fock (RHF) in PSI4 package24 version
1.8. All energies are reported in the unit of Hartree (Ha).
The program is compiled using the GNU g++ compiler

version 11.4.0 with the -O3 optimization flag and its native
OpenMP support. It is linked against LAPACK version 3.11.0
and OpenBLAS version 0.3.26 for numerical linear algebra
computations.
4.1. Scalability and Performance Testing. The N2

molecule is considered a correlated system due to the
significant role of electron correlation effects in accurately
describing its electronic structure. We compute its ground-
state energy using three different basis sets: cc-pVDZ (14e,
28o), cc-pVTZ (14e, 60o), and cc-pVQZ (14e, 110o). A
detailed description of the system and the configurations used
when running the CDFCI program is provided in Table 2. The
experiments in this section were conducted on a system
equipped with two AMD EPYC 9754 128-core processors and
1.5 TB of memory.
In the multithreaded implementation of CDFCI

(mCDFCI), we define ef fective iterations as the product of
the number of iterations and the number of determinants
updated, ensuring that mCDFCI performs an equivalent

Table 1. Computational Cost for Each Step Per Thread and
In Totala

Step Complexity per thread Complexity in total

Coordinate pick +N k( )H
2 +kN k( )H

2

Subproblem solve k( )3 k( )3

Variable update N( )H kN( )H

aNH is defined as the maximum number of nonzero entries in any
column of the Hamiltonian matrix, i.e., =N imax ( )H i H .

Table 2. Description of the Basis Sets, Configurations,
Thresholds, and Average Nonzero per Column Used for N2
in Section 4.1a

Basis Set Electrons Spin Orbitals Threshold τ NH

cc-pVDZ 14 56 5 × 10−7 <4 × 103

cc-pVTZ 14 120 5 × 10−6 <3 × 104

cc-pVQZ 14 220 5 × 10−5 <8 × 104

aNH is defined as the maximum number of nonzero entries in any
column of the Hamiltonian matrix, i.e., =N imax ( )H i H .
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workload regardless of the number of threads. Notably, in our
experiments, while different values of k produce distinct energy
descent trajectories, the energy values after the same number
of effective iterations remain consistent, irrespective of the
number of threads used. Specifically, for the cc-pVDZ basis,
the maximum difference between energy values was 4.84 ×
10−7 Ha, while for cc-pVTZ and cc-pVQZ, the differences were
2.66 × 10−6 Ha and 9.09 × 10−6 Ha, respectively. All of these
differences are smaller than 10−5 Ha, confirming the robustness
and stability of the method.

Figure 2 shows the runtime of mCDFCI over 1024K
effective iterations, evaluated across a range of thread counts
from 1 to 256. The detailed data supporting these results are
provided in Appendix B, where the exact runtime of each
component is presented, along with an in-depth analysis of the
parallel capabilities. In every case, the dominant computational
cost arises from the update of the vector b = Hc. However, the
time for the local energy estimation, which is not parallelized,
increases as the thread count grows. This behavior can be
attributed to the increasing impact of the k3 term in the
eigenvalue computation as k becomes larger. This increase is

Figure 2. Comparison of runtime for the N2 molecule with different basis sets (cc-pVDZ, cc-pVTZ, and cc-pVQZ) using various numbers of
threads. Each subplot represents a different basis set. The bar charts show the time in seconds spent on specific computational steps, including
updating b = Hc, local energy estimation, and other operations. The red dots on the line plot show the total time usage, while the yellow dashed
line represents the ideal scaling behavior (expected performance improvement with increased threads).

Table 3. Convergence of Ground-State Energy for C2
a

mCDFCI

Algorithm Parameter Absolute error Mem (GB) Time (s) Time (s) Ratio

mCDFCI τ = 3.0 × 10−8 1.0 × 10−2 1.5 3.8 -
1.0 × 10−3 6.0 17.2 -
1.0 × 10−4 24.0 123.4 -
1.0 × 10−5 48.0 603.7 -
1.0 × 10−6 48.0 2332.3 -

sCDFCI ε = 3.0 × 10−8 1.0 × 10−2 3.0 14.7 3.8 3.87 ×
1.0 × 10−3 6.0 55.0 17.2 3.20 ×
1.0 × 10−4 24.0 374.3 123.4 3.03 ×
1.0 × 10−5 48.0 1779.7 603.7 2.95 ×
1.0 × 10−6 48.0 6906.0 2332.3 2.96 ×

SHCI ε1 = 1.0 × 10−4 1.5 × 10−3 16.1 3.3 14.0 0.23 ×
ε1 = 5.0 × 10−5 7.6 × 10−4 17.5 7.3 23.7 0.31 ×
ε1 = 1.0 × 10−5 1.1 × 10−4 32.6 53.9 113.2 0.48 ×
ε1 = 5.0 × 10−6 4.6 × 10−5 54.2 126.0 219.4 0.57 ×
ε1 = 1.0 × 10−6 4.7 × 10−6 238.1 845.0 954.1 0.89 ×

DMRG max M = 500 6.9 × 10−4 0.2 106.9 23.7 4.52 ×
max M = 1000 1.5 × 10−4 0.8 345.2 92.7 3.72 ×
max M = 2000 1.9 × 10−5 3.1 1130.1 394.9 2.86 ×
max M = 4000 2.1 × 10−6 11.5 3848.3 1549.2 2.48 ×

iS-FCIQMC m = 10000 7.4 ± 1.6 × 10−4 0.076 19.3 23.7 0.81 ×
m = 50000 6.4 ± 0.6 × 10−4 0.077 59.8 26.9 2.22 ×
m = 100000 1.8 ± 0.4 × 10−4 0.077 118.0 78.6 1.50 ×
m = 500000 2.3 ± 0.2 × 10−4 0.080 459.9 64.5 7.13 ×
m = 1000000 5.4 ± 1.2 × 10−5 0.083 872.4 196.5 4.44 ×

aThe reference ground-state energy is −75.7319615 Ha.
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particularly noticeable for smaller systems, such as cc-pVDZ,
where the computational time grows significantly beyond 64
threads.
For larger systems, strong parallel scalability is observed up

to 128 threads, with instances of superlinear speedup. This
performance gain is attributed to the hash table we use, which
is specifically designed and optimized for multithreaded
workloads. When focusing solely on the time taken to update
the hash table and disregarding the local energy estimation, it is
clear that the update of the b vector is highly parallelizable.
4.2. Numerical Results with C2 and N2. In this section,

we compare the performance of our method with other FCI
methods: SHCI, DMRG and iS-FCIQMC, all with parallel
support and using the same amount of computing resources.
We test all the algorithms on two systems: C2 and N2 under
the cc-pVDZ basis sets. The original CDFCI program25 which
supports OpenMP acceleration by parallelizing the update b =
Hc, is also tested here and renamed as sCDFCI (single-
coordinate descent FCI) for comparison with our new method
mCDFCI (multicoordinate descent FCI). SHCI, DMRG and
iS-FCIQMC calculations were performed using the Arrow
code,26 the Block2 code27 and the NECI code,28 respectively.
All programs were compiled using the GNU g++ compiler
(version 11.4.0) with the -O3 optimization flag. Native support
for OpenMP was utilized, and MPI support was provided by
MPICH (version 4.2.0). All programs were restricted to use 64
cores. CDFCI, SHCI, and DMRG were executed with 64
threads each, while iS-FCIQMC, which supports only MPI
parallelization, was executed with 64 MPI processes. Apart
from the parallelization configurations enabled in our study, we
used the same experimental settings as described in Wang et
al.17.

Specifically, SHCI was run with different thresholds ε1,
DMRG with varying maximum bond dimensions M, and iS-
FCIQMC with different numbers of walkers m. For iS-
FCIQMC, the preconditioned heat-bath (PCHB) excitation
generator and the semistochastic method (with 1000
determinants in the deterministic space) were employed.
The initiator threshold was set to 3.0 and the number of
iterations was set to 30,000 to ensure convergence by
observation of clear plateaus in the diagnostic plots. The
Hartree−Fock state was used as the initial wave function for all
algorithms except DMRG, which has its own warm-up
algorithm. In all cases, the energy is reported without any
perturbation or extrapolation postcalculations. Variational
energy is reported for CDFCI, SHCI and DMRG, while
average projected energy is reported for iS-FCIQMC, along
with stochastic error estimates obtained through additional
blocking analysis. The absolute error is defined as the absolute
difference between the reported energy and the reference
ground-state energy.
Tables 3 and 4 demonstrate the convergence behavior of the

C2 and N2 molecule respectively, executed by different
methods. Each method was evaluated with specific parameter
values, and the results are documented in terms of absolute
error, memory consumption in gigabytes (GB), execution time
in seconds, and a comparison with the mCDFCI algorithm
regarding execution time and relative ratio. From a broader
perspective, there are significant differences in time and
memory usage among the various algorithms, which we will
examine in detail.
The proposed algorithm, mCDFCI, achieves chemical

accuracy for the C2 molecule in less than 1 min while using
only 6 GB of memory. Subsequently, the energy continues to
decrease at a linear rate. The expansion of the primary

Table 4. Convergence of Ground-State Energy for N2
a

mCDFCI

Algorithm Parameter Absolute error Mem (GB) Time (s) Time (s) Ratio

mCDFCI τ = 5.0 × 10−7 1.0 × 10−2 3.0 4.2 -
1.0 × 10−3 12.0 31.8 -
1.0 × 10−4 24.0 311.8 -
1.0 × 10−5 24.0 1830.3 -
1.0 × 10−6 24.0 5629.8 -

sCDFCI ε = 5.0 × 10−7 1.0 × 10−2 6.0 19.2 4.2 4.57 ×
1.0 × 10−3 12.0 87.5 31.8 2.75 ×
1.0 × 10−4 24.0 829.7 311.8 2.66 ×
1.0 × 10−5 24.0 4687.7 1830.3 2.56 ×
1.0 × 10−6 24.0 14048.5 5629.8 2.50 ×

SHCI ε1 = 1.0 × 10−4 1.6 × 10−3 16.8 4.0 19.7 0.20 ×
ε1 = 5.0 × 10−5 8.8 × 10−4 18.9 10.9 40.0 0.27 ×
ε1 = 1.0 × 10−5 1.9 × 10−4 37.9 76.2 175.2 0.44×
ε1 = 5.0 × 10−6 8.6 × 10−5 68.2 183.4 353.3 0.52 ×
ε1 = 1.0 × 10−6 1.0 × 10−5 402.7 1753.8 1796.5 0.98 ×

DMRG max M = 500 1.2 × 10−3 0.2 126.5 27.9 4.54 ×
max M = 1000 3.1 × 10−4 0.8 427.3 114.2 3.74 ×
max M = 2000 6.2 × 10−5 3.1 1405.8 470.7 2.99 ×
max M = 4000 8.9 × 10−6 11.8 4940.7 1976.8 2.50 ×

iS-FCIQMC m = 10000 4.4 ± 1.4 × 10−4 0.162 31.3 79.6 0.39 ×
m = 50000 2.4 ± 0.5 × 10−4 0.162 108.9 141.0 0.77 ×
m = 100000 1.2 ± 0.3 × 10−4 0.163 233.0 270.1 0.86 ×
m = 500000 7.5 ± 1.4 × 10−5 0.166 858.7 398.8 2.15 ×
m = 1000000 3.5 ± 1.2 × 10−5 0.169 1596.3 735.0 2.17 ×

aThe reference ground-state energy is −109.2821721 Ha.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c01530
J. Chem. Theory Comput. 2025, 21, 2325−2337

2332

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c01530?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


variational space slows down once the absolute error is less
than 10−5. The wave function converges to a subspace of the
full CI space according to the current truncation threshold τ =
3 × 10−8. For the N2 molecule, mCDFCI exhibits similar
behavior for threshold τ = 5 × 10−7.
Compared to sCDFCI, which updates only one determinant

per iteration, mCDFCI descends much faster and utilizes a
smaller subspace at the start of the iterations. This
demonstrates the efficiency of mCDFCI in capturing
important determinants. Toward the end of the iterations,
the effective iterations of mCDFCI and sCDFCI are
comparable. However, mCDFCI still shows approximately
three times the acceleration, highlighting the enhanced
parallelization power utilized by our approach.
SHCI also adopts the concept of selected CI but employs a

different data structure compared to ours. After selecting
determinants based on an importance measure from the
Hamiltonian matrix elements connected to the reference
determinant, SHCI extracts a submatrix and directly
diagonalizes it to find the smallest eigenpair. The efficiency
of the SHCI algorithm can be attributed to the powerful
Davidson algorithm, the one-time evaluation of the Hamil-
tonian matrix, and the contiguous memory read/write
operations. Additionally, multithreading is particularly effective
for computing matrix-vector multiplications, making the
method highly parallel and further boosting the performance.
These factors enable SHCI to exhibit speedups over mCDFCI,
especially when the required accuracy is low. However, the
storage of the Hamiltonian submatrix leads to high storage
costs, particularly when high accuracy is required. On the other
hand, when ε1 = 1 × 105, SHCI uses 3,324,630 determinants to
reach an accuracy of 1.1 × 10−4 Ha, whereas mCDFCI uses
only 2,022,447 determinants to achieve the same accuracy. In
this case, mCDFCI uses approximately 40% fewer determi-
nants than SHCI to attain the same level of precision.
DMRG, which models the wave function using a matrix

product state form, has a lower memory footprint than
mCDFCI due to its storage cost of n M( )orb

2 , where norb is the
number of orbitals and M the maximum bond dimension.
However, mCDFCI achieves faster convergence compared to
DMRG, particularly when targeting moderate accuracy. The
difference in convergence speed decreases as higher accuracy is
required, but mCDFCI remains more efficient overall.
Finally, iS-FCIQMC, a stochastic method that approximates

the wave function using random walkers, is highly memory-
efficient, typically requiring a few megabytes. While its error
decreases gradually as the number of walkers increases, iS-
FCIQMC can achieve faster convergence for lower accuracy
requirements. On the other hand, mCDFCI, with its
deterministic framework, offers a reliable and efficient
approach for achieving higher precision.
4.3. All-Electron Chromium Dimer Calculation. We

now turn our attention to the larger system of the chromium
dimer, which consists of 48 electrons and 84 spin−orbitals.
Transition metals play a pivotal role in catalysis, biochemistry,
and the energy sciences, but the complex electronic structure
of d-shells presents significant challenges for modeling and
understanding such processes.29

In the case of the chromium dimer, the high electron
correlation arises from two main aspects: static correlation,
which is due to the spin coupling of the 12 valence electrons,
and dynamic correlation, which involves excitations of

nonvalence orbitals, such as the 3p electrons. To address this
challenge, we computed the all-electron chromium dimer
ground state at a bond length of 1.5 Å using the Ahlrichs SV
basis set.
Figure 3 illustrates the energy decrease and time usage for

running 2 × 107 iterations using 128 threads. In this setup, 128

determinants are selected in each iteration, for either addition
to the variational space or updating their associated values. The
final number of determinants in the variational wave function is
approximately 2 × 109.
The red curve in the plot represents the absolute energy

error (in Hartree) as a function of the number of iterations.
The energy error is computed as the absolute difference
between the current variational energy (Rayleigh quotient) and
the reference ground-state energy. This error decreases rapidly
to the level of 10−3 within several hours, before converging
toward the ground-state energy at a steady linear rate.
The blue dashed curve in the plot shows the total time

elapsed as a function of the number of iterations, measured in
seconds (× 105). A total of 2 × 107 iterations takes around 6 ×
105 seconds, which is roughly 1 week. The linear trend
indicates that the time per iteration remains relatively constant.
This consistency is due to the number of nonzeros in each
column of the Hamiltonian matrix being similar (around 3 ×
104), leading to a nearly constant computational cost per
iteration (See Table 1 for complexity analysis). This
predictable linear increase in time per iteration allows users
to estimate the remaining computation time easily, demon-
strating the practicality of the CDFCI algorithm.
Compared to the previous CDFCI algorithm with single-

coordinate updates, which achieved an energy of
−2086.443565 Ha after one month of computation,17 we
reached the same level of accuracy in just 5.8 days, despite
using different computing environments. Additionally, we
obtained a more accurate energy of −2086.443581 Ha in
approximately 8.8 days.
4.4. Binding Curve of N2 Under Cc-pVQZ Basis. Finally,

we benchmark the all-electron nitrogen binding curve under
cc-pVQZ basis. The problem is challenging due to the
complexity of accurately capturing the strong electron
correlation in the triple bond of N2. The large cc-pVQZ

Figure 3. Convergence of ground-state energy for the Cr2 molecule
under Ahlrichs SV basis. The threshold is set to 3.7 × 10−5 and the
reference ground-state energy is −2086.444784 Ha, obtained via
extrapolated DMRG.30
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basis set increases computational cost, and all-electron
calculations add further complexity by requiring the explicit
treatment of core electrons. We adopt τ = 5 × 10−6 for
mCDFCI truncation, use 128 threads, and run 1,000,000
iterations. The bond length is varied from 1.5 to 4.5 a0. Each
configuration on the binding curve takes roughly 18 h to
achieve chemical accuracy.
Figure 4 displays a smooth, standard-shaped binding curve

(shown in red) for N2 calculated using the mCDFCI method

with a full cc-pVQZ basis set (110 orbitals). The curve reaches
its minimum at the equilibrium bond length of r = 2.118 a0,
which corresponds to the optimal bond length where the
energy is minimized. This red curve is compared against other
computational results, including the Hartree−Fock approx-
imation (blue dashed line) and CDFCI calculations using a
reduced orbital set generated from cc-pVQZ, which is
compressed to 28 selected orbitals (green dashed curve).
The Hartree−Fock method overestimates the total energy,

particularly at longer bond lengths, due to its inability to
capture dynamic electron correlation and its inherent inclusion
of ionic character.31 The green dashed curve represents results
from the OptOrbFCI method,22 which uses a rotation and
compression of the full cc-pVQZ basis set into 28 selected
orbitals. This method was employed to reduce the computa-
tional cost while retaining the essential characteristics of the
electronic structure of the system. Despite the reduction in the
number of orbitals, OptOrbFCI produces an energy profile
closer to the full cc-pVQZ calculation than the cc-pVDZ
approximation, showing that the selected orbitals capture most
of the correlation effects. However, the slight increase in
energy compared to the full cc-pVQZ curve reflects the
inherent trade-off between computational efficiency and
accuracy when compressing the basis set.
Appendix C lists all the variational energies corresponding to

each bond length and configuration shown in the figure,
providing a detailed comparison of the methods and basis sets.
This comparison underscores the importance of increasing the
basis set size to achieve basis set convergence in quantum
chemical calculations.

5. CONCLUSION
This paper presents a novel algorithm, multicoordinate descent
FCI method, for solving the full configuration interaction
(FCI) problem in electronic structure calculations. The
algorithm reformulates the FCI eigenvalue problem as an
unconstrained optimization problem and employs a multi-
coordinate descent approach to update the optimization
variable. Additionally, the algorithm introduces a compression
strategy to control the size of the variational space.
The method demonstrates efficiency and accuracy through

various benchmarks, including the computation of an accurate
benchmark energy for the chromium dimer and the binding
curve of nitrogen dimer. The results show up to 79.3% parallel
efficiency on 128 cores, as well as significant speedup
compared to previous methods. Overall, the multicoordinate
descent FCI method presents a promising approach for solving
the FCI problem in electronic structure calculations, with
improved efficiency, accuracy, and parallelization capability,
making it suitable for larger systems and more accurate
approximations.
Since the current algorithm focuses on improving the

variational stage of selected CI, our immediate future work will
involve adding a perturbation stage to the current algorithm.
Another direction will be to combine the current results with
orbital optimization, as it is well-known that optimized orbitals
lead to faster convergence.22,32,33 Several approaches for
computing excited states within the FCI framework have
been developed.34−38 These methods, often extensions of
ground-state algorithms, have demonstrated success in
accurately treating excited states. Recently, Wang et al.
introduced xCDFCI,39 an efficient extension of CDFCI
designed specifically for low-lying excited states in molecules.
We aim to adapt our techniques for excited-state computations
as well.
Regarding parallel capacity, extending our current shared-

memory implementation to a distributed-memory one with
MPI enabled is an interesting prospect, as it would further
increase computational capacity and leverage memory load. A
well-implemented distributed memory setup is under inves-
tigation.

■ APPENDIX A

Proof in Section 2.2.2

We prove <+ +Q HQ(( ) ) 0min
( 1) T ( 1) as long as we choose an

initial vector c(1) such that (c(1))THc(1) < 0, where +Q( 1) is
defined in eq 13. The proof uses induction and contradiction.
In simple terms, if we assume + +Q HQ( )( 1) T ( 1) is positive
semi-definite, then the minimization problem will attain its
minimum when the optimization vector is zero. However, we
can always find a vector that leads to a smaller value, thus
contradicting our initial assumption.
We first show that if c(1) is chosen such that (c(1))THc(1) < 0,

then, start ing from the first iteration, we have
λmin((Q(1))THQ(1)) < 0. Conversely, if all eigenvalues of
(Q(1))THQ(1) are non-negative, solving the minimization
problem (eq16) yields z(1) = 0 and f(z(1)) = ∥H∥F

2. However,
∥H∥F

2 is clearly not the minimal point for f(c(2)). To see this,
we take

Figure 4. Ground-state energy versus bond length for N2 using
different basis sets. cc-pVQZ (110) refers to the full, uncompressed
cc-pVQZ basis set, while cc-pVQZ (28) refers to the compressed set
of orbitals generated by OptOrbFCI. The mCDFCI truncation
threshold τ = 5 × 10−6 and stopping criteria of 1 × 10−5 are applied.
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Thus, (Q(1))THQ(1) must have at least one negative
eigenvalue.
We then show that if, in the previous step, we have

<Q HQ(( ) ) 0min
( ) T ( ) , i t f o l l o w s t h a t

<+ +Q HQ(( ) ) 0min
( 1) T ( 1) . The reasoning is similar to

above. Suppose this is not true, such that all eigenvalues of
+ +Q HQ( )( 1) T ( 1) are non-negative. Solving the minimization

problem (eq 16) would result in =+z 0( 1) and

=+f Hz( )( 1)
F

2
. However, this is impossible. To see why,

consider taking =+ 1( 1) and =+a 0( 1) . In this case, the
function +f c( )( 1) would have the same value as in the previous
iteration:

= +

= <

+f H

H Q HQ H

c c c( ) ( )

( (( ) ))

( 1) ( ) ( ) T
F

2

F

2
min

( ) T ( ) 2
F

2

This demonstrates that the objective function value must
decrease in each iteration. Additionally, in each iteration, we
must have <+ +Q HQ(( ) ) 0min

( 1) T ( 1) .
Appendix B

Ground-State Energy Computation Time of N2 Using
Different Basis Sets and Different Number of Threads.
Tables 5−7 present the mCDFCI computation times for the
N2 molecule across varying number of threads, using the cc-
pVDZ, cc-pVTZ, and cc-pVQZ basis sets, respectively. These
results are already illustrated in Figure 2. Here, we provide the

corresponding parallel efficiency and a detailed time break-
down for each computational step.
The time required for variable updates decreases steadily as

the number of threads increases, demonstrating the strong
scalability of the multi-threaded implementation. Conversely,
the other two non-parallelized components initially exhibit a
decrease in time, followed by an eventual increase. The initial
decrease can be attributed to the reduced number of iterations
required as the number of coordinates grows, given that when
k is small, the time to solve a (k+1)×(k+1) eigenvalue problem
remains relatively constant. However, as the number of
coordinates continues to increase, the k3 scaling in the
eigenvalue computation becomes increasingly significant,
resulting in a noticeable rise in the time required for local
energy updates. To address this bottleneck, parallelizing these
components represents an important area for future develop-
ment of the CDFCI software package.
Appendix C

N2 Binding Curve Data for Bond Length and Energy.
Table 8 shows the binding curve data for four sets of
calculations: Hartree−Fock (HF), CDFCI with the cc-pVDZ
basis, CDFCI with the full cc-pVQZ (110 orbitals), and
CDFCI with a reduced set of 28 compressed orbitals derived
from the cc-pVQZ basis using the OptOrbFCI method.22 The
energies for HF were generated using the PSI4 package24

version 1.8. The energies for the cc-pVDZ and cc-pVQZ (28)
basis sets are cited from previous studies.17,22 The table
includes the bond lengths in atomic units (a0) and the
corresponding ground-state energies in Hartree (Ha).

Table 5. Time, Parallel Efficiency, and Component
Breakdown for Ground-State Energy of N2 Using cc-pVDZ
(14e, 28o)

Threads Time (s)
Parallel
efficiency

Variable
update (s)

Local energy
update (s)

Others
(s)

1 2076.40 1.000 1974.46 12.28 89.29
2 1038.48 1.000 980.75 7.67 49.66
4 505.32 1.027 474.03 4.78 26.33
8 365.66 0.710 345.40 3.84 16.26
16 192.09 0.676 178.04 3.85 10.11
32 106.10 0.612 92.77 4.94 8.34
64 65.91 0.492 49.03 6.99 9.82
128 89.31 0.182 28.07 44.65 16.54
256 195.71 0.041 24.09 138.11 33.45

Table 6. Time, Parallel Efficiency, and Component
Breakdown for Ground-State Energy of N2 Using cc-pVTZ
(14e, 60o)

Threads Time (s)
Parallel
efficiency

Variable
update (s)

Local energy
update (s)

Others
(s)

1 16626.01 1.000 16074.56 22.67 528.26
2 7003.45 1.187 6720.30 11.92 270.99
4 3084.88 1.347 2939.85 7.61 137.25
8 2045.62 1.016 1967.34 5.10 73.07
16 1045.78 0.994 1001.69 4.36 39.65
32 531.91 0.977 502.56 5.42 23.86
64 272.70 0.953 247.74 7.39 17.50
128 192.42 0.675 125.78 45.50 21.09
256 289.45 0.224 91.93 152.79 44.68

Table 7. Time, Parallel Efficiency, and Component
Breakdown for Ground-State Energy of N2 Using cc-pVQZ
(14e, 110o)

Threads Time (s)
Parallel
efficiency

Variable
update (s)

Local energy
update (s)

Others
(s)

1 53182.43 1.000 51319.96 36.06 1825.70
2 22897.89 1.161 21927.33 26.10 943.89
4 9834.53 1.352 9347.02 10.28 477.05
8 6669.42 0.997 6358.72 9.77 300.77
16 3190.37 1.042 3031.49 8.08 150.68
32 1485.38 1.119 1393.64 6.90 84.75
64 699.20 1.188 610.01 8.84 80.29
128 524.26 0.793 371.17 43.86 109.17
256 475.64 0.437 245.80 142.78 87.00
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