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INTERPOLATIVE BUTTERFLY FACTORIZATION∗
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Abstract. This paper introduces the interpolative butterfly factorization for nearly optimal
implementation of several transforms in harmonic analysis, when their explicit formulas satisfy cer-
tain analytic properties and the matrix representations of these transforms satisfy a complementary
low-rank property. A preliminary interpolative butterfly factorization is constructed based on inter-
polative low-rank approximations of the complementary low-rank matrix. A novel sweeping matrix
compression technique further compresses the preliminary interpolative butterfly factorization via a
sequence of structure-preserving low-rank approximations. The sweeping procedure propagates the
low-rank property among neighboring matrix factors to compress dense submatrices in the prelimi-
nary butterfly factorization to obtain an optimal one in the butterfly scheme. For an N×N matrix, it
takes O(N logN) operations and complexity to construct the factorization as a product of O(logN)
sparse matrices, each with O(N) nonzero entries. Hence, it can be applied rapidly in O(N logN)
operations. Numerical results are provided to demonstrate the effectiveness of this algorithm.
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tion, operator compression, nonuniform Fourier transform, Fourier integral operators
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1. Introduction. One key problem in computational harmonic analysis is the
rapid evaluation of various transforms to make large-scale scientific computation fea-
sible. These transforms are essentially matrix-vector multiplications, u = Kg, where
the kernel matrix K is the discrete representation of a transform and the vector g
is the discrete representation of a function to be transformed. Inspired by the idea
of the butterfly algorithm initially proposed in [23] and later extended in [24], the
recently proposed butterfly factorization [19, 20] factorizes a complementary low-rank
matrix K of size N ×N into a product of O(logN) sparse matrices, each with O(N)
nonzero entries. After factorization, the application of K has nearly optimal1 oper-
ation and memory complexity of order N logN . Since a wide range of transforms
in harmonic analysis admits a matrix representation satisfying the complementary
low-rank property [7, 10, 21, 31, 24, 26], the butterfly factorization, once constructed,
is a nearly optimal fast algorithm to evaluate these transforms. However, the con-
struction of the butterfly factorization requires O(N2) operations in [24] and requires
O(N1.5) operations in [19, 20], which might still be too expensive in real applications.
This paper introduces the interpolative butterfly factorization (IBF) to construct the
factorization in O(N logN) operation and memory complexity, if the continuous ker-
nel K is explicitly available. The IBF is a combination of the butterfly algorithm in
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A504 YINGZHOU LI AND HAIZHAO YANG

[7] and a novel structure-preserving matrix compression technique. Hence, the pro-
posed method can be considered as an optimized sparse matrix representation of the
butterfly algorithm in [7] with a smaller prefactor in the operation complexity.

Another key problem in modern large-scale computation is the parallel scalability
of fast algorithms. Although there have been various fast algorithms like the (nonuni-
form) fast Fourier transform (FFT) [1, 13, 14] and the FFT in polar and spherical
coordinates [18, 27, 29, 31], the parallel scalability of some of these traditional algo-
rithms might be limited in high-performance computing. This motivates much effort
to improve their parallel scalability [2, 25, 28, 35]. For the same purpose, the IBF
is proposed as a general framework for highly parallel scalable implementation of a
wide range of transforms in harmonic analysis. Since the construction of the butter-
fly factorization is just a few essentially independent low-rank approximations and
the application is a sequence of small matrix-vector multiplications, the butterfly fac-
torization framework significantly reduces communication if implemented in parallel
computation.

To be more specific, the IBF is proposed for the rapid application of integral
transforms of the form

(1) u(x) =

∫
Rd
a(x, ξ)e2πıΦ(x,ξ)g(ξ)dξ,

where d is the dimension, and K(x, ξ) = a(x, ξ)e2πıΦ(x,ξ) is the kernel function that
satisfies the following properties.

Assumption 1.1. The smoothness properties are as follows:
• a(x, ξ) is an amplitude function that is smooth in both x and ξ;
• Φ(x, ξ) is a phase function that is real analytic for x and ξ and obeys the

homogeneity condition of degree 1 in ξ, namely, Φ(x, λξ) = λΦ(x, ξ) for
λ > 0.

This transform is also known as the Fourier integral operator (FIO). FIOs are
a wide class of operators in harmonic analysis including the (nonuniform) Fourier
transform, pseudodifferential operators, and the generalized Radon transform. All
these are popular tools in computational physics and chemistry [16, 25, 30, 33] and
imaging science [6, 8, 22, 36]. For higher-dimensional FIOs, the phase function might
not be smooth when ξ = 0. Fortunately, the IBF can be adapted to this case following
the idea in the multiscale butterfly algorithm in [21].

In most examples, since a(x, ξ) is a smooth symbol of order zero and type (1, 0)
[3, 5, 9, 32], a(x, ξ) is numerically low-rank in the joint X and Ω domain and its
numerical treatment is relatively easy. Therefore, we will simplify the problem by
assuming a(x, ξ) = 1 in the following discussion.

In a typical setting, it is often assumed that the function g(ξ) decays sufficiently
fast so that one can embed the problem in a sufficiently large periodic cell. Without
loss of generality, a simple discretization considers functions given on a Cartesian grid

(2) X =
{
x =

( n1

N1/d
, . . . ,

nd
N1/d

)
, 0 ≤ n1, . . . , nd < N1/d with n1, . . . , nd ∈ Z

}
in a unit box in x and defines the discrete integral transform by

(3) u(x) =
∑
ξ∈Ω

K(x, ξ)g(ξ), x ∈ X,

where

(4) Ω =

{
ξ = (n1, . . . , nd),−

N1/d

2
≤ n1, . . . , nd <

N1/d

2
with n1, . . . , nd ∈ Z

}
.

D
ow

nl
oa

de
d 

04
/0

7/
17

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERPOLATIVE BUTTERFLY FACTORIZATION A505

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Fig. 1. Hierarchical decomposition of the row and column indices of a one-dimensional com-
plementary low-rank matrix of size 16 × 16. The tree TX (TΩ) has a root containing 16 column
(row) indices and leaves containing a single column (row) index. The rectangles indicate some of
the low-rank submatrices.

Using the notation in numerical linear algebra, the evaluation of (3) is a matrix-vector
multiplication u = Kg. Under Assumption 1.1, it can be proved that K is essentially
complementary low-rank [7, 21].

1.1. Complementary low-rank matrices and IBF. Complementary low-
rank matrices have been widely studied in [11, 12, 19, 20, 24, 23, 34]. Let X and
Ω be point sets (not necessary uniformly distributed) in Rd for some dimension d.
When the kernel K(x, ξ) is discretized on X ×Ω, and points in X and Ω are indexed
with row and column indices in the matrix K. For simplicity, we also use X and
Ω to denote the sets of row and column indices. Two trees TX and TΩ of the same
depth L = O(logN), associated with X and Ω, respectively, are constructed by dyadic
partitioning. Denote the root level of the tree as level 0 and the leaf one as level L.
Such a matrix K of size O(N)×O(N) is said to satisfy the complementary low-rank
property if for any level `, any node A in TX at level `, and any node B in TΩ at
level L − `, the submatrix KA,B , obtained by restricting K to the rows indexed by
the points in A and the columns indexed by the points in B, is numerically low-rank,
i.e., for a given precision ε there exists a low-rank approximation of KA,B with an
error bounded by ε and the rank bounded polynomially in log(1/ε) and is independent
of N . See Figure 1 for an illustration of low-rank submatrices in a complementary
low-rank matrix of size 16× 16.

It will be shown that, for a complementary low-rank matrix K, the matrix-vector
multiplication u = Kg can be carried out efficiently via a preliminary IBF constructed
by interpolative low-rank approximations:

K ≈ ULGL−1 · · ·GhMh(Hh)∗ · · · (H1)∗(V 0)∗,

where the depth L = O(logN) of TX and TΩ is assumed to be even, h = L/2 is
a middle level index, and all factors are sparse matrices with O(N) nonzero entries
and a large prefactor. Dense blocks in these sparse factors come from interpolative
low-rank approximations of low-rank submatrices as illustrated in Figure 1. When
the kernel function K satisfies Assumption 1.1, each low-rank approximation of these
submatrices can be constructed explicitly by Lagrange interpolation with q Chebyshev
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A506 YINGZHOU LI AND HAIZHAO YANG

grid points in each dimension, resulting in dense submatrices of size qd × qd in sparse
factors. Hence, all the matrix factors are available explicitly. However, the low-rank
approximation by interpolation is not optimal in the sense that it overestimates the
numerical rank r0 of the low-rank matrix, i.e., qd > r0. Hence, dense blocks in these
sparse factors can be further compressed to smaller submatrices of size r0 × r0 by a
truncated SVD.

The preliminary IBF above can be further compressed by a novel sweeping matrix
compression method in two stages. In the sweep-out stage, a sequence of structure-
preserving matrix compression is conducted,

Mh ≈ ChM̄h(Rh)
∗
,

G`C` ≈ C`+1Ḡ`

for ` = h, h+ 1, . . . , L− 1,

(H`R`)∗ ≈ (H̄`)∗(R`−1)∗

for ` = h, h− 1, . . . , 1, starting from the middle matrix Mh and moving toward outer
matrices. Let

ŪL = ULCL

and

V̄ 0 = V 0R0;

then we have a further compressed factorization

K ≈ ŪLḠL−1 · · · ḠhM̄h(H̄h)∗ · · · (H̄1)∗(V̄ 0)∗,

where all sparse factors have dense submatrices of size closer to r0×r0. ŪL and V̄ 0 are
block-diagonal matrices and the sizes of diagonal blocks depend on the distribution of
points in X and Ω. In the case of nonuniform distribution, there might be diagonal
blocks with size smaller than r0×r0 in ŪL and V̄ 0. This motivates the sweep-in stage
that contains another sequence of structure-preserving matrix compression:

ŪL ≈ U̇LC̄L,
V̄ 0 ≈ V̇ 0R̄0,

C̄`+1Ḡ` ≈ Ġ`C̄`

for ` = L− 1, L− 2, . . . , h,

(H̄`)∗(R̄`−1)∗ ≈ (R̄`)∗(Ḣ`)∗

for ` = 1, 2, . . . , h, starting from outer matrices to the middle matrix. Finally, let
Ṁh = C̄hM̄h(R̄h)∗, and one reaches the optimal IBF

(5) K ≈ U̇LĠL−1 · · · ĠhṀh(Ḣh)∗ · · · (Ḣ1)∗(V̇ 0)∗,

where all sparse factors have dense submatrices of nearly optimal size.
The optimal IBF represents K as a product of L + 3 sparse matrices, where all

factors are sparse matrices with O(N) nonzero entries, and the prefactor of O(N) is
nearly optimal. Once constructed, the cost of applying K to a given vector g ∈ CN
is O(N logN).
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INTERPOLATIVE BUTTERFLY FACTORIZATION A507

1.2. Content. The rest of this paper is organized as follows. Section 2 briefly
reviews low-rank factorization techniques and the butterfly algorithm in [7]. Section
3 describes the one-dimensional preliminary IBF based on interpolative low-rank fac-
torization. Section 4 introduces a structure-preserving matrix compression technique
and a sweeping method to further compress the preliminary IBF into an optimal one.
Multidimensional extension to a general case when the phase function has singularity
at ξ = 0 is discussed in section 5. In section 6, numerical examples are provided to
demonstrate the efficiency of the proposed algorithms. Finally, section 7 concludes
this paper with a short discussion.

2. Preliminaries.

2.1. Low-rank factorization. This section reviews basic tools for efficient low-
rank approximations that are repeatedly used in this paper.

Randomized low-rank approximation. For a matrix Z ∈ Cm×n, we define a
rank-r approximate SVD of Z as

Z ≈ U0Σ0V
∗
0 ,

where U0 ∈ Cm×r is unitary, Σ0 ∈ Rr×r is diagonal, and V0 ∈ Cn×r is unitary. A
straightforward method to obtain the optimal rank-r approximation of Z is to compute
its truncated SVD, where U0 is the matrix with the first r left singular vectors, Σ0 is
a diagonal matrix with the first r singular values in decreasing order, and V0 is the
matrix with the first r right singular vectors.

The original truncated SVD of Z takes O(mnmin(m,n)) operations. More effi-
cient tools have been proposed by introducing randomness in computing approximate
SVDs for numerically low-rank matrices. To name a few, the one in [15] is based on
applying the matrix to random vectors while another one in [12, 32] relies on sam-
pling the matrix entries randomly. Throughout this paper, the second one is applied
to compute large low-rank approximations because it takes only linear operations with
respect to the matrix size. Readers are referred to [12, 32] for detailed implementation.

When an approximate SVD Z ≈ U0Σ0V
∗
0 is ready, it can be rearranged in several

equivalent ways. First, one can write

Z ≈ USV ∗,

where

(6) U = U0Σ
1/2
0 , S = I and V ∗ = Σ

1/2
0 V ∗0 ,

so that the left and right factors inherit similar singular values of the original numerical
low-rank matrix. Depending on certain applications, sometimes it is better to write
the approximation as

Z ≈ UV ∗,

where

(7) U = U0 and V ∗ = Σ0V
∗
0 ,

or

(8) U = U0Σ0 and V ∗ = V ∗0

so that only one factor shares the singular values of Z.
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A508 YINGZHOU LI AND HAIZHAO YANG

Interpolative low-rank approximation. The randomized low-rank approxi-
mation is efficient if a kernel matrix is given, while the interpolative low-rank approxi-
mation is efficient when the explicit formula of the kernel function K(x, ξ) = e2πıΦ(x,ξ)

is available, because the approximation can be constructed explicitly.
Following the theorems in [7, 21], it can be proved that the kernel function

K(x, ξ) = e2πıΦ(x,ξ) satisfies the complementary low-rank property if it fulfills the
properties in Assumption 1.1. We will refresh the key idea here for one-dimensional
kernels. Let the sets X and Ω refer to the sets defined in (2) and (4). Let A and B be
a box pair in the dyadic trees TX and TΩ such that their levels satisfy `A + `B = L.
Then a low-rank separated representation

K(x, ξ) = e2πıΦ(x,ξ) ≈
rε∑
t=1

αABt (x)βABt (ξ) for x ∈ A, ξ ∈ B

exists and can be constructed via the interpolative low-rank approximation as follows.
Let

(9) RAB(x, ξ) := Φ(x, ξ)− Φ(cA, ξ)− Φ(x, cB) + Φ(cA, cB),

where cA and cB are the centers of A and B, respectively; then the kernel can be
written as

(10) e2πıΦ(x,ξ) = e2πıΦ(cA,ξ)e2πıΦ(x,cB)e−2πıΦ(cA,cB)e2πıRAB(x,ξ).

Hence, the low-rank approximation of K(x, ξ) in A × B is reduced to the low-rank

approximation of e2πıRAB(x,ξ).
Let wA and wB denote the lengths of intervals A and B, respectively. A Lagrange

interpolation with Chebyshev points in x when wA ≤ 1/
√
N and in ξ when wB ≤

√
N

is applied to construct the low-rank approximation of e2πıRAB(x,ξ). For this purpose,
we associate with each interval a Chebyshev grid as follows.

For a fixed integer r, the Chebyshev grid of order r on [−1/2, 1/2] is defined by{
zt =

1

2
cos

(
tπ

r − 1

)}
0≤t≤r−1

.

A grid adapted to an interval A with center cA and length wA is then defined via
shifting and scaling as

{xt}t=0,1,...,r−1 = {cA + wAzt}t=0,1,...,r−1.

Given a set of grid points {xt}t=0,1,...,r−1 in A, define Lagrange interpolation polyno-
mials MA

t (x) taking value 1 at xt and 0 at the other Chebyshev grid points

MA
t (x) =

∏
0≤j≤r−1,j 6=t

x− xj
xt − xj

.

Similarly, MB
t is denoted as the Lagrange interpolation polynomials for the interval B.

Now we are ready to construct the low-rank approximation of e2πıRAB(x,ξ) with
rε Chebyshev points for ε-accuracy by interpolation:

• when wB ≤
√
N , the Lagrange interpolation of e2πıRAB(x,ξ) in ξ on a Cheby-

shev grid {gBt }1≤t≤rε adapted to B obeys

(11) e2πıRAB(x,ξ) ≈
rε∑
t=1

e2πıRAB(x,gBt )MB
t (ξ) ∀x ∈ A,∀ξ ∈ B;
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INTERPOLATIVE BUTTERFLY FACTORIZATION A509

• when wA ≤ 1/
√
N , the Lagrange interpolation of e2πıRAB(x,ξ) in x on a

Chebyshev grid {gAt }1≤t≤rε adapted to A obeys

(12) e2πıRAB(x,ξ) ≈
rε∑
t=1

MA
t (x)e2πıRAB(gAt ,ξ) ∀x ∈ A,∀ξ ∈ B.

Finally, we are ready to construct the low-rank approximation for the kernel
e2πıΦ(x,ξ):

• when wB ≤
√
N , we multiply (11) with e2πıΦ(cA,ξ)e2πıΦ(x,cB)e−2πıΦ(cA,cB),

which gives that ∀x ∈ A,∀ξ ∈ B

(13) e2πıΦ(x,ξ) ≈
rε∑
t=1

e2πıΦ(x,gBt )
(
e−2πıΦ(cA,g

B
t )MB

t (ξ)e2πıΦ(cA,ξ)
)

;

• when wA ≤ 1/
√
N , multiply (12) with e2πıΦ(cA,ξ)e2πıΦ(x,cB)e−2πıΦ(cA,cB) and

obtain that ∀x ∈ A,∀ξ ∈ B

(14) e2πıΦ(x,ξ) ≈
rε∑
t=1

(
e2πıΦ(x,cB)MA

t (x)e−2πıΦ(gAt ,cB)
)
e2πıΦ(gAt ,ξ).

The interpolative low-rank factorization can be constructed on the fly from the
explicit formulas above, which is the main advantage over randomized low-rank ap-
proximations. However, since it relies on the information on a fixed Chebyshev grid,
the number of Chebyshev points must be sufficiently large to obtain an accurate ap-
proximation, i.e., the ε-separation rank rε might be greater than the true numerical
rank with ε accuracy.

2.2. Butterfly algorithm. This section provides a brief description of the over-
all structure of the butterfly algorithm based on the interpolative low-rank approxi-
mation in the previous section. In this section, X and Ω refer to two general sets of
N points in R, respectively. With no loss of generality, we assume the points in these
two sets are distributed quasi-uniformly but they are not necessarily the sets defined
in (2) and (4).

Given an input {g(ξ), ξ ∈ Ω}, the goal is to compute the potentials {u(x), x ∈ X}
defined by

u(x) =
∑
ξ∈Ω

K(x, ξ)g(ξ), x ∈ X,

where K(x, ξ) is a kernel function. The main data structure of the butterfly algorithm
is a pair of dyadic trees TX and TΩ. Recall that for any pair of intervals A × B ∈
TX × TΩ obeying the condition `A + `B = L, the submatrix {K(x, ξ)}x∈A,ξ∈B is
approximately of a constant rank. An explicit method to construct its low-rank
approximation is given by the interpolative low-rank approximation. More precisely,
for any ε > 0, there exists a constant rε independent of N and two sets of functions
{αABt (x)}1≤t≤rε and {βABt (ξ)}1≤t≤rε given in (13) or (14) such that

(15)

∣∣∣∣∣K(x, ξ)−
rε∑
t=1

αABt (x)βABt (ξ)

∣∣∣∣∣ ≤ ε ∀x ∈ A,∀ξ ∈ B.D
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TX TΩ

L
2

L
2

Fig. 2. Trees of the row and column indices. Left: TX for the row indices X. Right: TΩ for
the column indices Ω. The interaction between A ∈ TX and B ∈ TΩ starts at the root of TX and
the leaves of TΩ.

For a given interval B in Ω, define uB(x) to be the restricted potential over the
sources ξ ∈ B

uB(x) =
∑
ξ∈B

K(x, ξ)g(ξ).

The low-rank property gives a compact expansion for {uB(x)}x∈A as summing (15)
over ξ ∈ B with coefficients g(ξ) gives∣∣∣∣∣∣uB(x)−

rε∑
t=1

αABt (x)

∑
ξ∈B

βABt (ξ)g(ξ)

∣∣∣∣∣∣ ≤
∑
ξ∈B

|g(ξ)|

 ε ∀x ∈ A.

Therefore, if one can find coefficients {λABt }1≤t≤rε obeying

(16) λABt ≈
∑
ξ∈B

βABt (ξ)g(ξ), 1 ≤ t ≤ rε,

then the restricted potential {uB(x)}x∈A admits a compact expansion∣∣∣∣∣uB(x)−
rε∑
t=1

αABt (x)λABt

∣∣∣∣∣ ≤
∑
ξ∈B

|g(ξ)|

 ε ∀x ∈ A.

The butterfly algorithm below provides an efficient way for computing {λABt }1≤t≤rε
recursively. The general structure of the algorithm consists of a top-down traversal
of TX and a bottom-up traversal of TΩ, carried out simultaneously. A schematic
illustration of the data flow in this algorithm is provided in Figure 2.

Algorithm 2.1. The butterfly algorithm is as follows:
1. Preliminaries. Construct the trees TX and TΩ.
2. Initialization. Let A be the root of TX . For each leaf interval B of TΩ, con-

struct the expansion coefficients {λABt }1≤t≤rε for the potential {uB(x)}x∈A
by simply setting

(17) λABt =
∑
ξ∈B

βABt (ξ)g(ξ), 1 ≤ t ≤ rε.
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INTERPOLATIVE BUTTERFLY FACTORIZATION A511

By the interpolative low-rank approximation, we can define the expansion
coefficients {λABt }1≤t≤rε by

(18) λABt := e−2πıΦ(cA,g
B
t )
∑
ξ∈B

(
MB
t (ξ)e2πıΦ(cA,ξ)g(ξ)

)
.

3. Recursion. For ` = 1, 2, . . . , L/2, visit level ` in TX and level L − ` in TΩ.
For each pair (A,B) with `A = ` and `B = L − `, construct the expansion
coefficients {λABt }1≤t≤rε for the potential {uB(x)}x∈A using the low-rank rep-
resentation constructed at the previous level. Let P be A’s parent and C be a
child of B. Throughout, we shall use the notation C � B when C is a child
of B. At level ` − 1, the expansion coefficients {λPCs }1≤s≤rε of {uC(x)}x∈P
are readily available and we have∣∣∣∣∣uC(x)−

rε∑
s=1

αPCs (x)λPCs

∣∣∣∣∣ ≤
∑
ξ∈C

|g(ξ)|

 ε ∀x ∈ P.

Since uB(x) =
∑
C�B u

C(x), the previous inequality implies that∣∣∣∣∣uB(x)−
∑
C�B

rε∑
s=1

αPCs (x)λPCs

∣∣∣∣∣ ≤
∑
ξ∈B

|g(ξ)|

 ε ∀x ∈ P.

Since A ⊂ P , the above approximation is of course true for any x ∈ A.
However, since `A+`B = L, the sequence of restricted potentials {uB(x)}x∈A
also has a low-rank approximation of size rε, namely,∣∣∣∣∣uB(x)−

rε∑
t=1

αABt (x)λABt

∣∣∣∣∣ ≤
∑
ξ∈B

|g(ξ)|

 ε ∀x ∈ A.

Combining the last two approximations, we obtain that {λABt }1≤t≤rε should
obey

(19)

rε∑
t=1

αABt (x)λABt ≈
∑
C�B

rε∑
s=1

αPCs (x)λPCs ∀x ∈ A.

This is an overdetermined linear system for {λABt }1≤t≤rε when {λPCs }1≤s≤rε,
C�B are available. The butterfly algorithm uses an efficient linear transforma-
tion approximately mapping {λPCs }1≤s≤rε,C�B into {λABt }1≤t≤rε as follows:

(20) λABt := e−2πıΦ(cA,g
B
t )
∑
C�B

rε∑
s=1

MB
t (gCs )e2πıΦ(cA,g

C
s )λPCs .

4. Switch. For the levels visited, the Chebyshev interpolation is applied in vari-
able ξ, while the interpolation is applied in variable x for levels ` > L/2.
Hence, we are switching the interpolation method at this step. Now we are
still working on level ` = L/2 and the same domain pairs (A,B) in the last
step. Let λABs denote the expansion coefficients obtained by Chebyshev inter-
polation in variable ξ in the last step. Correspondingly, {gBs }s are the grid
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A512 YINGZHOU LI AND HAIZHAO YANG

points in B in the last step. We take advantage of the interpolation in vari-
able x in A and generate grid points {gAt }1≤t≤rε in A. Then we can define
new expansion coefficients

λABt :=

rε∑
s=1

e2πıΦ(gAt ,g
B
s )λABs .

5. Recursion. Similar to the discussion in step 3, we go up in tree TΩ and down
in tree TX at the same time until we reach the level ` = L. We construct the
approximation functions by Chebyshev interpolation in variable x as follows:

αABt (x) = e2πıΦ(x,cB)MA
t (x)e−2πıΦ(gAt ,cB),βABt (ξ) = e2πıΦ(gAt ,ξ).(21)

Hence, the new expansion coefficients {λABt }1≤t≤rε can be defined as

(22) λABt :=
∑
C�B

e2πıΦ(gAt ,cC)
rε∑
s=1

(
MP
s (gAt )e−2πıΦ(gPs ,cC)λPCs

)
,

where again P is A’s parent and C is a child interval of B.
6. Termination. Finally, ` = L and set B to be the root node of TΩ. For each

leaf interval A ∈ TX , use the constructed expansion coefficients {λABt }1≤t≤rε
in (22) to evaluate uB(x) for each x ∈ A,

u(x) = uB(x) =

rε∑
t=1

αABt (x)λABt

= e2πıΦ(x,cB)
rε∑
t=1

(
MA
t (x)e−2πıΦ(gAt ,cB)λABt

)
.

(23)

3. Preliminary IBF. This section presents the preliminary IBF for a matrix
K ∈ CN×N when its kernel function satisfies Assumption 1.1. In fact, the preliminary
IBF is a matrix representation of the butterfly algorithm [7]. Similar to the butterfly
algorithm, we adopt the same notation of point sets X and Ω and trees TX and TΩ

of depth L (assumed to be an even number). At each level `, ` = 0, . . . , L, we denote
the ith node at level ` in TX as A`i for i = 0, 1, . . . , 2` − 1 and the jth node at level
L− ` in TΩ as BL−`j for j = 0, 1, . . . , 2L−`−1. These nodes naturally partition K into

O(N) submatrices KA`i ,B
L−`
j

. For simplicity, we write K`
i,j := KA`i ,B

L−`
j

, where the

superscript is used to indicate the level (in TX). With abuse of notation, sometimes we
use the subscripts i, j and the superscript ` on a matrix or a vector corresponding the
domain pair (A`i , B

L−`
j ) for simplicity, although it is not a submatrix or a subvector

restricted in (A`i , B
L−`
j ).

The preliminary IBF is based on the observation that the butterfly algorithm in
section 2.2 can be written in a form of matrix factorization. The operations in steps 2
to 6 in Algorithm 2.1 are essentially a sequence of matrix-vector multiplications with
O(logN) multiplications, each matrix of which has only O(r2

εN) nonzero entries.
Since all the operations are given explicitly based on Chebyshev interpolation, these
sparse matrices can be formed by explicit formulas. By formulating these matrices
step by step following the flow in Algorithm 2.1, the preliminary IBF is proposed as
follows:
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INTERPOLATIVE BUTTERFLY FACTORIZATION A513

1. Preliminaries. Construct the trees TX and TΩ.
2. Initialization. At level ` = 0, for each j = 0, 1, . . . , 2L − 1, let A be Ω and
B be BLj of TΩ. Construct the expansion coefficients {λABt }1≤t≤rε for the

potential {uB(x)}x∈A by simply setting

(24) λABt := e−2πıΦ(cA,g
B
t )
∑
ξ∈B

(
MB
t (ξ)e2πıΦ(cA,ξ)g(ξ)

)
.

For each j = 0, 1, . . . , 2L−1, a column vector Λ0
j corresponding to the domain

pair (A,B) = (Ω, BLj ) is defined as

Λ0
j =

λ
AB
1
...

λABrε

 .

Let (V 0
j )∗ ∈ Crε×O(1) represent the linear transformation in (24) and g0

j be

the vector representing g(ξ) for ξ ∈ BLj . Then we have

(25) Λ0
j = (V 0

j )∗g0
j .

As we shall see later, the conjugate transpose ∗ is applied for the purpose
of notation consistency. By assembling the matrix-vector multiplications in
(25), all the operations in this step can be written as

Λ0 =

 Λ0
0
...

Λ0
2L−1

 = (V 0)∗g,

where

V 0 = diag
{
V 0

0 , V
0
1 , . . . , V

0
2L−1

}
.

3. Recursion. For ` = 1, 2, . . . , L/2, visit level ` in TX and level L− ` in TΩ. At
each level `, for each pair (A,B) with `A = ` and `B = L − `, construct the
expansion coefficients {λABt }1≤t≤rε using the low-rank representation con-
structed at the previous level (` = 0 is the initialization step). Let P be A’s
parent and C be a child of B. An efficient linear transformation approxi-
mately mapping {λPCs }1≤s≤rε,C�B into {λABt }1≤t≤rε is constructed by

(26) λABt := e−2πıΦ(cA,g
B
t )
∑
C�B

rε∑
s=1

MB
t (gCs )e2πıΦ(cA,g

C
s )λPCs .

At each level `, for each i = 0, 1, . . . , 2` − 1 and j = 0, 1, . . . , 2L−` − 1, a
column vector Λ`i,j is defined as

(27) Λ`i,j =

λ
AB
1
...

λABrε

 ∈ Crε ,

D
ow

nl
oa

de
d 

04
/0

7/
17

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A514 YINGZHOU LI AND HAIZHAO YANG

where the domain pair (A,B) = (A`i , B
L−`
j ). For a fixed j, stacking vectors

{Λ`i,j}i together forms a larger column vector Λ`j and stacking vectors {Λ`j}j
together forms a column vector Λ`,

Λ`j =

 Λ`0,j
...

Λ`2`−1,j

 , Λ` =

 Λ`0
...

Λ`2L−`−1

 .

The linear transformation in (26) maps two small column vectors Λ`−1
i,2j and

Λ`−1
i,2j+1 at the previous level ` − 1 to a small column vector Λ`2i,j if A is the

first child of P (or Λ`2i+1,j if A is the second child of P ) at the current level

` ∀ i = 0, 1, . . . , 2`−1 − 1 and j = 0, 1, . . . , 2L−` − 1. Hence, for each pair
(i, j), the linear transformation in (26) can be written as a matrix-vector
multiplication

(28) Λ`2i,j =
(
H`

2i,2j H`
2i,2j+1

)( Λ`−1
i,2j

Λ`−1
i,2j+1

)
,

where H`
2i,2j ∈ Crε×rε and H`

2i,2j+1 ∈ Crε×rε , or

(29) Λ`2i+1,j =
(
H`

2i+1,2j H`
2i+1,2j+1

)( Λ`−1
i,2j

Λ`−1
i,2j+1

)
,

where H`
2i+1,2j ∈ Crε×rε and H`

2i+1,2j+1 ∈ Crε×rε . Assemble the above small
matrices together to get

H`
j =



H`
0,2j H`

1,2j

H`
2,2j H`

3,2j

. . .

H`
2`−2,2j H`

2`−1,2j

H`
0,2j+1 H`

1,2j+1

H`
2,2j+1 H`

3,2j+1

. . .

H`
2`−2,2j+1 H`

2`−1,2j+1


for j = 0, 1, . . . , 2L−` − 1 and

H` =


H`

0

H`
1

. . .

H`
2L−`−1

 ,

then all the operations in this step can be represented by a large matrix-vector
multiplication

Λ` = (H`)∗Λ`−1

for ` = 1, 2, . . . , L/2.
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4. Switch. For the levels visited, the Chebyshev interpolation is applied in vari-
able ξ, while the interpolation is applied in variable x for levels ` > L/2.
Hence, we are switching the interpolation method at this step. Now we
are still working at level ` = L/2 and the same domain pairs (A,B) =

(A
L/2
i , B

L/2
j ) in the last step. Recall that ΛL/2 denote the expansion co-

efficients obtained by Chebyshev interpolation in variable ξ in the last step.
Correspondingly, {gBs }s are the grid points in B in the last step. We take
advantage of the interpolation in variable x in A and generate grid points
{gAt }1≤t≤rε in A. Then we can define new expansion coefficients for Cheby-
shev interpolation in variable x for future steps as

(30) λABt :=

rε∑
s=1

e2πıΦ(gAt ,g
B
s )λABs .

Let M̃
L/2
i,j ∈ Crε×rε represent the linear transformation that is introduced

by {e2πıΦ(gAt ,g
B
s )}1≤t≤rε,1≤s≤rε for i, j = 0, 1, . . . , 2L/2 − 1. Then (30) is

equivalent to

Λ̃
L/2
i,j = M̃

L/2
i,j Λ

L/2
i,j

for each domain pair (A,B) = (A
L/2
i , B

L/2
j ). Recall that

Λ
L/2
j =


Λ
L/2
0,j
...

Λ
L/2

2L/2−1,j

 and ΛL/2 =


Λ
L/2
0
...

Λ
L/2

2L/2−1

 .

If we define the expansion coefficients in a new order by

Λ̃
L/2
i =


Λ̃
L/2
i,0
...

Λ̃
L/2

i,2L/2−1

 and Λ̃L/2 =


Λ̃
L/2
0
...

Λ̃
L/2

2L/2−1

 ,

then all the operations in (30) for all domain pairs can be represented by a
large matrix-vector multiplication

Λ̃L/2 = ML/2ΛL/2,

where

ML/2 =


M

L/2
0,0 M

L/2
0,1 · · · M

L/2

0,2L/2−1

M
L/2
1,0 M

L/2
1,1 M

L/2

1,2L/2−1
...

. . .

M
L/2

2L/2−1,0
M

L/2

2L/2−1,1
M

L/2

2L/2−1,2L/2−1

 ∈ CrεN×rεN

and M
L/2
i,j ∈ Crε

√
N×rε

√
N is also a 2L/2 × 2L/2 block matrix with the only

nonzero block at the location (j, i) being M̃
L/2
i,j ∈ Crε×rε . By an abuse of

notation, we drop the tilde notation ·̃ of the expansion coefficients in the
second half of the algorithm description.
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5. Recursion. Similar to the discussion in step 3, we go up in tree TΩ and down
in tree TX at the same time for all level ` = L/2 + 1, . . . , L. At each level
`, for any domain pair (A,B) = (A`i , B

L−`
j ), for i = 0, 1, . . . , 2` − 1 and j =

0, 1, . . . , 2L−` − 1, we construct the new expansion coefficients {λABt }1≤t≤rε
by

(31) λABt :=
∑
C�B

e2πıΦ(gAt ,cC)
rε∑
s=1

(
MP
s (gAt )e−2πıΦ(gPs ,cC)λPCs

)
,

where again P is A’s parent and C is a child interval of B. The coefficients
are assembled as

Λ`i,j =

λ
AB
1
...

λABrε

 , Λ`i =

 Λ`i,0
...

Λ`i,2L−`−1

 , and Λ` =

 Λ`0
...

Λ`2`−1

 ,

for i = 0, 1, . . . , 2` − 1, j = 0, 1, . . . , 2L−` − 1.
Similarly to the first recursion step, the linear transformation in (31) maps
two small column vectors Λ`−1

i,2j and Λ`−1
i,2j+1 at the previous level ` − 1 to

a small column vector Λ`2i,j if A is the first child of P (or Λ`2i+1,j if A is

the second child of P ) at the current level ` ∀ i = 0, 1, . . . , 2`−1 − 1 and
j = 0, 1, . . . , 2L−` − 1. Hence, for each pair (i, j), the linear transformation
in (31) can be written as a matrix-vector multiplication

(32) Λ`2i,j =
(
G`−1

2i,2j G`−1
2i,2j+1

)( Λ`−1
i,2j

Λ`−1
i,2j+1

)
,

where G`−1
2i,2j ∈ Crε×rε and G`−1

2i,2j+1 ∈ Crε×rε , or

(33) Λ`2i+1,j =
(
G`−1

2i+1,2j G`−1
2i+1,2j+1

)( Λ`−1
i,2j

Λ`−1
i,2j+1

)
,

where G`−1
2i+1,2j ∈ Crε×rε and G`−1

2i+1,2j+1 ∈ Crε×rε . Assemble the above small
matrices together to get

G`−1
i =



G`−1
2i,0 G`−1

2i,1

G`−1
2i,2 G`−1

2i,3

. . .

G`−1

2i,2L−`−2
G`−1

2i,2L−`−1

G`−1
2i+1,0 G`−1

2i+1,1

G`−1
2i+1,2 G`−1

2i+1,3

. . .

G`−1

2i+1,2L−`−2
G`−1

2i+1,2L−`−1


for i = 0, 1, . . . , 2`−1 − 1 and

G`−1 =


G`−1

0

G`−1
1

. . .

G`−1
2`−1−1
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then all the operations in this step can be represented by a large matrix-vector
multiplication

Λ` = G`−1Λ`−1

for ` = L/2 + 1, . . . , L.
6. Termination. Finally, ` = L again and set B = Ω. For each leaf interval
A = ALi ∈ TX , i = 0, 1, . . . , 2L − 1, use the constructed expansion coefficients
δL in the last step to evaluate uB(x) for each x ∈ A,

u(x) = uB(x) =

rε∑
t=1

αABt (x)λABt

= e2πıΦ(x,cB)
rε∑
t=1

(
MA
t (x)e−2πıΦ(gAt ,cB)λABt

)
.

(34)

For each domain pair (A,B) = (ALi ,Ω), let ULi ∈ CO(1)×rε be the matrix
representing the linear transformation in (34). Define

UL = diag
{
UL0 , U

L
1 , . . . , U

L
2L−1

}
.

By the same argument in the initialization step, the matrix-vector multipli-
cation format of all the operations in this step is

u = ULΛL.

In sum, by the discussion above, K is approximated by the preliminary IBF as

K ≈ ULGL−1 · · ·GL/2ML/2(HL/2)∗ · · · (H1)∗(V 0)∗.

Since the total number of nonzero entries of the above sparse factors is O(r2
εN logN)

and each factor can be constructed explicitly by the Chebyshev interpolation, the op-
eration and memory complexity of constructing and applying the IBF is O(r2

εN logN).

4. Optimal IBF. Recall that at each level ` the kernel matrix K restricted in a
domain pair (A,B) = (A`i , B

L−`
j ), denoted as K`

ij , is a numerically low-rank matrix.
For a given ε, let r0(ε, `, i, j) be the numerical rank provided by a truncated SVD of
K`
ij . With abuse of notation, let us use r0 for simplicity. Similarly, let rε denote the

numerical rank provided by the low-rank approximation by Chebyshev interpolation.
Since rε might not be able to reveal the optimal numerical rank r0, i.e., rε > r0,
the O(r2

ε ) prefactor in the complexity of the preliminary IBF might be far from the
optimal one, r2

0.
The above observation motivates the design of the novel sweeping matrix compres-

sion based on a sequence of structure-preserving matrix compression. The sweeping
matrix compression further compresses the preliminary IBF into an optimal one. The
main idea is to propagate low-rank property among matrix factors in the prelimi-
nary IBF and to shrink the size of dense submatrices in these matrix factors by the
randomized low-rank approximation in section 2.

The structure-preserving matrix compression is introduced in section 4.1. The
sweeping matrix compression consists of two stages, the sweep-out and the sweep-in
stages. They will be presented in sections 4.2 and 4.3, respectively.
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A518 YINGZHOU LI AND HAIZHAO YANG

4.1. Structure-preserving matrix compression. One key idea to construct
the optimal IBF is the sweeping matrix compression via a sequence of structure-
preserving matrix compression introduced below. Suppose S is a block matrix with
m× k blocks, i.e.,

S =


S0,0 S0,1 · · · S0,k−1

S1,0 S1,1 S1,k−1

...
. . .

Sm−1,0 Sm−1,1 Sm−1,k−1

 ∈ Cmr×kr.

For simplicity, we assume that each block in S is of size r×r. The structure-preserving
matrix compression can be easily extended to block matrices with different block sizes.
Let D be a block-diagonal matrix with k diagonal blocks and each diagonal block is
of size r × r0 with r0 < r, i.e.,

D =


D0

D1

. . .

Dk−1

 ∈ Ckr×kr0 .

Let P be the product of S and D, i.e.,

P =


P0,0 P0,1 · · · P0,k−1

P1,0 P1,1 P1,k−1

...
. . .

Pm−1,0 Pm−1,1 Pm−1,k−1



=


S0,0D0 S0,1D1 · · · S0,k−1Dk−1

S1,0D0 S1,1D1 S1,k−1Dk−1

...
. . .

Sm−1,0D0 Sm−1,1D1 Sm−1,k−1Dk−1

 ∈ Cmr×kr0 .

We say that the matrix pencil (S,D) has the structure-preserving low rank prop-
erty of type (m, k, r, r0) if it satisfies the following condition. For each i = 1, . . ., m,
there exists a low-rank approximation

(35)
(
Pi,0 Pi,1 · · · Pi,k−1

)
≈ D̃i

(
S̃i,0 S̃i,1 · · · S̃i,k−1

)
,

where D̃i ∈ Cr×r0 and S̃i,j ∈ Cr0×r0 for j = 0, 1, . . . , k − 1. Under the assumption of
the structure-preserving low-rank property of type (m, k, r, r0), by assembling the low-
rank approximations in (35) into two large factors D̃ and S̃, the structure-preserving
matrix compression of type (m, k, r, r0) factorizes SD as

SD ≈ D̃S̃,

where D̃ is again a block-diagonal matrix with k diagonal blocks of size r× r0, S̃ is a
block matrix with m× k blocks of size r0 × r0, and S and S̃ share the same column
indices of nonzero blocks in each row block (see Figure 3 for an example).
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=





≈









Fig. 3. The structure-preserving matrix compression of type (4, 4, 4, 1) SD = P ≈ D̃S̃, where
S ∈ C16×16 (left matrix), P ∈ C16×4 (middle matrix), and S̃ ∈ C4×4 (right matrix) are 4 × 4
block matrices with the same sparsity pattern, and D ∈ C16×4 (middle left matrix) and D̃ ∈ C16×4

(middle right matrix) are 4× 4 block-diagonal matrices,

4.2. Sweeping matrix compression: Sweep-out stage. The optimal IBF of
K is built in two stages. In the first stage, we further compress the matrix factors in
the preliminary IBF,

K ≈ ULGL−1 · · ·GhMh(Hh)∗ · · · (H1)∗(V 0)∗,

sweeping from the middle matrix Mh and moving out toward UL and V 0. Recall that
each nonzero submatrix M̃h

ij ∈ Crε×rε in Mh is the kernel function K(x.ξ) evaluated

at the Chebyshev grid points in the domain pairs (A,B) = (Ahi , B
h
j ) at level h.

Hence, M̃h
ij is a numerically low-rank matrix if rε > r0 (which is usually the case

in existing butterfly algorithms using Chebyshev interpolations to construct low-rank
factorizations). Hence, Mh can be further compressed via a rank-revealing low-rank
approximation of each M̃h

ij , e.g., the truncated SVD, into

Mh ≈ ChM̄h(Rh)
∗
,

resulting in the middle level factorization

(36) K ≈ ULGL−1 · · ·GhChM̄h(Rh)
∗
(Hh)∗ · · · (H1)∗(V 0)∗.

The middle level factorization is described in detail in section 4.2.1.
Next, we recursively factorize

G`C` ≈ C`+1Ḡ`

for ` = h, h+ 1, . . . , L− 1,

(H`R`)∗ ≈ (H̄`)∗(R`−1)∗

for ` = h, h − 1, . . . , 1, since the matrix pencils (G`, C`) and (H`, R`) satisfy the
structure-preserving low-rank property. In other words, C` and R` propagate the
low-rank property of Mh to G` and H`, respectively, so that we can further compress
G` and H`. After this recursive factorization, let

ŪL = ULCL

and

V̄ 0 = V 0R0;
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A520 YINGZHOU LI AND HAIZHAO YANG

then one reaches at a more compressed IBF of K,

(37) K ≈ ŪLḠL−1 · · · ḠhM̄h(H̄h)∗ · · · (H̄1)∗(V̄ 0)∗,

where all factors are sparse matrices with almost O(r2
0N) nonzero entries. We refer to

this stage as the recursive factorization and it is discussed in detail in sections 4.2.2
and 4.2.3.

4.2.1. Middle level factorization. Recall that we denote the ith node at level
` in TX as A`i for i = 0, 1, . . . , 2`− 1 and the jth node at level L− ` in TΩ as BL−`j for

j = 0, 1, . . . , 2L−`−1. Let h = L/2 and m = 2L/2. The nonzero submatrix M̃h
ij in Mh

is a matrix representation of the kernel function K(x, ξ) evaluated at the Chebyshev
grid points {gAt }t and {gBs }s for the domain pair (A,B) = (Ahi , B

h
j ) at the middle

level ` = h. M̃h
ij ∈ Crε×rε is numerically rank r0. Hence, a rank-r0 approximation to

every M̃h
i,j is computed by the SVD algorithm via random sampling in [12, 32] with

O(rεr0 + r3
0) operations. In fact, when rε is already very small, a direct method for

SVD truncation of order r3
ε is efficient as well. Once the approximate SVD of M̃h

i,j is
ready, it is transformed into the form

M̃h
i,j ≈ Chi,jShi,j(Rhj,i)∗

following (6). We would like to emphasize that the columns of Chi,j and Rhj,i are
scaled with the singular values of the approximate SVD so that they keep track of the
importance of these columns in approximating M̃h

i,j .

After calculating the approximate rank-r0 factorization of each M̃h
i,j , we assemble

these factors into three block matrices Ch, M̄h, and Rh as follows:

Mh =

 Mh
0,0 · · · Mh

0,m−1
...

. . .
...

Mh
m−1,0 · · · Mh

m−1,m−1


=

C
h
0

. . .

Chm−1


 M̄h

0,0 · · · M̄h
0,m−1

...
. . .

...
M̄h
m−1,0 · · · M̄h

m−1,m−1


(Rh0 )∗

. . .

(Rhm−1)∗


= ChM̄h(Rh)∗,

(38)

where

Chi =


Chi,0

Chi,1
. . .

Chi,m−1

 ∈ Cmrε×mr0 ,(39)

Rhj =


Rh0,j

Rh1,j
. . .

Rhm−1,j

 ∈ Cmr0×mrε ,(40)
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INTERPOLATIVE BUTTERFLY FACTORIZATION A521

Fig. 4. The middle level factorization of a 64× 64 matrix M2 ≈ C2M̄2(R2)∗ assuming r0 = 1
and rε = 4. Gray blocks indicate nonzero blocks. C2 and R2 are block-diagonal matrices with 16
blocks of size 4 × 1. The diagonal blocks of C2 and R2 are assembled according to (39) and (40),
respectively, as indicated by black rectangles. M̄2 is a 4× 4 block matrix with each block M̄2

i,j itself

an 4× 4 block matrix containing diagonal weights matrix on the (j, i) block.

and M̄h
i,j ∈ Cmr0×mr0 is also an m ×m block matrix with block size r0 × r0 where

all blocks are zero except that the (j, i) block is equal to the diagonal matrix Shi,j ∈
Cr0×r0 .

It is obvious that there are only r0N nonzero entries in M̄h and rεr0N nonzero
entries in Ch and Rh. See Figure 4 for an example of a middle level factorization of
a 64× 64 matrix with r0 = 1 and rε = 4.

4.2.2. Recursive factorization toward UL. Each recursive factorization at
level `

(41) G`C` ≈ C`+1Ḡ`

results from the structure-preserving low-rank property that originates from the low-
rank property of K`

i,j for all index pairs (i, j). At level `, recall that

G` =


G`0

G`1
. . .

G`2`−1

 ,

where

G`i =



G`2i,0 G`2i,1
G`2i,2 G`2i,3

. . .

G`2i,2L−`−1−2 G`2i,2L−`−1−1

G`2i+1,0 G`2i+1,1

G`2i+1,2 G`2i+1,3

. . .

G`2i+1,2L−`−1−2 G`2i+1,2L−`−1−1
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A522 YINGZHOU LI AND HAIZHAO YANG

for i = 0, 1, . . . , 2` − 1. By construction, [G`2i,2j G`2i,2j+1] is an interpolation matrix
that interpolates the kernel functionK(x, ξ) from Chebyshev grid points in the domain
pairs (A`i , B

L−`
2j ) and (A`i , B

L−`
2j+1) to the points in the domain pair (A`+1

2i , BL−`−1
j ).

Similarly, [G`2i+1,2j G`2i+1,2j+1] interpolates the kernel function K(x, ξ) from

(A`i , B
L−`
2j ) and (A`i , B

L−`
2j+1) to (A`+1

2i+1, B
L−`−1
j ).

At level ` = h,

Ch =

C
h
0

. . .

Chm−1

 ,

where

Chi =


Chi,0

Chi,1
. . .

Chi,m−1

 ∈ Crεm×r0m.

By construction, the column space of Chi,j comes from the column space of Kh
i,j ∀ i =

0, 1, . . . ,m − 1 and j = 0, 1, . . . ,m − 1. Hence,
(
Gh2i,2jC

h
i,2j Gh2i,2j+1C

h
i,2j+1

)
repre-

sents the column space of Kh+1
2i,j , which implies that

(
Gh2i,2jC

h
i,2j Gh2i,2j+1C

h
i,2j+1

)
is

numerically rank r0. By the randomized low-rank approximation, we have(
Gh2i,2jC

h
i,2j Gh2i,2j+1C

h
i,2j+1

)
≈ Ch+1

2i,j

(
Ḡh2i,2j Ḡh2i,2j+1

)
,

where Ch+1
2i,j ∈ Crε×r0 , Ḡh2i,2j ∈ Cr0×r0 , and Ḡh2i,2j+1 ∈ Cr0×r0 . By a similar argument,

we have(
Gh2i+1,2jC

h
i,2j Gh2i+1,2j+1C

h
i,2j+1

)
≈ Ch+1

2i+1,j

(
Ḡh2i+1,2j Ḡh2i+1,2j+1

)
,

where Ch+1
2i+1,j ∈ Crε×r0 , Ḡh2i+1,2j ∈ Cr0×r0 , and Ḡh2i+1,2j+1 ∈ Cr0×r0 . Hence, the

matrix pencil (Gh, Ch) satisfies the conditions of the structure-preserving low-rank
property of type (2L, 2L, rε, r0). Assembling {Ḡhi,j} and {Ch+1

i,j } together to generate

Ḡh ∈ Cr0N×r0N and Ch+1 ∈ CrεN×r0N , respectively, in the same way as generating
Gh and Ch, we have

GhCh ≈ Ch+1Ḡh.

At other levels ` = h, . . . , L−1, similarly to the discussion above, the matrix pencil
(G`, C`) satisfies the structure-preserving low-rank property of type (2L, 2L, rε, r0).
By assembling the results of randomized low-rank approximations, we have

G`C` ≈ C`+1Ḡ`

for ` = h, . . . , L− 1.
At the final level ` = L, both matrices UL, CL are block-diagonal matrices; we

simply multiply them together and let

ŪL = ULCL.

After the recursive factorization of each G`C`, we have

(42) K ≈ ŪLḠL−1 · · · ḠhM̄h(Rh)∗(Hh)∗ · · · (H1)∗(V 0)∗,

where Ḡ` contains only r2
0N nonzero entries and ŪL contains r0N nonzero entries.
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INTERPOLATIVE BUTTERFLY FACTORIZATION A523

4.2.3. Recursive factorization toward V 0. The recursive factorization to-
ward V 0 is similar to the one toward UL. In each step of the factorization

(43) (H`R`)∗ ≈ (H̄`)∗(R`−1)∗

∀ ` = h, h + 1, . . . , 1, we take advantage of the structure-preserving low-rank prop-
erty of the matrix pencil (H`, R`). The same procedure of section 4.2.2 applying to
(H`, R`) leads to the recursive factorization in (43). Define

(44) V̄ 0 = V 0R0;

then we have

(Rh)∗(Hh)∗ · · · (H1)∗(V 0)∗ ≈ (H̄h)∗ · · · (H̄1)∗(V̄ 0)∗,

where H̄` contains only r2
0N nonzero entries and V̄ 0 contains r0N nonzero entries.

After the recursive factorization sweeping from the middle matrix toward UL and
V 0, we reach a more compressed IBF

(45) K ≈ ŪLḠL−1 · · · ḠhM̄h(H̄h)∗ · · · (H̄1)∗(V̄ 0)∗.

4.3. Sweeping matrix compression: Sweep-in stage. If the points in the
sets X and Ω are distributed uniformly, the IBF in (45) is already optimal in the
butterfly factorization scheme, i.e., nearly all dense submatrices in its factors are of
size r0 × r0, where r0 is the numerical rank of the kernel function K(x, ξ) sampled
uniformly in a domain pair (A,B) ∈ TX × TΩ. However, when the point sets are
nonuniform, e.g., in the nonuniform FFT, the number of samples in (A,B) might be
far smaller than r0. This means that there might be dense submatrices of size less
than r0 × r0 in the block-diagonal matrices ŪL and V̄ 0. This motivates a sequence
of structure-preserving low-rank matrix compression to further compress the IBF in
(45), sweeping from outer matrices and moving toward the middle matrix M̄h as
follows:

ŪL ≈ U̇LCL

and

C`+1Ḡ` ≈ Ġ`C`

for ` = L− 1, L− 2, . . . , h; similarly, we have

(V̄ 0)∗ ≈ (R0)∗(V̇ 0)∗

and

(H̄`)∗(R`−1)∗ ≈ (R`)∗(Ḣ`)∗

for ` = 1, 2, . . . , h. The sweeping matrix compression above is due to the fact that the
matrix pencils ((Ḡ`)∗, (C`+1)∗) and ((H̄`)∗, (R`−1)∗) satisfy the structure-preserving
low-rank property. In other words, C` and R` propagate the low-rank property of ŪL

and V̄ L to Ḡ` and H̄`, respectively, so that we can further compress Ḡ` and H̄`. After
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A524 YINGZHOU LI AND HAIZHAO YANG

this recursive factorization, let Ṁh = ChM̄h(Rh)∗; then one reaches the optimal IBF
of K:

(46) K ≈ U̇LĠL−1 · · · ĠhṀh(Ḣh)∗ · · · (Ḣ1)∗(V̇ 0)∗,

where all factors are sparse matrices with almost O(r2
0N) or less nonzero entries.

For a given input vector g ∈ CN , the O(N2) matrix-vector multiplication u = Kg
can be approximated by a sequence of O(logN) sparse matrix-vector multiplica-
tions given by the optimal IBF. Since computing the factors in the preliminary IBF
takes only O(r2

εN logN) operations and there are only O(r2
0N logN) nonzero en-

tries in the optimal IBF, the construction and application complexity in operation is
O(r2

εN logN) and O(r2
0N logN), respectively. Since all the matrix factors in the pre-

liminary IBF can be generated explicitly, the peak memory complexity O(r2
εN logN)

occurs when the preliminary IBF is completed.

5. High-dimensional extension. Although we limited our discussion to one-
dimensional problems in the previous discussion, the IBF, along with its construction
algorithm, can be easily generalized to higher dimensions.

By the theorems in [7, 21], a multidimensional kernel function K(x, ξ) satisfying
Assumption 1.1 is complementary low-rank (e.g., the nonuniform FFT). In this case,
similarly to section 3, by writing the multidimensional butterfly algorithm [7, 21] into
a matrix factorization form, we have a preliminary multidimensional IBF

K ≈ ULGL−1 · · ·GhMh(Hh)∗ · · · (H1)∗(V 0)∗,

where the depth L = O(logN) of TX and TΩ is assumed to be even, h = L/2 is a
middle level index, and all factors are sparse matrices with O(N) nonzero entries and
a large prefactor. The preliminary IBF can be further compressed by the sweeping
matrix compression to obtain the optimal IBF

K ≈ U̇LĠL−1 · · · ĠhṀh(Ḣh)∗ · · · (Ḣ1)∗(V̇ 0)∗.

However, many important multidimensional kernel matrices fail to satisfy As-
sumption 1.1 and are not complementary low-rank in the entire domain X × Ω. The
most significant example, the multidimensional FIO, typically has a singularity when
ξ = 0 in the Ω domain. Fortunately, it was proved that this kind of kernel func-
tion satisfies the complementary low-rank property in the domain away from ξ = 0.
A multiscale interpolative butterfly factorization (MIBF) hierarchically partitions the
domain Ω into subdomains {Ωt}t excluding the singular point ξ = 0 and applies the
multidimensional IBF to the kernel restricted in each subdomain pair X × Ωt.

To be more specific, in two-dimensional problems, suppose

Ω =

{
ξ = (n1, n2),−N

1/2

2
≤ n1, n2 <

N1/2

2
with n1, n2 ∈ Z

}
.

Let

(47) Ωt =

{
(ξ1, ξ2) :

N1/2

2t+2
< max(|ξ1|, |ξ2|) ≤

N1/2

2t+1

}
∩ Ω

for t = 0, 1, . . . , log2 n − s, where n = N1/2 and s is a small constant, and ΩC =
Ω \ ∪tΩt. Equation (47) is a corona decomposition of Ω, where each Ωt is a corona
subdomain and ΩC is a square subdomain at the center containing O(1) points.
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The FIO kernel function satisfies the complementary low-rank property when it
is restricted in each subdomain X ×Ωt as proved in [21]. Hence, the MIBF evaluates

u(x) =
∑
ξ∈Ω

e2πıΦ(x,ξ)g(ξ)

via a multiscale summation,

(48) u(x) = uC(x) +

log2 n−s∑
t=0

ut(x) =
∑
ξ∈ΩC

e2πıΦ(x,ξ)g(ξ) +

log2 n−s∑
t=0

∑
ξ∈Ωt

e2πıΦ(x,ξ)g(ξ).

For each t, the MIBF evaluates ut(x) =
∑
ξ∈Ωt

e2πıΦ(x,ξ)g(ξ) with a standard multi-
dimensional IBF and the final piece uC(x) is evaluated directly in O(N) operations.
Let Kt and KC denote the matrix representation of the kernel K(x, ξ) restricted in
X × Ωt and X × ΩC , respectively; then by the standard multidimensional IBF, we
have

Kt ≈ U̇Ltt ĠLt−1
t · · · Ġ

Lt
2
t Ṁ

Lt
2
t

(
Ḣ

Lt
2
t

)∗
· · ·
(
Ḣ1
t

)∗ (
V̇ 0
t

)∗
.

Once we have computed the optimal IBF in each restricted domain, the multiscale
summation in (48) is approximated by

(49) u = Kg ≈ KCRCg +

log2 n−s∑
t=0

U̇Ltt ĠLt−1
t · · · Ṁ

Lt
2
t · · ·

(
Ḣ1
t

)∗ (
V̇ 0
t

)∗
Rtg,

where RC and Rt are the restriction operators to the domains ΩC and Ωt, respectively.
The construction and application complexity of the MIBF is O(N logN) with an

optimally small prefactor in the butterfly scheme.

6. Numerical results. This section presents several numerical examples to
demonstrate the efficiency of the IBF. The numerical results were obtained on a
single node of a server cluster with quad socket Intel Xeon CPU E5-4640 @ 2.40GHz
(8 core/socket) and 1.5 TB RAM. All implementations are in MATLAB and can be
found on the authors’ homepages.

Let {ud(x), x ∈ X}, {ui(x), x ∈ X}, and {um(x), x ∈ X} denote the results given
by the direct matrix-vector multiplication, the IBF, and the MIBF. The accuracies of
applying the IBF and MIBF are estimated by the relative error defined as follows:

(50) εi =

√∑
x∈S |ui(x)− ud(x)|2∑

x∈S |ud(x)|2
and εm =

√∑
x∈S |um(x)− ud(x)|2∑

x∈S |ud(x)|2
,

where S is a point set of size 256 randomly sampled from X. Meanwhile, let Rcomp
denote the compression ratio of the optimal IBF against the preliminary IBF, which
is defined as
(51)

Rcomp =
Memory usage of the preliminary interpolative butterfly factorization

Memory usage of the optimal interpolative butterfly factorization
.

Rcomp accurately evaluates the rank compression ratio in the optimal IBF without
lost of accuracy.
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Table 1
Numerical results for the one-dimensional Fourier transform given in (52). N is the problem

size; rε is the number of Chebyshev points; εi is the sampled relative error given in (50); Rcomp is
the compression ratio defined as (51); TFactor is the construction time of the IBF; Td is the running
time of the direct evaluation; Tapp is the application time of the IBF; Td/Tapp is the speedup factor
over the direct evaluation.

N, rε εi Rcomp TFactor (min) Td (sec) Tapp (sec) Td/Tapp

256, 6 4.35e-04 1.33 1.49e-02 2.73e-02 6.99e-04 3.90e+01
1024, 6 7.80e-04 1.38 9.47e-02 1.82e-01 1.78e-03 1.03e+02
4096, 6 8.89e-04 1.40 5.20e-01 1.48e+00 7.58e-03 1.96e+02

16384, 6 1.09e-03 1.42 2.66e+00 1.25e+01 3.66e-02 3.41e+02
65536, 6 1.12e-03 1.42 1.31e+01 1.60e+02 1.68e-01 9.54e+02

262144, 6 1.20e-03 1.43 6.16e+01 2.69e+03 7.63e-01 3.53e+03
1048576, 6 1.18e-03 1.43 2.66e+02 4.30e+04 3.56e+00 1.21e+04

256,10 3.57e-08 1.50 1.56e-02 2.66e-02 8.67e-04 3.07e+01
1024,10 5.09e-08 1.44 1.04e-01 1.85e-01 3.58e-03 5.17e+01
4096,10 1.02e-07 1.46 5.76e-01 1.54e+00 1.55e-02 9.92e+01

16384,10 1.13e-07 1.49 2.95e+00 1.27e+01 7.59e-02 1.67e+02
65536,10 1.27e-07 1.53 1.45e+01 1.75e+02 3.36e-01 5.22e+02

262144,10 1.34e-07 1.55 6.86e+01 2.57e+03 1.57e+00 1.64e+03
1048576,10 1.43e-07 1.56 2.99e+02 4.26e+04 1.44e+01 2.96e+03

Although we define Rcomp as a ratio of memory usage, it also reflects the ratio
of running time. Since the application of IBF is a sequence of matrix-vector multi-
plications, the total running time linearly depends on the number of nonzeros, which
linearly depends on the memory usage. Therefore, Rcomp also equals the running time
of the preliminary IBF over the optimal IBF.

6.1. Nonuniform Fourier transform in one dimension. We first present the
numerical result of the most widely used FIO, Fourier transform. More specifically,
we focus on one-dimensional nonuniform Fourier transform of type I,

(52) û(ξi) =
∑
xj

e−2πıxjξiu(xj), i, j = 1, 2, . . . , N,

where {xi} are N random points in [0, 1), each of which is drawn from uniform
distribution [0, 1), and ξj = j− 1−N/2. The values of the input function {u(xj)}Nj=1

are randomly generated.
Table 1 summarizes the results of this example for varying problem sizes, N ,

and numbers of Chebyshev points, rε. In Table 2, we further provide the detailed
comparison between the application cost of IBF and unifom/nonuniform FFTs.

The result in Table 1 reflects the O(N logN) complexity for both the construction
and the application. The relative error slightly increases as the problem size N in-
creases. In general, nonuniform FFT requires more effect to interpolate the irregular
point distribution, which means there is an underlying penalty factor coming from
the problem itself. Based on the numbers in Table 1, the penalty factor is on average
9 for approximation with accuracy 1e-3 and 25 for approximation with accuracy 1e-7.
This implies that if the proposed algorithm is well implemented and the code is deeply
optimized, the application time of the IBF for the nonuniform Fourier transform is
about 9 and 25 times slower than the FFT for an approximation accuracy 1e-3 and
1e-7, respectively. Table 2 provides a concrete running time comparison. The actual
time penalty over the NUFFT [14] is on average about 3 and 6. As we shall discuss
later, the IBF would have better scalability in distributed and parallel computing
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Table 2
Numerical comparison between IBF and NUFFT [14] for the one-dimensional Fourier transform

given in (52). Pop is the operatorwise penalty over the uniform FFT [17, 4], i.e., the number of
operations count over that of the FFT; TNUFFT is the running time of the NUFFT [14] where the
implementation is in Fortran; Tapp/TNUFFT is the time penalty of the nonuniform FFT.

N εi Tapp (sec) Pop TNUFFT (sec) Tapp/TNUFFT

256 4.35e-04 6.99e-04 6.64e+00 2.25e-04 3.11e+00
1024 7.80e-04 1.78e-03 7.82e+00 6.17e-04 2.88e+00
4096 8.89e-04 7.58e-03 8.65e+00 2.57e-03 2.95e+00

16384 1.09e-03 3.66e-02 9.24e+00 9.88e-03 3.70e+00
65536 1.12e-03 1.68e-01 9.71e+00 4.13e-02 4.07e+00

262144 1.20e-03 7.63e-01 1.01e+01 1.80e-01 4.25e+00
1048576 1.18e-03 3.56e+00 1.04e+01 7.74e-01 4.60e+00

256 3.57e-08 8.67e-04 1.41e+01 2.18e-04 3.97e+00
1024 5.09e-08 3.58e-03 1.93e+01 6.34e-04 5.65e+00
4096 1.02e-07 1.55e-02 2.23e+01 2.59e-03 5.97e+00

16384 1.13e-07 7.59e-02 2.44e+01 1.00e-02 7.57e+00
65536 1.27e-07 3.36e-01 2.57e+01 4.11e-02 8.18e+00

262144 1.34e-07 1.57e+00 2.66e+01 1.74e-01 9.01e+00
1048576 1.43e-07 1.44e+01 2.74e+01 7.45e-01 1.93e+01

(future work) than the existing NUFFT framework. Hence, the distributed and par-
allel IBF could be better than the existing NUFFT framework for large-scale com-
puting.

6.2. General FIO in one dimension. Our second example evaluates a one-
dimensional FIO [19] of the following form:

(53) u(x) =

∫
R
e2πıΦ(x,ξ)f̂(ξ)dξ,

where f̂ is the Fourier transform of f , and Φ(x, ξ) is a phase function given by

(54) Φ(x, ξ) = x · ξ + c(x)|ξ|, c(x) = (2 + sin(2πx))/8.

The discretization of (53) is

(55) u(xi) =
∑
ξj

e2πıΦ(xi,ξj)f̂(ξj), i, j = 1, 2, . . . , N,

where {xi} and {ξj} are points uniformly distributed in [0, 1) and [−N/2, N/2) fol-
lowing

(56) xi = (i− 1)/N and ξj = j − 1−N/2.

Table 3 summarizes the results of this example for different grid sizes N and
Chebyshev points rε.

Table 3 presents two groups of numerical results. The first group adopts 7 Cheby-
shev points and the relative error is around 8.00e-03, whereas the second group adopts
10 Chebyshev points and the relative error is around 1.00e-05. Theoretically, the rel-
ative error should be independent of problem size N [7, 21]. In practice, even though
the relative error increases slowly as the size of the problem increases due to the accu-
mulation of the numerical error, the error stays in the same order. The third column
of the table indicates that the compression ratio is around 2.3 for the first group and
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Table 3
Numerical results for the one-dimensional FIO given in (55).

N, rε εi Rcomp TFactor (min) Td (sec) Tapp (sec) Td/Tapp

256, 7 4.58e-03 2.19 1.52e-02 2.86e-02 8.26e-04 3.47e+01
1024, 7 6.53e-03 2.28 9.38e-02 1.84e-01 1.78e-03 1.03e+02
4096, 7 7.68e-03 2.34 5.05e-01 1.47e+00 8.57e-03 1.71e+02

16384, 7 8.22e-03 2.38 2.57e+00 1.23e+01 2.82e-02 4.37e+02
65536, 7 1.04e-02 2.41 1.25e+01 1.48e+02 1.23e-01 1.20e+03

262144, 7 1.05e-02 2.45 5.91e+01 2.48e+03 5.93e-01 4.18e+03
1048576, 7 1.25e-02 2.50 2.59e+02 5.70e+04 2.39e+00 2.39e+04

256,10 1.87e-05 1.82 1.60e-02 2.78e-02 9.81e-04 2.84e+01
1024,10 9.47e-06 1.87 9.99e-02 1.86e-01 3.08e-03 6.03e+01
4096,10 1.03e-05 2.00 5.48e-01 1.50e+00 1.19e-02 1.26e+02

16384,10 1.09e-05 2.07 2.80e+00 1.22e+01 5.76e-02 2.12e+02
65536,10 1.29e-05 2.14 1.37e+01 1.51e+02 3.09e-01 4.88e+02

262144,10 1.37e-05 2.18 6.45e+01 2.58e+03 1.13e+00 2.28e+03
1048576,10 1.70e-05 2.20 2.87e+02 5.86e+04 5.03e+00 1.17e+04

2 for the second group. This implies that the sweeping compression procedure in the
nearly optimal IBF compresses the factorization by a factor greater than 2, which
results in savings in both memory and application time. The saving is greater in
higher-dimensional problems, as we can see in previous analysis and in the example
later. On the time scaling side, both the factorization time and the application time
strongly support the complexity analysis. Every time we quadripule the problem size,
the factorization time increases on average by a factor of 5, and the increasing factor
decreases monotonically down to 4. The increasing factor for the application time is
on average lower but close to 4. The speedup factor over the direct method may catch
the eye of the users who are interested in the application of the FIO.

6.3. General FIO in two dimensions with MIBF. This section presents a
numerical example to demonstrate the efficiency of the MIBF.

We revisit a similar example in [20],

(57) u(x) =
∑
ξ∈Ω

e2πıΦ(x,ξ)g(ξ), x ∈ X,

with a kernel Φ(x, ξ) given by

Φ(x, ξ) =x · ξ +
√
c21(x)ξ2

1 + c22(x)ξ2
2 ,

c1(x) =(2 + sin(2πx1) sin(2πx2))/32,

c2(x) =(2 + cos(2πx1) cos(2πx2))/32,

(58)

where X and Ω are defined as

(59) X =
{
x =

( n1

N1/2
,
n2

N1/2

)
, 0 ≤ n1, n2 < N1/2 with n1, n2 ∈ Z

}
and

(60) Ω =

{
ξ = (n1, n2),−N

1/2

2
≤ n1, n2 <

N1/2

2
with n1, n2 ∈ Z

}
.

In the multiscale decomposition of Ω, we recursively divide Ω until the center part is
of size 16 by 16.
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Table 4
Numerical results for the two-dimensional FIO given in (57) by the MIBF.

N, rε εm Rcomp TFactor (min) Td (sec) Tapp (sec) Td/Tapp

322, 6 2.52e-03 2.45 7.63e-02 2.45e-01 7.52e-03 3.25e+01
642, 6 4.13e-03 2.47 4.00e-01 2.17e+00 3.71e-02 5.86e+01

1282, 6 3.11e-03 2.41 2.19e+00 2.11e+01 2.65e-01 7.98e+01
2562, 6 1.71e-02 3.08 1.91e+01 2.61e+02 1.19e+00 2.20e+02
5122, 6 5.32e-02 3.35 9.58e+01 4.88e+03 5.59e+00 8.74e+02

322, 9 5.58e-06 3.79 1.77e-01 2.44e-01 1.17e-02 2.08e+01
642, 9 7.21e-06 2.96 1.07e+00 2.27e+00 7.68e-02 2.95e+01

1282, 9 6.98e-06 2.66 5.55e+00 2.09e+01 6.12e-01 3.41e+01
2562, 9 8.37e-06 3.16 6.34e+01 2.85e+02 8.48e+00 3.36e+01
5122, 9 1.23e-05 2.95 3.11e+02 4.79e+03 5.25e+01 9.13e+01

Table 4 summarizes the results of this example by the MIBF. The results agree
with the O(N logN) complexity analysis. As we double the problem size N , the fac-
torization time increases by a factor of 5 on average. Similarly, the actual application
time matches the theoretical complexity as well. The relative error is essentially in-
dependent of the problem size N and the speedup factor is attractive. Comparing
Tables 3 and 4, we notice that Rcomp in two dimensions is larger than that in one
dimension. This matches our expectation because the numerical rank by the Cheby-
shev interpolation is rdε , which increases with the dimension d. Therefore, the sweeping
compression is more a benefit in multidimensional problems.

7. Conclusion and discussion. This paper introduces an interpolative butter-
fly factorization as a data-sparse approximation of complementary low-rank matrices
when their kernel functions satisfy certain analytic properties. More precisely, it rep-
resents such an N ×N dense matrix as a product of O(logN) sparse matrices with a
nearly optimal number of entries. The construction and application of the interpola-
tive butterfly factorization is highly efficient with O(N logN) operation and memory
complexity. The prefactor of the complexity is nearly optimal in the butterfly scheme.

Since applying the sparse factors is essentially a sequence of sparse matrix-vector
multiplications with structured sparsity, this algorithm is especially of interest in dis-
tributed parallel computing. Based on the data distribution patten given in [26], the
problem can be easily distributed in an d-dimensional way, which is of great inter-
est for extreme-scale computing. In other words, for a problem of size N = nd, we
could distribute the problem among P = O(N) processes and achieve communica-
tion complexity, O(α log p + βNP r0 logP ), where α is the message latency and β is
the per-process inverse bandwidth. It is a promising general framework for scalable
implementation of a wide range of transforms in harmonic analysis.
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