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KSSOLV (Kohn-Sham Solver) is a MATLAB toolbox for performing Kohn-Sham density functional theory 
(DFT) calculations with a plane-wave basis set. KSSOLV 2.0 preserves the design features of the original 
KSSOLV software to allow users and developers to easily set up a problem and perform ground-state 
calculations as well as to prototype and test new algorithms. Furthermore, it includes new functionalities 
such as new iterative diagonalization algorithms, k-point sampling for electron band structures, geometry 
optimization and advanced algorithms for performing DFT calculations with local, semi-local, and hybrid 
exchange-correlation functionals. It can be used to study the electronic structures of both molecules and 
solids. We describe these new capabilities in this work through a few use cases. We also demonstrate 
the numerical accuracy and computational efficiency of KSSOLV on a variety of examples.

Program summary
Program title: Kohn-Sham Solver 2.0 (KSSOLV 2.0)
CPC Library link to program files: https://doi .org /10 .17632 /pp8vgvfcv4 .1
Developer’s repository link: https://bitbucket .org /berkeleylab /kssolv2 .0 /src /release/
Licensing provisions: BSD 3-clause
Programming language:: MATLAB
Nature of problem: KSSOLV2.0 is used to perform Kohn-Sham density functional theory based electronic 
structure calculations to study chemical and material properties of molecules and solids. The key problem 
to be solved is a constrained energy minimization problem, which can also be formulated as a nonlinear 
eigenvalue problem.
Solution method: The KSSOLV 2.0 implements both the self-consistent field (SCF) iteration with a variety 
of acceleration strategies and a direct constrained minimization algorithms. It is written completely in 
MATLAB and uses MATLAB’s object oriented programming features to make it easy to use and modify.
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1. Introduction

KSSOLV (Kohn-Sham Solver) [1] is a MATLAB (Matrix Labora-
tory) toolbox for performing Kohn-sham density functional the-
ory (DFT) [2,3] based electronic structure calculations. It uses 
the plane-wave basis set to represent electron wavefunctions. 
One of the original motivations for developing such a software 
package was to make it easy to prototype and test new al-
gorithms for solving the Kohn-Sham nonlinear eigenvalue prob-
lems. KSSOLV leverages the high quality numerical linear algebra 
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functions and object-oriented features of MATLAB to enable re-
searchers who have minimal knowledge of other electronic struc-
ture calculation software written in FORTRAN or C/C++ to quickly 
modify existing algorithms, as well as to develop and test new 
ideas. Over the last decade, KSSOLV has become a useful research 
and teaching tool for studying electronic structures of molecules 
and solids and developing new methods for solving the Kohn-
Sham problem, as evidenced by an increasing number of pub-
lications that use KSSOLV to perform numerical experiments re-
quired to demonstrate improved convergence or better accuracy of 
new theoretical methods and numerical algorithms. Examples of 
such developments include tensor hypercontraction algorithm [4], 
improved generalized Davidson algorithm [5], elliptic precondi-
tioner in self-consistent field iteration [6], low rank approxima-
tion in G0W0 calculations [7], perturbation theory [8], quantum 
embedding theory [9], quantum computation [10], linear-response 
time-dependent density functional theory [11,12], phonon calcula-
tions [13], proximal gradient method [14], trace-penalty minimiza-
tion method [15].

As KSSOLV becomes more widely used, it also becomes clear 
that the functionalities supported in the original KSSOLV soft-
ware package are insufficient. For example, the original KSSOLV 
could only be used to perform single-point calculations of the 
ground state energies for molecules placed in a large supercell, and 
only the local density approximation (LDA) exchange-correlation 
functional was implemented. Moreover, the pseudopotentials sup-
ported in the original KSSOLV did not clearly specify the type of 
pseudopotentials used and did not allow widely accepted pseu-
dopotential libraries to be easily incorporated. The lack of these 
functionalities makes the comparison of KSSOLV with other soft-
ware packages somewhat difficult.

To address these issues, we have recently revamped the de-
velopment of KSSOLV by adopting more standard pseudopotential 
types, such as the ONCV (Optimized Norm-Conserving Vander-
bilt) [16] and Hartwigsen-Goedecker-Hutter (HGH) [17] pseudopo-
tentials. We have incorporated more recent algorithmic develop-
ment, and added new functionalities and features without sac-
rificing the usability of the software. The new software release, 
KSSOLV 2.0, is an open source software.1 In addition to being a 
flexible tool for new algorithm development, KSSOLV 2.0 can also 
be easily used to study the properties of molecules and solids. It 
serves as both a research and teaching tool for researchers engaged 
in the simulation and prediction of chemical and material prop-
erties, such as linear-response time-dependent density functional 
theory [11], many-electron self energy calculations [18], structure 
optimization [19], photocatalytic materials simulations [20].

We strive to make KSSOLV 2.0 as efficient as possible with-
out sacrificing its readability and usability. In addition to tradi-
tional platforms, the software can also be run on heterogeneous 
architectures with graphics processing units (GPUs) [21]. How-
ever, KSSOLV 2.0 is not designed for performing large-scale elec-
tronic structure calculations. For these types of calculations, many 
existing software tools can be used alternatively, such as Gaus-
sian [22], NWChem (NorthWest computational Chemistry) [23], 
Q-CHEM [24], BDF (Beijing Density Functional program pack-
age) [25], and PySCF (Python-based Simulations of Chemistry 
Framework) [26] within Gaussian-type orbital (GTO) basis set; 
SIESTA (Spanish Initiative for Electronic Simulations with Thou-
sands of Atoms) [27], HONPAS (Hefei Order-N Packages for Ab 
initio Simulations) [28–30], FHI-aims (Fritz Haber Institute ab initio 
molecular simulations) [31] and ABACUS (Atomic-orbital Based Ab-
initio Computation at Ustc) [32] within numerical atomic orbital 

1 Bitbucket repository with documentation: https://bitbucket .org /berkeleylab /
kssolv2 .0 /src /release/.
2

(NAO) basis set; and VASP (Vienna Ab initio Simulation Pack-
age) [33], ABINIT [34], QE (QUANTUM ESPRESSO) [35], PWmat [36], 
PWDFT (Plane-Wave Density Functional Theory) [37] within plane-
wave basis set. These DFT codes are often written in languages 
such as FORTRAN and C++, and parallelized with OpenMP, MPI, and 
CUDA. The compilation, installation and usage of these software 
packages often take a significant amount of effort. Our software 
is more similar to some other recently developed DFT toolboxes 
such as GPAW (Grid-based Projector Augmented Wave) [38,39], 
M-SPARC (Matlab-Simulation Package for Ab-initio Real-space Cal-
culations) [49] and PWDFT.jl [41], DFT.jl [42], which are based on 
higher-level scripting languages such as Python, Julia, and MATLAB. 
We should point out that the M-SPARC software, which is written 
in MATLAB, focuses on a real space discretization of the Kohn-
Sham problem whereas KSSOLV uses a plane-wave discretization. 
The main characteristics of these software packages are shown 
in Table 1. The advantage of KSSOLV is that it is written com-
pletely in MATLAB, which is designed to perform linear algebra 
operations in a straightforward manner. MATLAB also provides an 
excellent Integrated Development Environment (IDE), which makes 
the development process much easier than other software tools. 
Furthermore, the unique profiling capability of MATLAB allows us 
to easily identify computational bottlenecks.

This work is organized as follows. In the next section, we briefly 
summarize the main methodology and standard methods imple-
mented in KSSOLV for solving the Kohn-Sham DFT problem, as 
well as a number of recently developed and more advanced algo-
rithms. We highlight the object-oriented design feature of KSSOLV 
in section 3, and demonstrate several main features of KSSOLV 2.0 
through a number of use cases in section 4. The accuracy and effi-
ciency of KSSOLV 2.0 are reported in section 5 for several small to 
medium sized benchmark test problems.

2. Methodology

KSSOLV 2.0 is designed to perform Kohn-Sham density func-
tional theory (KS-DFT) based electronic structure calculations. In 
this section, we briefly describe the main mathematical problem 
to be solved, namely, the Kohn-Sham nonlinear eigenvalue prob-
lem, or equivalently, the Kohn-Sham total energy minimization 
problem. In KSSOLV 2.0, the eigenfunction to be computed is ex-
panded in a plane-wave basis, which will be discussed briefly in 
section 2.1.2. A key component of the Kohn-Sham Hamiltonian op-
erator is the exchange-correlation (XC) potential that accounts for 
many-body effects in a many-electron system. We describe the XC 
functions implemented in KSSOLV 2.0 in section 2.1.3. KSSOLV 2.0 
employs the pseudopotential method which is commonly used to 
address the weak singularity (cusp) in the nuclei-electron poten-
tial. We briefly discuss pseudopotentials used in KSSOLV 2.0 in 
section 2.1.4. Sections 2.2.1 and 2.2.2 are concerned with several 
numerical algorithms used in KSSOLV 2.0 to solve the Kohn-Sham 
and related problems. In particular, we discuss new algorithms 
that have been added in the latest release of KSSOLV 2.0 in sec-
tions 2.2.3, 2.2.4 and 2.3.

2.1. Mathematical formulation

2.1.1. Brief introduction of KS-DFT
The KS-DFT [2,3] is the most widely used methodology to 

perform first-principles calculations and materials simulations to 
study the electronic structure of molecules and solids.

The key problem to be solved in KS-DFT based electronic struc-
ture calculation of an atomistic system with Ne electrons is a non-
linear eigenvalue problem of the form

Ĥ(ρ)ψ j = ε jψ j, (1)

https://bitbucket.org/berkeleylab/kssolv2.0/src/release/
https://bitbucket.org/berkeleylab/kssolv2.0/src/release/
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Table 1
The characteristics of several DFT software packages, including programming language, basis, license, language type and publish year. GTOs: gaussian-type orbital (GTO) basis 
set, NAOs: numerical atomic orbital basis set, PW: plane-wave basis set. AE: all electronic calculation, NCPPs: norm-conserving pseudopotentials, ECP: effective core potential, 
PAW: projector augmented wave. GPL: GNU General Public License, ECL-2.0: Educational Community License, BSD: Berkeley Software Distribution License.

Software Language Basis AE/PSP License Language type Year Reference

Gaussian Fortran GTOs AE/ECP Commercial Compiled language 1970 [22]
NWChem Fortran GTOs/PW AE/PAW Free, ECL-2.0 Compiled language 1994 [23]
QChem Fortran GTOs AE/ECP Academic, commercial Compiled language 1997 [24]
BDF Fortran GTOs AE Free, GPL Compiled language 2009 [25]

SIESTA Fortran NAOs NCPPs Free, GPL Compiled language 1996 [27]
HONPAS Fortran NAOs NCPPs Free, GPL Compiled language 2005 [28]
FHI-aims Fortran NAOs AE Academic, commercial Compiled language 2009 [31]
ABACUS Fortran NAOs/PW NCPPs Free, GPL Compiled language 2016 [32]

VASP Fortran PW PAW Commercial Compiled language 1989 [33]
ABINIT Fortran PW NCPPs/PAW Free, GPL Compiled language 1998 [34]
QE Fortran PW NCPPs/PAW Free, GPL Compiled language 2001 [35]
PWmat Fortran PW NCPPs Commercial Compiled language 2013 [36]
PWDFT C/C++ PW NCPPs Free, BSD Compiled language 2017 [37]

GPAW Python PW PAW Free, GPL Interpreted language 2003 [38]
KSSOLV MATLAB PW NCPPs Free, BSD Interpreted language 2009 [1]; This work
PySCF Python GTOs AE; NCPPs Free, BSD Interpreted language 2014 [26]
M-SPARC MATLAB RS NCPPs Free, GPL Interpreted language 2019 [40]
PWDFT.jl Julia PW NCPPs Free, GPL Interpreted language 2020 [41]
DFT.jl Julia PW NCPPs Free, GPL Interpreted language 2021 [42]
where j = 1, 2, ..., Ne , ε1 ≤ ε2 ≤ · · · ≤ εNe are Ne eigenvalues of 
Ĥ(ρ). They are known as the Kohn-Sham eigenvalues associated 
with the corresponding eigenfunctions ψ j ’s, also known as the oc-
cupied orbitals or states. The function ρ is the electron density 
defined (at zero temperature) as

ρ =
Ne∑
j=1

|ψ j|2. (2)

The Kohn-Sham Hamiltonian Ĥ to be partially diagonalized is a 
functional of ρ (and consequently ψ j ’s.)

Equation (1) is the first order necessary condition associated 
with a constrained minimization problem

min〈ψi ,ψ j〉=δi, j

Etot({ψi}), (3)

where Etot is a total energy functional that consists of both kinetic 
and various potential terms [3], i.e.

Etot = Ekin + EHartree + E ion + Enuc + Exc, (4)

where Ekin represents the kinetic energy, EHartree is the potential 
energy induced by electron-electron repulsion, E ion is the potential 
energy induced by nucleus-electron attraction, Enuc is the poten-
tial energy induced by nucleus-nucleus repulsion, and Exc is the 
exchange-correlation energy that accounts for the many-body ef-
fects unaccounted in the preceding terms. The mathematical ex-
pressions for these energy terms can be found in the standard 
literature [43,44].

As a result, the Kohn-Sham Hamiltonian Ĥ appeared in (1) can 
be partitioned accordingly, i.e.

Ĥ = T̂ + V̂ Hartree + V̂ ion + V̂ xc, (5)

where T̂ is the kinetic energy operator, V̂ ion is the ionic potential 
operator, V̂ Hartree is the Hartree potential operator and V̂ xc is the 
exchange-correlation potential operator. We again refer readers to 
standard literature [44] for analytical expressions for each one of 
these terms.
3

2.1.2. Plane-wave basis set
The Kohn-Sham Hamiltonian is periodic for solids. For such 

periodic systems, we solve (1) by focusing on one period, often 
known as a primitive cell. It follows from the Bloch’s theory that a 
Kohn-Sham orbital ψ j(r) takes the form

ψ j,k = eikru j,k(r), (6)

where u j,k(r) is periodic and k is a crystal momentum vector in 
the first Brillouin zone.

The occupied Kohn-Sham orbitals are indexed by both j and k. 
The charge density is periodic and defined as

ρ(r) = |�|
(2π)3

∫
B Z

ρk(r)dk, (7)

where |�| is the volume of the primitive cell in the real space, and

ρk(r) =
Ne∑
j=1

∣∣ψ j,k(r)
∣∣2

.

The choice of a periodic unit cell is not unique. When the unit 
cell is sufficiently large in real space, the corresponding unit cell 
in first Brillouin zone is so small that the integral in (7) can be 
approximated the evaluation of ρk(r) at a single k-point, e.g., k =
0, also known as the �-point.

Because u j,k is periodic, it can be expanded by plane-wave ba-
sis functions, i.e.,

u j,k(r) =
∞∑

	=1

ck
j,	eigT

	 r, ck
j,	 =

∫
�

u j,k(r)e−igT
	 rdr, (8)

where g	 is a lattice vector in the reciprocal space. As a result, a 
Kohn-Sham orbital ψ j,k can be represented by

ψ j,k =
∞∑

	=1

ck
j,	ei(k+g	)

T r.

This is the discretization scheme used in KSSOLV as in other 
plane-wave based electronic structure calculation software pack-
ages.
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In practice, the infinite sum in (8) is truncated and approxi-
mated by a finite sum. As in all other plane-wave based Kohn-
Sham solvers, the truncation of the plane-wave expansion is based 
on the following criterion

|k + g	|2 < 2Ecut, (9)

for some energy cut-off value Ecut. If the number of g’s that satisfy 
this criterion is Ng , an approximation to the Kohn-Sham orbital 
ψ j,k can be written as

ψ j,k(r) ≈
Ng∑
	=1

ck
j,	ei(k+g j)

T r. (10)

In a plane-wave basis set, the representations of T̂ and V̂ Hartree
in (5) are particularly simple, i.e., they are diagonal (or local). How-
ever, V̂ ion and V̂ xc typically have a more compact representation in 
real space. As a result, when ψ j,k are discretized by a plane-wave 
expansion, the Kohn-Sham Hamiltonian Ĥ is not constructed or 
stored explicitly. The multiplication of Ĥ (which is called an im-
plicit Hamiltonian) with ψ j,k can be implemented efficiently by 
working with both the real space and reciprocal space represen-
tations of ψ j,k . The change of representation between real space 
and reciprocal space is facilitated by Fast Fourier Transforms (FFTs). 
This is a key feature of plane-wave based Kohn-Sham equation 
solver.

2.1.3. Exchange-correlation functional
The exchange-correlation energy term Exc in (4) and the 

exchange-correlation Hamiltonian term V̂ xc accounts for the many-
body effects of electron interactions. They are particularly signif-
icant for KS-DFT. The exact analytical forms of Exc and V̂ xc are 
unknown. Various approximations have been proposed. These in-
clude the local density approximation (LDA) [45], generalized gra-
dient approximation (GGA) [46], and the hybrid functional [47–49]. 
A hybrid functional includes a fraction of the exact exchange po-
tential from the Hartree-Fock (HF) [50] theory. Three widely used 
hybrid functionals are shown in (11). In KSSOLV 2.0, all three ap-
proximations have been implemented. Both LDA and GGA are local 
in real space. Hence, applying these potential operators to a wave-
function is relatively straightforward. However, the Hartree-Fock 
exact exchange term in a hybrid functional is nonlocal, and apply-
ing it to a wavefunction is more costly. However, efficient methods 
for applying this term have been developed [51–54]. We will dis-
cuss efficient methods for working with hybrid functional KS-DFT 
in section 2.3.

EPBE0
xc = 1

4
EHF

x + 3

4
EPBE

x + EPBE
c

EHSE
xc = 0.25EHF,SR

x + 0.75EPBE,SR
x + EPBE,LR

x + EPBE
c

EB3LYP
xc = ELDA

x + 0.2
(

EHF
x − ELDA

x

)
+ 0.72

(
EGGA

x −
ELDA

x ) + ELDA
c + 0.81

(
EGGA

c − ELDA
c

)
,

(11)

2.1.4. Pseudopotential
KSSOLV adopts the pseudopotential methodology [55] to model 

the interaction between nuclei and electrons. In this approach, core 
electrons are treated as a part of an ionic core represented by a 
pre-computed effective potential. Only the valence electrons are 
present in (1) and (2). For a plane-wave DFT code, the pseudopo-
tential method allows us to significantly reduce the computational 
cost by reducing the number of active electrons and the number 
of planewaves required to represent eigenfunctions of the Kohn-
Sham Hamiltonian. The latter reduction is due to the fact that the 
4

use of pseudopotential makes the eigenfunction of the correspond-
ing Kohn-Sham Hamiltonian less oscillatory.

There are two common types of pseudopotentials in mod-
ern DFT computation, namely norm-conserving pseudopoten-
tial (NCPP) and ultrasoft pseudopotential. In general, the imple-
mentation of NCPPs is easier than that for ultrasoft pseudopo-
tentials [56,57], and they produce sufficient accuracy for many 
systems. Therefore, NCPPs are the supported type of pseudopo-
tentials in KSSOLV.

A pseudopotential typically consists of a local component 
V loc(r) and a nonlocal component V NL(r, r′). By using the
Kleinman-Bylander form of an atomic pseudopotential, we can ex-
press V NL(r, r′) in a low rank separable form

V NL(r, r′) =
∑
lm

βlm(r)vlβlm(r′)∗, (12)

where βlm(r) is a pseudo atomic wavefunction associated with the 
quantum numbers l and m, and vl is a weighting factor that de-
pends on the degree of spherical harmonic used in βlm .

There are many ways to construct pseudopotentials. We refer 
readers to standard literature on this subject [44], like many other 
KS-DFT software tools, we use pseudopotentials archived at a URL2

in KSSOLV. KSSOLV 2.0 can read pseudopotential files in multiple 
formats, and convert them to suitable real or reciprocal space rep-
resentations. The local and non-local components are treated dif-
ferently. The local component is represented in real space and ap-
plied as a diagonal matrix. It is constructed by the summing local 
atomic potentials re-centered at atomic positions. The re-centering 
and the summation are carried out through Fourier transforms. 
The nonlocal pseudo wavefunctions are stored and applied in the 
reciprocal space. For atoms of the same type, their nonlocal pseudo 
wavefunctions are combined and transformed to reciprocal space 
via spherical harmonic transform. The pseudo wavefunctions for 
different types of atoms are stored separately without additional 
computation.

2.2. Algorithms implemented in KSSOLV 2.0 of conventional calculations

In this section, we describe several standard algorithms imple-
mented in KSSOLV 2.0 for conventional calculations. These include 
the self consistent field (SCF) iteration and direct energy minimiza-
tion, matrix diagonalization and geometry optimization. In addi-
tion, we describe a method called SCDM (Select Column of the 
Density Matrix) used to perform orbital localization.

2.2.1. Self consistent field iteration and direct minimization
When LDA or GGA is used in V̂ xc, the KS eigenvalue problem 

can be formulated as a set of nonlinear equations satisfied by the 
ground state electron density or potential [2], i.e.,

ρ = fKS(ρ), (13)

where fKS(·) is known as the Kohn-Sham map [3]. This formu-
lation suggests that the KS equations can be solved by a quasi-
Newton method in which the Jacobian of the Kohn-Sham map is 
approximated. To be specific, the approximation to ρ can be up-
dated as

ρk+1 = ρ(k) − Ĵ (ρ(k))
[
ρ(k) − fKS(ρ

(k))
]
, (14)

where Ĵ is an approximate Jacobian. This approach is generally 
known as the self-consistent field (SCF) iteration in the physics lit-

2 pseudopotentials homepage used by KSSOLV: http://pseudopotentials .quantum -
espresso .org /legacy _tables.

http://pseudopotentials.quantum-espresso.org/legacy_tables
http://pseudopotentials.quantum-espresso.org/legacy_tables
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erature and is implemented in KSSOLV. In this approach, the eval-
uation of the Kohn-Sham map on the right hand side of (14) re-
quires computing eigenvalues and eigenvectors of the Kohn-Sham 
Hamiltonian defined at ρ(k) , which will be discussed in the next 
section.

There are many ways to approximate the Jacobian of the Kohn-
Sham map. The simplest is to take Ĵ = β I , where 0 < β < 1 is a 
small constant and I is the identity matrix. Such an approximation 
yields the so-call simple mixing scheme described by

ρ(k+1) = βρ(k) + (1 − β) fKS(ρ
(k)). (15)

More sophisticated Jacobian approximate schemes include the 
Anderson [58] or Pulay [59] mixing, two types of Brodyen’s 
method and Kerker mixing [60], which can also be viewed as 
a way to accelerate the convergence of the quasi-Newton itera-
tion (14) by preconditioning the nonlinear equation (13) [61]. All 
these Jacobian approximation and precondition methods have been 
implemented in KSSOLV 2.0. In earlier work [62], we have demon-
strated how new preconditioners can be easily implemented in 
KSSOLV.

An alternative approach to solving the Kohn-Sham problem is to 
solve the constrained minimization problem (3) directly. This ap-
proach is known as direct minimization. In KSSOLV, we implement 
a direct constrained minimization algorithm presented in [63]. In 
each step of the algorithm, a subspace that consists of the cur-
rent approximation to the Kohn-Sham orbitals, the preconditioned 
gradient of the Lagrangian and previous search direction is con-
structed. The update of the wavefunction approximation is ob-
tained by minimizing the total energy (4) within this subspace. 
Trust region techniques [64] can be used in the DCM algorithm to 
stabilize the convergence of the iterative minimization procedure. 
This is particularly useful for metallic systems at low temperature.

2.2.2. Eigensolver
When the SCF iteration is used to solve the Kohn-Sham prob-

lem, the most time-consuming part of the computation is the eval-
uation of the Kohn-Sham map fKS(ρ). At a finite temperature, the 
Kohn-Sham map is defined as

fKS(ρ) = diag

[(
I + e

H(ρ)−μI
κB T

)−1
]

, (16)

where μ is the chemical potential, κB is the Boltzmann factor and 
T is the temperature. The matrix exponential in (16) can be evalu-
ated by a partial spectral decomposition of H . In the limit of T = 0, 
(16) reduces to (2). In this case, we only need to compute the left-
most Ne eigenvalues of H(ρ) and their corresponding eigenvectors. 
For a finite temperature calculation, we need to compute a few 
extra eigenvalues ε j and eigenvectors ψ j that have non-negligible 
occupation numbers 1/(1 + exp(

ε j−μ
κB T )).

Because H is not explicitly stored as a matrix in KSSOLV, itera-
tive eigensolvers are appropriate for computing the desired eigen-
values and eigenvectors of H . In KSSOLV, the default eigensolver 
employed in a SCF iteration uses the locally optimal block pre-
conditioned conjugate gradient (LOBPCG) method [65]. The method 
can be viewed as a constrained minimization method for solving 
the equivalent trace minimization problem

min
X T X=I

trace(X T H X), (17)

where X is a matrix that contains the discretized Kohn-Sham or-
bitals. Similar to other plane-wave based Kohn-Sham solvers, KS-
SOLV stores the plane-wave expansion coefficients of each Kohn-
Sham orbitals in X . In each LOBPCG iteration, we need to multiply 
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H with a set of vectors. This is done by multiplying the kinetic 
energy operator T̂ , the nonlocal part of the ionic pseudopoten-
tial operator V̂ ion and the Hartree potential operator V̂ Hartree with 
the plane-wave expansion coefficients in the reciprocal space and 
transforming the result to a real space grid (via FFTs) on which 
the local part of V̂ ion and the local exchange-correlation potential 
operator V̂ xc are applied.

In addition to LOBPCG, KSSOLV 2.0 also includes an implemen-
tation of the Davidson-Liu [66] algorithm. The algorithm can be 
viewed as a generalization of the LOBPCG method in the sense that 
the update of the eigenvector is obtained by projecting the Ĥ into 
a progressively larger subspace constructed from the juxtaposition 
of preconditioned gradients of the Lagrangian and the subspace 
constructed in the previous iteration, and solving the projected 
eigenvalue problem. When the dimension of the subspace reach 
a prescribed limit, the procedure is restarted with the most re-
cent approximation of the eigenvectors. Clearly, there is a trade-off 
between the per iteration cost of the Davidson method, which be-
comes higher if the maximum allowed dimension of the subspace 
(mD ) is large, and the number of restarts required to reach conver-
gence, which becomes lower when mD is larger.

Both the LOBPCG and Davidson solvers are block eigensolver, 
i.e., in each iteration, the Hamiltonian is applied to a block of vec-
tors, and many other linear algebra operations in the solver can be 
expressed in terms of level-3 BLAS operations. These features can 
significantly enhance the concurrency of the computation and take 
advantage of parallel computer architecture and memory hierarchy.

Another block algorithm that has been demonstrated to be 
very efficient for solving large-scale Kohn-Sham eigenvalue prob-
lem is the Chebyshev filter subspace iteration (CheFSI) [67]. This 
method is implemented in KSSOLV 2.0 also. The CheFSI method 
constructs a properly shift and scaled mth degree Chebyshev poly-
nomial Tm to amplify the contribution of the desired eigenvectors 
when Tm(H) is applied to a set of properly prepared vectors in 
a subspace iteration. The multiplication of Tm(H) with a block of 
vectors X can be implemented via a 3-term recurrence. We do not 
need to solve a projected eigenvalue problem, i.e., we do not need 
to perform the Rayleigh-Ritz procedure in each subspace iteration. 
This can significantly reduce the computational cost for the prob-
lem with a large number of electrons. The orthonormality of X in 
each iteration can be maintained by using the Cholesky QR proce-
dure, which is generally efficient. The Rayleigh-Ritz procedure only 
needs to be performed at the end of subspace iteration to compute 
the occupation number for each desired eigenvalue.

Two other methods that are designed to reduce the cost of 
Rayleigh-Ritz calculations in an eigensolver are the project precon-
ditioned conjugated gradient (PPCG) [68] method and the residual 
minimization method with direct inversion in iterative subspace 
(RMM-DIIS) [69] acceleration. Both methods are implemented in 
KSSOLV 2.0 also. Although for most small to medium sized prob-
lems to be solved by KSSOLV, the Rayleigh-Ritz cost in the block 
algorithms discussed above is relatively small, the availability of 
additional eigensolvers allows us to test and compare convergence 
properties of these algorithms.

In PPCG, we apply the LOBPCG algorithm to each approximate 
eigenvector separately, i.e. running the unblocked version of the 
LOBPCG method for each desired eigenpair for a fixed number of 
iterations. The Rayleigh-Ritz procedures in these runs only need 
to solve a set of 3 × 3 projected eigenvalue problems. A global 
Rayleigh-Ritz procedure for all desired eigenpairs is only applied 
periodically at the end of a fixed number of unblocked LOBPCG 
iterations.

In RMM-DIIS, each approximate eigenpair is updated separately 
by minimizing the residual (instead of the Rayleigh-quotient) asso-
ciated with the approximate eigenpair within a progressively larger 
subspace incrementally constructed from a set of previously ap-
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proximations to the same eigenpair. When the initial guess of the 
desired eigenpairs are sufficiently accurate, no Rayleigh-Ritz pro-
cedure is ever needed in RMM-DIIS. This feature of the algorithm 
makes it ideal for solving large-scale problems that contain many 
electrons on a parallel computer on which the refinement of each 
eigenpair can be carried out independently.

One of the key features of the eigenvalue problems solved in 
each SCF iteration is that the accuracy required for the desired 
eigenpairs is generally lower in early SCF iterations and higher in 
later iterations when self-consistency is nearly reached. This is due 
to the fact that in early iterations of the quasi-Newton algorithm 
used to solve (13), the residual term ρ(k) − fKS(ρ

(k)) on the right-
hand side of (14) is relatively large even if fKS(ρ(k)) is evaluated 
to full accuracy. As a result, we may lower the accuracy require-
ment for fKS(ρ

(k)), and consequently the accuracy requirement for 
the solution of the eigenvalue problem could be reached. As the 
SCF iteration converges, a more accurate evaluation of fKS(ρ

(k)). 
Therefore, in KSSOLV 2.0, we use an adaptive strategy to define the 
convergence criterion for each eigenpair. An approximate eigenpair 
(θ, ψ) is considered converged if the relative residual norm

‖r‖/|θ | = ‖Hψ − θψ‖/|θ |,
is less than a tolerance τ (k) , where

τ = min(τ0,‖ρ(k) − fKS(ρ
(k))‖/‖ρ(k)‖), (18)

and τ0 is a maximal error tolerance set to 10−2 by default, but can 
be changed by a user.

Moreover, at a finite temperature, lower accuracy can be toler-
ated for partially occupied states with low occupation numbers.

2.2.3. Geometry optimization
In KSSOLV 2.0, we include the functionality to compute atomic 

forces which are the derivatives of Etot defined in (4) with re-
spect to atomic coordinates. The derivatives can be taken with 
respect to either the cartesian coordinates or relative coordinates 
of the atoms [70]. The calculations of these forces make use of the 
Hellmann-Feynman theorem [71]. The availability of atomic forces 
allows us to optimize the atomic structure of a molecule or solid. 
The calculations are often referred to geometry optimization or 
structure relaxation. The goal of the optimization is to minimize 
the total energy of the atomistic system with respect to atomic 
coordinates. The atomic forces simply yield the gradient of the ob-
jective function.

KSSOLV 2.0 leverages the standard unconstrained minimiza-
tion algorithm implemented in MATLAB’s optimization box. The 
user has the option of using MATLAB’s fminunc(Find mini-
mum of unconstrained multivariable function) function to perform 
the optimization. By default, fminunc uses the BFGS (Broyden–
Fletcher–Goldfarb–Shanno) [72] quasi-Newton algorithm which 
constructs approximations to the Hessian of the energy using gra-
dients computed in successive quasi-Newton iterations. One can 
also choose the trust region algorithm, which is based on the 
interior-reflective Newton method described in [73].

In addition to algorithms implemented in MATLAB Optimiza-
tion toolbox, one can also use other algorithms such as the limited 
memory BFGS [74] algorithm implemented in the HANSO pack-
age [75] or the nonlinear conjugate algorithm [76] implemented 
by Overton [77]. Both algorithms contain a number of parameters 
that a user can experiment with and adjust. KSSOLV 2.0 also pro-
vides ample flexibilities to utilize other optimization algorithms. 
For example, we also implemented a version of the FIRE (Fast In-
ertial Relaxation Engine) [78] algorithm.
6

2.2.4. Orbital localization via selected column of density matrix
It is well known that electrons in insulating systems obey the 

nearsightedness principle, i.e. local electron properties such as the 
electron density ρ(r) only depend significantly on the effective 
potential at nearby points. Mathematically, the nearsightedness 
principle translates into the decay property of the single-particle 
density matrix associated with the ground state of the atomistic 
system, i.e., the magnitude of the matrix elements of the density 
matrix decays rapidly away from the diagonal. A direct conse-
quence is that the occupied Kohn-Sham orbitals can be rotated to 
a set of functions that span the same invariant space, but have ap-
proximately localized support. These localized orbitals can be used 
to develop linear scaling methods for solving the Kohn-Sham prob-
lem and to develop efficient post-DFT methods [79,80].

There are several ways to construct localized orbitals. One of 
the most known technique is the maximally localized Wannier 
functions (MLWFs) proposed by Marzari and Vanderbilt [81]. The 
MLWF method requires solving a nonlinear optimization prob-
lem, whose results can sometimes depend sensitively to the initial 
guesses. Recently, an alternative method called Selected Column of 
the Density Matrix (SCDM) [82] has been proposed to construct lo-
calized orbital using a simple linear algebraic procedure. Suppose 
� is an N × Ne matrix containing Ne approximate Kohn-Sham or-
bitals on N real space grid points. The SCDM method performs a 
rank revealing QR factorization of �∗ first to yield

�∗� = Q R, (19)

where � is a column permutation matrix that moves maximally 
linearly independent columns of �∗ (or a row permutation matrix 
that moves maximally linear independent rows of �) to the lead-
ing column (row) positions, Q is a Ne × Ne unitary matrix and R
is Ne × N matrix with the leading Ne columns being a upper trian-
gular matrix. The magnitudes of the diagonal matrix elements of 
the leading columns of R are in a decreasing order.

Localized orbitals can be computed simply by performing a ma-
trix multiplication

� = ��∗
C , (20)

where �C represents the leading Ne rows of the row permuted 
� where the permutation is defined by the permutation matrix 
� obtained in (19). Note that the localized columns in � are not 
necessarily orthonormal. To obtain an orthonormal set of orbitals 
�̃ that remain to be localized, we simply perform a Cholesky fac-
torization of the matrix P C,C = �C �∗

C , i.e.,

P C,C = LL∗, (21)

and solve the following set of linear equations using the Cholesky 
factor L obtained in (21)

�̃L∗ = �.

The SCDM method has been implemented in KSSOLV. We re-
fer readers to [82] for the theoretical justification of this method 
and how localized orbitals constructed from the SCDM procedure 
can be used to speedup the Hartree-Fock exchange energy calcula-
tion [83,84].

2.3. Accelerated algorithms implemented in KSSOLV 2.0 for hybrid 
functional DFT calculations

In KSSOLV 2.0, we implement several new algorithms to ac-
celerate hybrid functional DFT calculations. The main challenge 
in performing a hybrid functional DFT calculation is the efficient 
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treatment of the (screened) Hartree-Fock exchange potential de-
fined as

V̂ HSE
x (r, r′) = −

Ne∑
j=1

ψ j(r)ψ∗
j (r′)K (r, r′), (22)

where K (r, r′) is either the Coulomb kernel 1/|r − r′| or a screened 
Coulomb kernel of the form efrc(μ|r − r′|)/|r − r′|. This non-local 
potential is part of the exchange-correlation potential V̂ xc in a hy-
brid functional DFT Hamiltonian.

In KSSOLV 2.0, we do not explicitly construct V̂ HSE
x , which is 

a dense matrix, in either the real or reciprocal space. The V̂ HSE
x

operator is applied to a set of wavefunctions {ϕi} as follows

V̂ HSE
x ϕi = −

Ne∑
j=1

ψ j(r)
∫

ϕi
(
r′)ψ∗

j

(
r′) K (r, r′)dr′. (23)

The evaluation of the integral on the right hand side of (23) re-
quires solving a set of Poisson equations. This can be done by 
using FFT based convolution. However, because the summation in 
(23) is over Ne terms, we need to solve O(N2

e ) Poisson equations 
in total per iteration in an iterative eigensolver used to compute 
the lowest Ne eigenpairs of the hybrid functional Hamiltonian. The 
excessive number of FFTs used to solve many Poisson equations 
is the reason that hybrid functional DFT calculation is orders of 
magnitude more expensive than LDA or GGA DFT calculations in 
other plane-wave DFT software tools. KSSOLV 2.0 uses several re-
cently developed algorithms to reduce the complexity of hybrid 
functional DFT calculation. These algorithms include 1) the inter-
polative separable density fitting (ISDF) method for reducing the 
number of Poisson equations to be solved; 2) the use of inner and 
outer iterative schemes in combination with the adaptive com-
pressive exchange (ACE) operator method to further reduce the 
total number of Poisson equations to be solved; 3) a special pro-
jector commutator direct inversion of iterative subspace (PC-DIIS) 
method for accelerating the outer SCF iteration. We will briefly de-
scribe each one of these algorithms below.

2.3.1. ISDF (interpolative separable density fitting decomposition)
If we place the right hand sides of the Poisson equations to be 

solved in (23) for i = 1, 2, ..., Ne in a matrix Z , defined as

Z = {ϕi(r)ψ∗
j (r)}, i, j = 1,2, ..., Ne, (24)

we can see that the rank Z is less than N2
e if ϕi(r) and ψ∗

j (r)
are discretized on a real space grid with Ng = O(Ne) grid points, 
which is the case for systems that are sufficiently large. As a result, 
we can rewrite Z as

Z = �C, (25)

where � is Ng × Nμ and C is Nμ × N2
e and Nμ =O(Ne). Columns 

of � can be viewed as a set of numerical auxiliary basis {ζμ(r)}, 
μ = 1, 2, ..., Nμ that span the same space defined by the pair prod-
uct basis {ϕi(r)ψ∗

j (r)}. Consequently, we can evaluate (23) by first 
computing

V ζ
μ =

∫
K (r, r′)ζμ(r′)dr′, (26)

for all μ = 1, 2, ..., Nμ , which requires solving Nμ Poisson equa-

tions. If we use V ζ to denote the matrix that contains V ζ
μ ’s as its 

columns, (23) can be then evaluated as

V̂ HSE
x ϕi = −

∑
ψ j(r)V ζ ci j, (27)
j
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where ci j is the column of C indexed by i and j consistent with 
the column indexing scheme used in (24).

Although the computational procedure for evaluating (22) now 
requires solving only Nμ = O(Ne) Poisson equations, the overall 
complexity of the algorithm hinges on an efficient factorization 
of Z in (25). From an accuracy standpoint, the optimal factoriza-
tion can be obtained by performing a singular value decomposition 
(SVD) of Z . However, such a factorization is costly.

In [53], the ISDF technique is used to obtain an approximate 
factorization that is much more efficient and sufficiently accurate. 
In ISDF, each entry of the C matrix is chosen to be ϕi(rμ)ψ∗

j (rμ)

for a set of carefully chosen real space grid points rμ . The auxiliary 
basis vectors in � can be obtained by solving a linear least square 
problem. Due to the separable nature of the pair product basis in 
C , this least square problem can be solved efficiently. We will refer 
readers to [53,54] for computational details of the ISDF method. 
We should note that in this approach Nμ is a parameter that a 
user needs to choose in advance. Typically, Nμ is a small multiple 
of Ne , e.g. 2Ne . As a result, the use of ISDF allows us to reduce 
the overall computational complexity of V̂ HSE

x related operation to 
O (N3

e ).

2.3.2. ACE (adaptively compressed exchange)
Due to the high cost associated with the application of the 

Hartree-Fock exchange operator V̂ HSE
x to a set of wavefunctions, 

the iterative solution of the Kohn-Sham problem for hybrid func-
tional DFT is separated into inner and outer SCF iterations. At the 
beginning of each outer SCF iteration, V̂ HSE

x is updated with the 
most recent approximations to the Kohn-Sham orbitals {ψ j}. This 
V̂ HSE

x is then fixed in the corresponding inner SCF iterations in 
which only the charge density ρ and potential terms that depends 
on ρ are updated.

However, as we can see in (23), even when {ψ j} and V̂ HSE
x ({ψ j})

are fixed, applying V̂ HSE
x ({ψ j}) to a set of orbitals ϕi , i = 1, 2, ..., Ne

is costly. Although we can use ISDF to reduce the number of Pois-
son solves from O(N2

e ) to O(Ne), performing the ISDF procedure 
and solving O(Ne) Poisson equations in each inner SCF iteration is 
still quite costly.

To reduce the computational cost of each inner iteration, 
Lin [51] proposed the construction of an approximate V̂ HSE

x using 
a procedure called the Adaptively Compressed Exchange Operator 
(ACE) algorithm. The approximate V̂ HSE

x , denoted by V̂ ACE
x , is con-

structed to satisfy the condition

V̂ HSE
x ψ j = V̂ ACE

x ψ j, (28)

where ψ j , j = 1, 2, ..., Ne is the set of approximate Kohn-Sham or-
bitals available at the beginning of each outer SCF iteration. The 
ACE construction yields a low-rank operator of the form

V̂ ACE
x = −

Ne∑
i, j=1

W i(r)Bij W
∗
j (r′), (29)

where

W i(r) =
(

V̂ HSE
x [{ψi}]ψi

)
(r), i = 1, . . . , Ne, (30)

B = M−1 and the (k, l)th element of the overlap matrix M is Mkl =∫
ψk(r)Wl(r)dr.

By constructing an ACE approximation of V̂ HSE
x in the low rank 

form (29), we can apply V̂ ACE
x to a set of orbitals {ϕi} in each SCF 

inner iteration by using two matrix-matrix multiplications. This 
type of BLAS3 dense linear algebra operations are extremely ef-
ficient on modern high performance computers.

We should note that the construction of V̂ ACE
x in each outer SCF 

iteration requires solving O(N2
e ) Poisson equations in (30) just as 
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O(N2
e ) Poisson equations need to be solved in (23). The number of 

Poisson equations to be solved can be reduced to O(Ne) by using 
the ISDF technique discussed above. Therefore, by combining ACE 
with ISDF, we can significantly reduce the complexity of hybrid 
functional DFT calculation as reported in [85].

2.3.3. PC-DIIS (projected commutator direct inversion in the iterative 
subspace)

As we indicated in section 2.2.1, when LDA and GGA are used in 
V̂ xc, the KS eigenvalue problem can be formulated as a set of non-
linear equations (13) satisfied by the ground state electron density 
ρ . For hybrid functional DFT, a similar nonlinear equation should 
be defined in terms of the density matrix P = ∑

j=1 ψ j(r)ψ∗
j (r′) at 

zero temperature. Alternatively, one can define a nonlinear equa-
tion in terms of the commutator between H(P ) and P . Upon con-
vergence, P satisfies

H(P )P − P H(P ) = 0. (31)

The outer SCF iteration used to solve the hybrid functional KS-
DFT problem can be viewed as a quasi-Newton method for finding 
the solution of (31). When the density matrix can be formed ex-
plicitly, one can use the direct inversion of iterative subspace (DIIS) 
method proposed by Pulay [59] to solve (31). This is the approach 
often used to solve the Hartree-Fock equation in quantum chem-
istry. Given a few previous approximations to the density matrix 
P (i−1) , P (i−2) ,...,P (i−	) , for some constant 	 < i, the DIIS method or 
commutator DIIS (C-DIIS) method constructs a new approximation 
to the density matrix in the ith iteration as

P̃ =
	∑

k=1

αk P (i−k), (32)

where the coefficients αk are chosen to solve the following con-
strained minimization problem

min∑
k αk=1

‖αk R[P (i−k)]‖F , (33)

where

R[P (i−k)] = H[P (i−k)]P (i−k) − P (i−k)H[P (i−k)] (34)

and ‖ · ‖F is the Frobenius norm.
When the Kohn-Sham orbitals ψ j ’s are discretized by plane-

wave expansions, it is generally not practical to construct the den-
sity matrix P explicitly and solve the minimization problem (33)
directly because the density matrix dimension is so large(Ng × Ng ) 
within a plane-wave basis set. In [52], a projected commutator DIIS 
(PC-DIIS) method was proposed to solve a projected minimization 
problem in which the matrix R[P (i−k)] in (33) is replaced by

R[P (i−k)]�ref = H�(i−k)S(i−k) − �(i−k)T (i−k), (35)

where �ref is a set of reference orbitals to be defined later 
and �(i−k) is a matrix that contains approximate Kohn-Sham or-
bitals ψ j ’s obtained in the (i − k)th outer SCF iteration, S(i−k) =
〈�(i−k), �ref〉 and T (i−k) = 〈H�(i−k), �ref〉. Note that we dropped 
the density matrix P (i−k) in the Hamiltonian H above to simplify 
the notation. The projected residual (35) can be computed without 
forming P (i−k) explicitly. We will refer readers to [52] for the the-
oretical justification for using (35) in the objective function of the 
minimization problem (33). The solution of the alternative min-
imization problem is used to construct an intermediate set new 
approximation to Kohn-Sham orbitals as
8

�̃ =
	∑

k=1

αk�
(i−k).

The eigenvectors of H[�̃] then form the approximate Kohn-
Sham orbitals �(i) in the ith SCF iteration. Self-consistency is 
achieved when the norm of H[�(i)]�(i) − �(i)�(i) is sufficiently 
small, where �(i) is a diagonal matrix containing the correspond-
ing eigenvalues of H[�̃].

We should note that the reference orbitals in �ref can be cho-
sen to be any linearly independent functions that approximates the 
desired Kohn-Sham orbitals. They can be chosen as a set of Kohn-
Sham orbitals obtained in an LDA or GGA calculation. Also, the 
constrained minimization problem (33) can be easily converted to 
an unconstrained least square minimization problem by substitut-
ing α1 in the objective function with 1 − ∑	

k=2 αk . We will refer 
readers to [52] for algorithmic and computational details.

3. Object oriented design

Object-oriented programming (OOP) is a modern design
paradigm developed to define data and functions together as 
an object. KSSOLV adopts OOP features in MATLAB and im-
plements many key quantities required in the numerical solu-
tion of (1) as classes. In KSSOLV, there are several basic classes 
and some more advanced classes. The basic classes include the
Atom, Molecule, Crystal, PpData, PpVariable, Ggrid, 
and IterInfo classes. The Atom, Molecule and Crystal
classes are created to represent and encapsulate all relevant prop-
erties of an atom, a molecule and a crystal respectively. All relevant 
features of an object, e.g., the mass of an atom, the positions of all 
atoms within a molecule, the energy cut-off used for plane-wave 
expansion is kept as attributes (member variable) of the object. 
Since a crystal shares many features with a molecule, the Crys-
tal class is defined as a derived class of the Molecule class 
with additional attributes such as the positions of k-point samples 
and their corresponding weights. The PpData and PpVariable
classes are two classes that encapsulate a variety of information 
related to the pseudopotential. The PpData class is used to en-
capsulate the raw data read from a pseudopotential file, and the
PpVariable class stores the actual pseudopotentials associated 
with all atomic species contained in a molecule (or crystal). The
Ggrid class is used to provide a compact representation of recip-
rocal space grid points enclosed within a sphere of a fixed radius 
determined by the kinetic energy cutoff Ecut. Note that in a plane-
wave based DFT calculation, the plane-wave coefficients associated 
with reciprocal grid points outside of this sphere are set to zero, 
and thus not stored. Finally, the IterInfo class is a bookkeeping 
class used to simply record information related to the SCF/DCM it-
erations. All these basic classes are designed as data containers to 
simplify the interfaces in KSSOLV. The member functions in these 
classes are used to process data within the class but do not inter-
fere with data outside the class.

In the following, we will introduce advanced classes in KSSOLV 
one by one in detail, i.e., the Wavefun, Ham, BlochWavefun and
BlochHam classes.

3.1. The Kohn-Sham wavefunction class

Kohn-Sham orbitals are key quantities used and updated 
throughout a KS-DFT calculation. We created a class, called Wave-
fun, to encapsulate all relevant information contained in these 
orbitals. This class contains matrix attributes that keep either the 
values of wavefunctions on a real space grid or plane-wave expan-
sion coefficients on a compressed reciprocal space grid. Standard 
algebraic operations applied to a Wavefun object are overloaded. 
They include element-wise operations such as the absolute value, 
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Listing 1 Setting up a Wavefun object.

% X is a @Wavefun object of size N by k
X = Wavefun(...);

% Q is a @Wavefun of the same size as X,
% and R is a k by k upper triangular matrix
[Q,R] = qr(X,0);

% U is a @Wavefun of the same size as X,
% and S and V are k by k matrices
[U,S,V] = svd(X,0);

% Y is a @Wavefun object of size N by p
% on the same grid points as X
Y = Wavefun(...);

% Z is a @Wavefun object of size N by (k+p)
Z = [X Y];

% T is a submatrix of Z with its odd row index
% and last k column index.
% T is a @Wavefun object of size N/2 by k
% Then the corresponding submatrix of Z is reset
% to a random matrix.
T = Z(1:2:end,end-k+1:end);
Z(1:2:end,end-k+1:end) = randn(N/2,k);

the addition, subtraction, pointwise multiplication and pointwise 
powering. These operations typically return a Wavefun object. 
Other operations such as the matrix norm and the inner prod-
uct of two sets of wavefunctions return a scalar or a matrix. Other 
commonly used operations such as the QR factorization, SVD and 
3D (inverse) Fast Fourier Transform are overloaded as well. List-
ing 1 provides some simple examples of overloaded operations on 
a Wavefun object.

Other overloaded functions include the concatenation of Wave-
fun objects, the selection of one or a subset of wavefunctions, 
which are unique in MATLAB. We allow a Wavefun object to be 
multiplied with a matrix also when the dimension of the matrix 
contained in the Wavefun object is compatible with that of sec-
ond matrix to be multiplied.

3.2. The Hamiltonian class

Even though the Kohn-Sham Hamiltonian is not stored as a 
matrix in KSSOLV, it is convenient to create a Ham class that al-
lows us to easily apply the Hamiltonian to a Wavefun object. The
Ham class encapsulates the kinetic and potential energy compo-
nents of the Hamiltonian in either real space or reciprocal space 
representation as well as the charge density associated with the 
Hamiltonian. Member functions are created to make it easy to up-
date the Hamiltonian when the charge density is changed. The 
multiplication of a Ham object H and a Wavefun object X can be 
simply performed as H*X with all the details resulting from the 
conversion from the real space to the reciprocal space and back 
to the real space representation of the wavefunction hidden from 
the user. See Listing 2 for how a Ham object is created and used. 
Furthermore, we have also implemented several functions such as 
the MINRES and GMRES functions for solving the linear system of 
involving a shifted Kohn-Sham Hamiltonian operator.

3.3. Wavefunction and Hamiltonian classes for solids

For periodic systems, we have created the BlochWavefun and
BlockHam classes to encapsulate data elements required to rep-
resent Bloch wavefunctions and Hamiltonian. These classes allow 
users to specify a k-point sampling and the associated weights. 
They are containers of the Wavefun and Ham type variables re-
spectively. Listing 2 contains an example of how these two classes 
are used.
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Listing 2 Setting up a Hamiltonian object.

% H is a @Ham object of size N by N
H = Ham(...);

% X is a @Wavefun object of size N by k, and Y is
% a @Wavefun of the same size
X = Wavefun(...);
Y = H*X;

% V is a random matrix of size N by k, and U is
% a matrix of the same size
V = randn(N,k);
U = H*V;

% BH is a @BlochHam object of size N by N for
% m k-points
BH = BlochHam(...);

% BX and BY are a @BlochWavefun objects of size
% N by k for m k-points
BX = BlochWavefun(...);
BY = BlochWavefun(...);

% BH is applied to BX and saved at BY
for i = 1:m

BY{i} = BH{i}*BX{i};
end

4. Use cases

In this section, we will illustrate some key features of KSSOLV 
through some use cases. The main workflow for using KSSOLV to 
perform an electronic structure calculation of a molecule or solid 
involves

1. Setting up the system;
2. Calling an appropriate function to solve the Kohn-Sham prob-

lem or perform a geometry optimization;
3. Examining, post-processing and visualizing the results.

We will use a simple example to demonstrate how to perform 
a basic calculation in section 4.1. One of the key advantages of 
KSSOLV is that it allows users to try different algorithms and algo-
rithmic parameters. We will illustrate how this can be achieved 
in KSSOLV by properly setting different options and comparing 
results. The object-oriented design of KSSOLV enables developers 
to prototype and implement new algorithms with ease. We will 
give an example to show some of the key features that make 
prototyping new algorithms easy in KSSOLV. Finally, the MATLAB 
performance profiler allows developers to identify the main com-
putational bottleneck of the calculation and develop strategies to 
improve computational efficiency.

4.1. Setting up and solving a simple problem

Before we perform an electronic structure calculation for a 
molecule or a solid, we must first set up the system. This step 
entails selecting the constituent atoms and defining their atomic 
coordinates. In addition, we must define a sufficiently large unit 
(super)cell that contains all constituent atoms. The list of atoms 
and their coordinates as well as the supercell are used to define a
Molecule object. For example, in Listing 3, we show how a silane 
molecule (SiH4) is set up.

In this script, which can be found in the kssolv2.0/exam-
ples directory, we first choose the pseudopotential type by us-
ing kssolvpptype. The Optimized Norm-Conserving Vanderbilt 
(ONCV) [16] is chosen (by default). Changing it to another type of 
NCPP, e.g. the Hartwigsen-Goedecker-Hutter (HGH) [17] pseudopo-
tential simply involves uncommenting the second line of the code 
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Listing 3 Setup A System.

kssolvpptype(’ONCV_PBE-1.0’, ’UPF’);
%kssolvpptype(’pz-hgh’, ’UPF’);
%
% 1. construct atoms
%
a1 = Atom(’Si’);
a2 = Atom(’H’);
atomlist = [a1 a2 a2 a2 a2];
%
% 2. set up a supercell
%
C = 10*eye(3);
%
% 3. define the coordinates the atoms
%
redxyz = [
0.0 0.0 0.0
0.161 0.161 0.161
-0.161 -0.161 0.161
0.161 -0.161 -0.161
-0.161 0.161 -0.161
];
xyzlist = redxyz*C’;
%
% 4. Configure the molecule (crystal)
%
mol = Molecule(’supercell’,C,’atomlist’,

atomlist,’xyzlist’,xyzlist, ...
’ecut’,12.5,’name’,’SiH4’ );

Listing 4 Building an atom list array.

a1 = Atom(’Si’);
a2 = Atom(’H’);
atomlist(1) = a1;
for j = 2:5
atomlist(j) = a2;

end;

snippet. In KSSOLV 2.0, users can adopt NCPPs in both UPF file for-
mat (used by QUANTUM ESPRESSO) and psp8 file format (used by 
ABINIT).

We then create two Atom objects a1 and a2 representing the 
Si and H atoms. These objects are then placed in an atomlist
array using one of MATLAB’s array creation syntax. For systems 
containing a large number of atoms, we can also use MATLAB’s 
loop scripting capability to build such an array using, e.g.,

We then specify the Cartesian coordinates for each atom as a 
5 × 3 array xyzlist. In this example, these atomic coordinates 
are calculated from the reduced coordinates specified in (redxyz) 
and the supercell defined by the matrix C . But it is possible to 
specify these coordinates directly.

In order to solve the Kohn-Sham problem associated with this 
molecule, we must also specify the kinetic energy cut-off ecut to 
be used for the plane-wave discretization of the Kohn-Sham or-
bitals. In the Listing 3, ecut is set to 12.5 Hartree.

All attributes of the SiH4 molecule are passed into the function 
that creates a Molecule object as key–value pairs as shown in 
Listing 3.

Once a molecule object has been properly defined, we can solve 
the Kohn-Sham problem associated with this molecule by calling 
the scf function as

[mol,H,X,info] = scf(mol);

Running the scf function generates the output shown in List-
ing 5.

The default output written in the MATLAB command line win-
dow shows the convergence history of the SCF iteration. The out-
put contains the dynamically adjusted error tolerance used to ter-
minate iterative solution of a linear eigenvalue problem in each 
10
Listing 5 SCF Output.

Beging SCF calculation for SiH4...
SCF iter 1:
eigtol = 1.000e-02
Rel Vtot Err = 1.024e-01
Total Energy = -6.2382906512612e+00
......
SCF iter 10:
eigtol = 9.543e-07
Rel Vtot Err = 1.250e-06
Total Energy = -6.2542498381078e+00
Elapsed time is 3.132360 seconds.
......
||HX-XD||_F = 1.144e-08

Listing 6 Visualize the electron density.

view(3);
isosurface(fftshift(H.rho));
figure;
view(3);
vol3d(’cdata’,fftshift(H.rho));

SCF iteration. It also contains the measurement of self-consistency 
error defined as

‖V in − V out‖
‖V in‖ , (36)

where V in is the sum of potential terms in (5) that are functional 
of the electron density or density matrix at the beginning of each 
SCF iteration, and V out is the corresponding new potential sum 
evaluated from the solution of the linear eigenvalue problem. The 
Frobenius norm of the eigenpair residual H X − X� is also printed 
out, where X contains all the desired eigenvectors and � is a di-
agonal matrix containing the corresponding eigenvalues.

4.2. Visualization and post-processing

In addition to the interactive output displayed in MATLAB’s 
command line window, the scf function also returns a number 
of output variables that can be further examined and visualized. 
The returned Molecule object (which in the example given here 
overwrites the input argument mol includes the atomic forces 
computed for each atom at the end of the SCF iteration. We can 
examine these forces simply by typing

mol.xyzforce

on the command line, which produces

ans =

0.0000 0.0000 0.0000
0.0021 0.0021 0.0021
-0.0021 -0.0021 0.0021
0.0021 -0.0021 -0.0021
-0.0021 0.0021 -0.0021

The returned Hamiltonian object H contains the electron den-
sity ρ as one of its attributes, which we can visualize by using a 
third party volume rendering function vol3d included in KSSOLV 
or simply MATLAB’s isosurface rendering function isosurface as 
shown in Listing 6. The fftshift function used in the listing is 
called to re-center ρ to the middle of the unit cell (instead of the 
origin of the Cartesian grid).

These renderings are shown in Fig. 1.
We can also show a squared amplitude of Kohn-Sham orbital 

ψ j . This requires some post-processing of the returned Wavefun
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Fig. 1. (a) An isosurface rendering of the converged electron density of SiH4. (b) A 
volume rendering of the converged electron density of SiH4.

Fig. 2. The isosurfaces of HOMO and LUMO produced by VESTA. (a) HOMO of SiH4. 
(b) LUMO of SiH4.

Listing 7 Wavefunction post-processing and visualization of the 
HOMO.

n1=mol.n1;n2=mol.n2;n3=mol.n3;
homo = mol.nel/2;
lumo = homo + 1;
XG = X.psi(:,homo);
F = KSFFT(mol);
XR = (F’*XG)*sqrt(mol.vol);
X2 = abs(XR).^2;
pos = poscar(mol);
outchg(’SiH4_HOMO’, pos, reshape(X2,n1,n2,n3));

object X. The post-processing involves using FFT to transform the 
default compact reciprocal space representation of the wavefunc-
tion XG to a real space vector representation XR, evaluating its 
magnitude square as abs(XR).2, and reshaping the resulting vec-
tor into a 3D array. KSSOLV provides a utility function poscar to 
write the magnitude square of the reshaped wavefunction to a text 
file that can be read by other visualization software tools such as 
the VESTA [86].

Listing 7 shows how post-processing is performed to write 
the magnitude square of the highest occupied molecular orbital 
(HOMO) to a file named SiH4_HOMO. A similar set of commands 
can be used to write the lowest unoccupied molecular orbital 
(LUMO) to another file. The HOMO and LUMO can be subsequently 
visualized by using the VESTA software as shown in Fig. 2.

The returned info argument is a MATLAB structure that con-
tains several fields.

>> info

info =

struct with fields:

Eigvals: [4{\texttimes}1 double]
Etotvec: [10{\texttimes}1 double]

SCFerrvec: [10{\texttimes}1 double]
Etot: -6.2542
11
Fig. 3. The change of SCF error (36) with respect to SCF iteration number. Two com-
binations of diagonalization algorithm and mixing method are given, 1. LOBPCG 
with Anderson, 2. Davidson with Broyden. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

We can plot the convergence history of the SCF iteration by 
simply using

x = [1:length(options.maxscfiter)]
fig1 = semilogy(info.SCFerrvec_lob,’-s’

,info.SCFerrvec_dia,’-d’);
legend([fig1(1)fig1(2)],{’LOBPCG+Anderson’

,’Davidson+Broyden’});
xlabel(’SCF iteration number’,’FontName’,

’Times New Roman’)
ylabel(’SCF error’,’FontName’,

’Times New Roman’)
set(gca,’XTick’,x)

We can also use the Eigvals information from the info ar-
gument to obtain the DOS (Density of States). The post-processing 
includes setting some parameters to get the energy range and us-
ing either the Gaussian or the Lorentzian spread function to create 
a smooth DOS curve from info.Eigvals. Listing 8 gives a sim-
ple script for carrying out such type of post-processing. The DOS 
curves produced for four different systems (SiH4, C6H6, Si64 and 
C60) are shown in Fig. 4.

4.3. Modifying options and algorithms

KSSOLV 2.0 allows users to choose and experiment with differ-
ent algorithms or algorithmic components for solving the Kohn-
Sham problem. For example, instead of calling the scf function, 
one can call the trdcm function, which implements the trust re-
gion regularized DCM algorithm discussed in section 2.2.1, as

[mol,H,X,info] = trdcm(mol);

Both the scf and trdcm functions accept an additional option 
argument that allows users to alter the default algorithms and pa-
rameters used by these functions.

The optional argument can be first created by calling the
setksopt function which returns a MATLAB structure that con-
tains default algorithmic choices and parameters listed in Listing 9.

We can change, for example, the algorithm for solving the lin-
ear eigenvalue problem in each SCF iteration from LOBPCG to 
Davidson, and the quasi-Newton algorithm (charge mixing scheme) 
used to accelerate the SCF iterations from Anderson to Broyden by 
using the commands given in Listing 10 to modify the options
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Fig. 4. DOS(Density of States) by using Gaussian function, which describes the proportion of states that are to be occupied by the system at each energy. (a)SiH4, (b)C6H6, 
(c)Si64, (d)C60.
Listing 8 Energy post-processing and visualization of the DOS (den-
sity of states.)

ev = info.Eigvals;
nx = 1000;
sigma = 0.01;
% Initialization
[m,n] = size(ev);
ne = m;
emin = -1;%min(ev);
emax = 1;%max(ev);
xgrid = (emax - emin)/(nx - 1);
dos = zeros(nx,2);
% Get the x distribution of the energy
for ix = 1 : nx
dos(ix,1) = emin + (ix - 1)*xgrid;

end
% Calculate DOS
for ie = 1 : ne
for ix = 1 : nx

x = emin + (ix - 1)*xgrid - ev(ie);
%if(Gaussian)
dos(ix,2) = dos(ix,2) + 1/(sigma*sqrt(2*pi))
*exp(-x^2/(2*sigma^2));
%if(Lorentzian)
%dos(ix,2) = dos(ix,2) + sigma/(pi*(x^2+sigma^2));

end
end

structure and passing it to the scf function along with the mol
object.

Fig. 3 shows these changes lead to a slightly difference conver-
gence behavior of the SCF iteration (the red curve) although the 
difference is relatively small in this particular case.

We can see from Fig. 3 that the SCF iteration did not converge 
to the default accuracy requirement specified by the parameter
options.scftol, which is set to 10−8. To reach that level of 
accuracy, we can rerun the scf function by using the wavefunc-
tion X and electron density rho returned from the previous run 
12
Listing 9 Option structure returned from the setksopt function.

verbose: ’off’
eigmethod: ’lobpcg’
maxscfiter: 10
maxdcmiter: 10
maxinerscf: 3
maxcgiter: 10

maxeigsiter: 300
scftol: 1.0000e-08
dcmtol: 1.0000e-08
cgtol: 1.0000e-09

eigstol: 1.0000e-10
what2mix: ’pot’
mixtype: ’anderson’
mixdim: 9
betamix: 0.8000

brank: 1
X0: []

rho0: []
degree: 10
force: 1

ishybrid: 0
useace: 0

Vexx: []
maxphiiter: 5

phitol: 1.0000e-08
dfrank: 0
ncbands: 0

relaxmethod: ’fminunc’
relaxtol: 1.0000e-04

factorOrbitals: 1
davsteps: 3
ngbands: 0

as the starting guess. This can be achieved by simply setting op-
tions.X0 and options.rho0 to the previously returned wave-
function and electron density.

options.X0 = X;
options.rho0 = H.rho;
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Listing 10 Choosing a different eigensolver and charge mixing 
scheme.

options = setksopt();
options.eigmethod = ’davidson’;
options.mixtype = ’broyden’;
[mol1,H1,X1,info1] = scf(mol,options);

Listing 11 Convergence is reached after rerunning scf with the 
wavefunction and electron density initialized to the approximation 
produced from the first scf call.

Regular SCF for Pure DFT
Beging SCF calculation for SiH4...
SCF iter 1:
eigtol = 1.000e-02
Rel Vtot Err = 1.146e-07
Total Energy = -6.2542498381078e+00
...
SCF iter 4:
eigtol = 1.257e-09
Rel Vtot Err = 4.190e-09
Total Energy = -6.2542498381079e+00
Convergence is reached!
Elapsed time is 1.005311 seconds.
Etot = -6.2542498381079e+00
Eone-electron = -5.3304963587462e+00
Ehartree = 3.2198596360275e+00
Exc = -2.5983987591201e+00
Eewald = -1.5452143562691e+00
Ealphat = 0.0000000000000e+00
--------------------------------------
Total time used = 4.563e+00
||HX-XD||_F = 2.562e-09

Listing 12 Constructing the ACE operator.

W = ApplyVexx(X);
M = X’ * W;
M = (M + M’)/2;
R = chol(-M);
Y = W / R;
ApplyVexxACE = @(x) -Y * (Y’ * x);

After calling the scf function with the modified option as an 
input, we can reach convergence as reported in Listing 11.

4.4. Algorithm prototype and modification

KSSOLV is designed to enable researchers to easily modify ex-
isting algorithms and prototype new algorithms. To a large ex-
tent, this feature is facilitated by the object-oriented programming 
model supported in MATLAB. By creating Hamiltonian and wave-
function objects and overloading the basic linear algebra opera-
tions with these objects as operands, one can literally translate 
mathematical expressions into MATLAB codes in KSSOLV in a few 
minutes. To give an example, let us take a look at the implemen-
tation of the ACE operator for hybrid functional DFT calculation in 
KSSOLV which is shown in Listing 12.

The ACE operator is defined by (29) which, once ψ j(r)’s are 
discretized and represented by columns of the matrix X , can also 
be written in matrix form as

V̂ ACE = −W M−1W ∗, (37)

where

W = V̂ HSE(X)X, (38)

with V̂ HSE(X) being the matrix representation of the Hartree-Fock 
exchange operator and M = X∗W . Because −M is Hermitian pos-
itive definite, we can rewrite (37) in a symmetric form by per-
forming a Cholesky factorization of −M , i.e., −M = R R∗ with R
13
Listing 13 Profiling for a HSE06 calculation.

profile on;
testHSE06;
save profHSE06 p
profile off;

being upper triangular, and expressing V̂ ACE as V̂ ACE = −Y Y ∗ with 
Y = W R−1.

In Listing 12, we apply the function ApplyVexx, which imple-
ments (38), to the Wavefun object X to obtain another Wavefun
object W. Even though X and W are Wavefun objects, we can treat 
them as matrices and multiply them together in the second line 
of Listing 12 to obtain the matrix M = X∗W . Line 3 in Listing 12
is used to ensure M is numerically Hermitian before the Cholesky 
factorization function chol is applied to -M. The inverse of the 
Cholesky factor R is applied to W to yield the Wavefun object Y by 
solving a set of linear equations using the MATLAB / operator. The
Y object is then used to define a function handle ApplyVexxACE
that can be applied to any Wavefun object of matching dimen-
sions without explicitly forming the ACE operator.

4.5. Performance profiling

MATLAB provides a convenient performance profiling tool that 
allows us to easily analyze the performance features of KSSOLV 
functions and identify potential computational bottlenecks. For ex-
ample, to profile the performance of the HSE06 calculation con-
tained in a testing script named testHSE06.m, we can simply 
issue the following several commands listed in Listing 13.

MATLAB provides a viewer in the Windows Visual interface 
that allows us to clearly see the hierarchical relationship among 
different computational components as well as which function 
takes most of the time. We can further zoom into the most time-
consuming function and identify the line number of the code that 
takes most of the time within that function.

For example, Fig. 5(a) displays a Flame graph of KSSOLV func-
tions called by testHSE06, the most time consuming function is
getVexx, which is used to calculate the exchange potential. By 
clicking on the block containing this function name, we obtain a 
table shown in Fig. 5(b), which lists the line numbers of the most 
time consuming functions contained in getVexx. If we click the 
line number associated with a particular function, we can step in 
the code of that function and analyze the computation performed 
in that function.

Once we have identified the computational bottleneck of HSE06 
calculation, which is in the evaluation of the exchange term, we 
can optimize the performance of KSSOLV by seeking alternative 
implementations of the functions in question or using alternative 
algorithms. For example, as we discussed in section 2.3 and 4.4, 
the use of the ACE algorithm to refactor the exchange operator can 
significantly reduce the computational complexity of applying the 
Hartree-Fock exchange operator to a set of wavefunctions in the 
hybrid functional DFT calculation. Table 2 gives a direct compar-
ison between the cost of hybrid functional DFT calculations with 
and without the use of ACE. We can clearly see that after using 
ACE, the total amount of wall clock time used by scf0 is reduced 
from 76 seconds to 28 seconds. This is mainly due to a signifi-
cant reduction in time spent in the lobpcg eigensolver used for 
the outer iteration. With the use of ACE, the function getVexx
which is used to update the Fock exchange operator, is called only 
5 times (in the 5 outer scf0 iterations), whereas 187 such calls 
are made in the hybrid functional DFT calculation without using 
ACE. Furthermore, the use of the ACE allows us to significantly re-
duce the number of FFTs used to apply the Fock exchange operator 
to a set of wavefunctions. In the ACE enabled hybrid functional cal-



S. Jiao, Z. Zhang, K. Wu et al. Computer Physics Communications 279 (2022) 108424

Fig. 5. Profiling of a HSE06 calculation, (a) The overall profile summary flame graph, (b) Functions hot spot analysis, including the called times of sub-functions, (c) Time 
corresponding to each line of getVexx.
Table 2
Cost comparison between HSE and HSE-ACE calculations. The system calculated here 
is SiH4 with Ecut set to 20 Hartree.

Function name Calls numbers Time(s)

scf0(HSE) 5 75.965
lobpcg(HSE) 59 48.779
getVexx(HSE) 187 49.969
KSFFT.mtimes(HSE) 1851 38.448

scf0(HSE-ACE) 5 28.055
lobpcg(HSE-ACE) 59 13.778
getVexx(HSE-ACE) 5 1.554
KSFFT.mtimes(HSE-ACE) 55 1.362
calculateACE(HSE-ACE) 5 1.554

culation, only 55 times FFTs are used to construct the ACE operator, 
whereas 1851 FFTs are performed when the Fock exchange opera-
tor is applied to a set of wavefunctions in each step of the LOBPCG 
eigensolver. Table 2 also shows that the overhead incurred in con-
structing the ACE operator is relatively small, i.e. 1.5 seconds (used 
by calculateACE) out of 28 seconds used by scf0.

5. Results and discussion

In this section, we give some examples of a few applications 
that can be studied with KSSOLV and demonstrate its accuracy 
and performance. The descriptions of these systems are listed in 
Table 3.

5.1. Accuracy

We first use KSSOLV to perform ground state total energy and 
atomic force calculations, band structure analysis and geometry 
optimization for a few molecules and solids. In all these runs, 
we set the inner SCF convergence tolerance to 10−7 for calcula-
tions that use LDA and PBE functionals, and 10−6 for outer SCF 
convergence tolerance when using the HSE06 functional. We use 
14
QUANTUM ESPRESSO as the baseline for comparison in assessing 
the accuracy of KSSOLV.

5.1.1. Total energy and atomic forces
When comparing with the QE (QUANTUM ESPRESSO) results, 

we compute the total energy difference per atom as well as the 
maximum difference in atomic forces, which are defined by

�E =
(

EKSSOLV
tot − EQE

tot

)
/NA,

�F = max
I

∥∥∥F KSSOLV
I − F QE

I

∥∥∥ ,

where EKSSOLV
tot and EQE

tot are converged total energy levels returned 
from KSSOLV and QE respectively, N A is the total number of atoms 
in each system, and I is an atom index.

To check the accuracy systematically, we measure �E and �F
for each system at several plane-wave cut-off energy (Ecut ) levels 
(from 10 to 100 Hartree). We also use three types of psedopoten-
tial and exchange-correlation functional combinations in KSSOLV 
2.0, which are LDA-HGH, PBE-ONCV and HSE06, respectively. The 
total energy differences for test systems are plotted in Fig. 6. The 
solid black square lines correspond to the LDA-HGH exchange-
correlation functional and psedopotential combination, the solid 
red circle lines correspond to PBE-ONCV, and the solid blue tri-
angle lines correspond to HSE06.

We observe that, in general, the difference between the con-
verged KSSOLV and QE total energies per atom is on the order 
of between 10−6 and 10−4 Hartree, which is sufficiently small. 
For Si64, the energy difference is slightly larger (on the order of 
10−3 Hartree) at some plane-wave cut-off levels. However, these 
differences are acceptable since they are around chemical accu-
racy, which is defined to be 1kcal/mol or 10−3 Hartree, and are 
sufficient for most applications. In previous studies [84], we also 
compared differences in cohesive energies for several test prob-
lems and showed that they match well.

In Fig. 7, we plot the maximum difference in atomic forces be-
tween KSSOLV and QE for all test systems. The magnitude of force 
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Table 3
The performance of KSSOLV on a set of test problems. System: including solid, molecule, nanotube, na: number of atoms, Cell dim: the unit cell size with three dimensions, 
Ne : number of electrons, nk: number of k-points, Functional: exchange-correlation functional, Ecut: cut-off energy, Nr : grids number in real space, Ng : grids number in 
reciprocal space, Scftol : the converge limit of inner SCF, Scf-iter: the iteration number of inner SCF, Phitol : the converge limit of outer SCF, Phi-iter: the iteration number of 
outer SCF, Total time: the total wall clock time of each calculation.

System na Cell dim Ne nk Functional Ecut (Ha) Nr Ng Scftol Scf-iter Phitol Phi-iter Total time (sec)

SiH4 5 20 8 1 PBE 20 531441 34265 10−7 14 - - 17.544
C6H6 12 22.4 × 24.9 × 30.2 30 1 PBE 20 1121302 72079 10−7 18 - - 154.358
Si64 64 20.523 256 1 PBE 20 571,787 37,073 10−7 19 - - 642.018
C60 60 24.573 240 1 PBE 20 970,299 63,317 10−7 20 - - 1174.029
Si216 216 30.783 864 1 PBE 20 1906624 124289 10−7 19 - - 8769.963
Si64 64 20.523 256 1 HSE 20 571,787 37,073 10−7 19 10−6 3 79077.64
Si64 64 20.523 256 1 HSE-ACE 20 571,787 37,073 10−7 19 10−6 4 3493.511
C60 60 24.573 240 1 HSE 20 970299 63317 10−7 20 10−6 3 184672.234
C60 60 24.573 240 1 HSE-ACE 20 970299 63317 10−7 20 10−6 4 5058.289
CNT661 60 38 × 38 × 4.6 96 1 PBE 20 399475 25485 10−7 19 - - 146.720
Si8 8 10.2163 96 64 PBE 20 74088 4553 10−7 14 - - 345.123
Cu4 4 6.83083 32 64 PBE 30 39304 2517 10−5 18 - - 512.685
Fig. 6. Total energy difference between KSSOLV and QE for (a) silane (SiH4) 
molecule, (b) benzene (C6H6) molecule, (c) bulk silicon Si64 and (d) fullerene (C60) 
molecule at different plane-wave cut-off energy levels.

Fig. 7. Maximum difference in atomic forces between KSSOLV and QE for (a) silane 
(SiH4) molecule, (b) benzene (C6H6) molecule, (c) bulk silicon Si64 and (d) fullerene 
(C60) molecule at different plane-wave cut-off energy levels.

difference is generally small and within the range of 10−6 to 10−4

Hartree/Bohr. In some cases, the difference is slightly larger when 
Ecut is relatively small, but becomes sufficiently small when Ecut
reaches 50 Ha or so.
15
Fig. 8. The band structures calculated by KSSOLV and QE using the PBE functional 
for (a) bulk silicon Si8 and (b) bulk copper Cu4 system. The cut-off energies are 20 
Hartree and 30 Hartree for Si8 and Cu4, respectively. All energy levels have been 
shifted to keep the Fermi energy at zero ev.

5.1.2. Band structure
Because KSSOLV 2.0 facilitates k point samplings in the first 

Brillouin zone for solids, we can use it to compute band structures 
of solids and compared them with the results obtained from QE 
also. In Fig. 8, we plot the band structure of Si8 and Cu4 respec-
tively between the � and X k-points. In both cases, the number 
of k-points used in the SCF calculation is 64(4x4x4), we observe 
that the band structures obtained from KSSOLV are in excellent 
agreement with those obtained from QE, and the average numeri-
cal difference of band structure between the two packages is about 
10−9. We can clearly see a band gap between the highest va-
lence band and the lowest conducting band for Si8 which confirms 
the fact that Si is a semiconductor. No band gap can be seen in 
Fig. 8(b) for Cu4, this is consistent with the previous knowledge 
that Cu is a metal.

5.1.3. Geometry optimization
We use KSSOLV 2.0 to optimize the geometry of an isolated wa-

ter (H2O) molecule and compared the optimal H-O bond length, 
and the optimal angle between two H-O bonds with the corre-
sponding experiment values. The initial bond lengths between the 
H and O atoms are set to 0.98523 and 1.53953 Å, respectively, and 
the initial bond angle is set to 38.5624◦ . These are slightly differ-
ent from the experiment value [87] of 0.957 Åfor the bond length 
and 104.5◦ for the bond angle. The BFGS algorithm implemented 
in MATLAB Optimization toolbox function fminunc is used to per-
form the optimization. The convergence of bond length and bond 
angle to the experimentally observed values in the KSSOLV geome-
try optimization function relaxatoms is shown in Fig. 9. We can 
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Fig. 9. Geometric optimization for H2O, the solid black square line, the solid red 
dotted line, and the blue triangle represent two bond lengths and bond angle re-
spectively, the black dotted line represents the experimental value. The total num-
ber of iteration steps is 18 and the initial and final structures are given at the first 
and the last iteration step. The cut-off energy of the calculation is 60 Hartree.

Fig. 10. Geometric optimization for bulk silicon Si64 system, the energy change with 
strain, KSSOLV (the blue square), QE (solid red line), the unit of strain change is 
one percent of the overall structure, from compressive strain (−4%) to tensile strain 
(+5%), the cut-off energy of these calculations is 60 Hartree.

clearly see that convergence is reached after 9 geometry optimiza-
tion steps. And the error of the KSSOLV calculation result differs 
from the experimental value by only one percent.

To give another example, we perform a geometry optimization 
Si64 with respect to the size of the unit cell. The change in unit cell 
size corresponds to the change in the strain applied to the solid. 
To perform the optimization, we sample several unit cell sizes that 
correspond to 0 − 6% changes in applied strain, and compute the 
ground state of Si64 contained in these unit cells. The results are 
compared with those obtained from QE. Fig. 10 shows that the 
KSSOLV results match well with QE results. These results clearly 
show the energy is the lowest at zero strain.

5.2. Performance

In this section, we report the performance of KSSOLV by ap-
plying it to a set of benchmark problems listed in Table 3. The 
version of MATLAB we used is R2021a and the benchmark is 
run on a Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz with 40 
maximum threads. We perform ground state calculation for both 
molecules and solids using either PBE or HSE06 functionals spec-
ified in Table 3. For hybrid functional DFT calculations, the HSE 
exchange-correlation functional and a two-level SCF procedure are 
used. The standard SCF calculation is used as the inner iteration to 
reach self consistency in the electron density for a fixed Fock ex-
change potential. In the outer SCF iteration that we refer to as the 
Phi-iteration, the Fock exchange potential and energy are updated. 
Thus, two different convergence criteria are used in the inner and 
outer iteration.
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We report the wall clock time it takes to complete the calcu-
lation as well as the number of SCF iterations required to reach 
convergence. The convergence criterion (i.e., the SCF error toler-
ance) for each case is listed in the table also.

The first four systems listed in Table 3 were used in the pre-
vious subsections to demonstrate the accuracy of KSSOLV. These 
systems are relatively small and can be solved between tens of 
seconds to tens of minutes. The number of iterations required to 
reach convergence and the wall clock time it takes generally in-
crease with the system size. The largest system we tested is the 
Si216 cluster with 216 atoms and 864 electrons. More than 1 mil-
lion plane-waves are used in this calculation that employs the PBE 
functional. The entire calculation took more than two hours.

The HSE06 functional is used for Si64 and C60 to perform hy-
brid functional calculations for these systems with and without 
using the ACE method. We can see from Table 3 that, without us-
ing ACE, the hybrid functional calculations for these systems are 
two orders of magnitude more expensive than the corresponding 
PBE calculations for the same systems. When ACE is used, the hy-
brid functional calculations are only 4 ∼ 5 times more expensive 
than the corresponding PBE calculations. In previous studies [21], 
we also compared different diagonalization algorithms.

In addition to insulators and semiconductors, we also measure 
the performance of KSSOLV on a metallic system Cu4. The calcu-
lation, which uses 64 k-points, can be completed in less than 10 
minutes.

Because MATLAB can take advantage of multiple threads on a 
many-core CPU to parallelize many computational kernels, we can 
speed up KSSOLV calculation on such a CPU without additional 
parallelization effort. In Fig. 11, we report the parallel scaling of 
KSSOLV when it is used to compute the ground states of four dif-
ferent systems using the PBE functional. We observe that the total 
wall clock time can be reduced by a factor of 5 when the num-
ber of threads is increased from 1 to 8. Increasing the number of 
threads further to 16 leads to an additional reduction in wall clock 
time. However, the reduction factor is much smaller. By default, 
MATLAB generally will try to use the maximum number of threads 
available on the machine being used. As a result, KSSOLV can ben-
efit from the maximum shared memory concurrency available on 
any many-core CPUs.

In addition to reporting the total wall clock time, we also show 
a breakdown of timing among several key computational compo-
nents of KSSOLV. The Hamiltonian wavefunction multiplication (la-
beled by Ham.mtimes), which performs HX = H*X as an over-
loaded matrix-matrix multiplication between a Ham object H and 
a Wavefun object X as explained in section 3.2, constitutes the 
largest cost. This is followed by the cost of Wavefun.mtimes
which performs dense matrix-matrix multiplications between two
Wavefun objects or between a Wavefun object and a regular ma-
trix. The Wavefun.subsref function, which is used to extract 
a subset of wavefunctions, involves mainly data movement and 
copying. Such data movement cannot be easily parallelized. Hence, 
the timing associated with Wavefun.subsref does not decrease 
as the number of threads increases. The VxcPBE function, which 
is used to evaluate the PBE exchange-correlation energy and po-
tential, takes a small fraction of the time. The function vlov2g
is used to convert local pseudopotential on a non-uniform grid in 
real-space to a uniform grid in the reciprocal space in the initial-
ization of the pseudopotential. This one-time cost can be relatively 
large for small systems, but becomes negligible when the system 
size becomes sufficiently large.

6. Conclusion and outlook

KSSOLV 2.0 preserves the main object-oriented design features 
of the original KSSOLV software toolbox for solving the Kohn-Sham 
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Fig. 11. The profiling results of different systems PBE-calculation within 1, 8, 16 threads, including Ham.mtimes, Wavefun.mtimes, Wavefun.subsref, VxcPBE, vlov2g. Systems: 
(a) silane (SiH4) molecule, (b) benzene (C6H6) molecule, (c) bulk silicon Si8, (d) bulk silicon Si64. All of these results come from the whole calculation process.
equations. Such design features make it easy for users to set up a 
problem and obtain a solution. They also enable developers to eas-
ily prototype and test new algorithms. The new version contains 
more advanced algorithms such as ACE, PC-DIIS, ISDF for hybrid 
functional DFT calculations, and new functionalities such as geom-
etry optimization. The software produces accurate results that are 
consistent with those produced by other plane-wave based KS-DFT 
software such as QE. It is efficient for performing KS-DFT elec-
tronic structure calculations for small to medium sized problems. 
It is a great teaching tool that can help students and researchers 
quickly learn how to analyze the electronic structure of molecules 
and solids. At the same time, it can also be a useful research tool 
in chemical and materials sciences for analyzing properties of in-
teresting materials or chemical systems and for developing more 
efficient numerical methods. Although KSSOLV 2.0 is designed to 
perform ground state DFT and geometry optimization calculations, 
several new developments are already underway to include new 
functionalities in the next release. In particular, we plan to include 
functionalities to allow users to perform time-dependent density 
functional theory (TDDFT) calculations and post-DFT calculations 
such as computing GW[88] quasi-particle energies and eigenval-
ues and eigenvectors of the Bethe-Salpeter Hamiltonian [89]. In 
addition, we will integrate KSSOLV with machine learning tools to 
accelerate the materials design and discovery process.
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