
CSIAM Trans. Appl. Math.
doi: 10.4208/csiam-am.2020-0206

Vol. 2, No. 3, pp. 431-459
September 2021

Distributed-Memory H-Matrix Algebra I:

Data Distribution and Matrix-Vector Multiplication

Yingzhou Li1,∗, Jack Poulson2 and Lexing Ying3

1 School of Mathematical Science, Fudan University, Shanghai, China.
2 Hodge Star, Toronto, Canada.
3 Department of Mathematics and ICME, Stanford University, Stanford, CA 94305,
USA.

Received 29 August 2020; Accepted 13 February 2021

Abstract. We introduce a data distribution scheme for H-matrices and a distributed-
memory algorithm for H-matrix-vector multiplication. Our data distribution scheme
avoids an expensive Ω(P2) scheduling procedure used in previous work, where P is
the number of processes, while data balancing is well-preserved. Based on the data
distribution, our distributed-memory algorithm evenly distributes all computations
among P processes and adopts a novel tree-communication algorithm to reduce the

latency cost. The overall complexity of our algorithm is O
(N logN

P +αlogP+βlog2 P
)

for H-matrices under weak admissibility condition, where N is the matrix size, α de-
notes the latency, and β denotes the inverse bandwidth. Numerically, our algorithm is
applied to address both two- and three-dimensional problems of various sizes among
various numbers of processes. On thousands of processes, good parallel efficiency is
still observed.

AMS subject classifications: 65F99, 65Y05

Key words: Parallel fast algorithm, H-matrix, distributed-memory, parallel computing.

1 Introduction

For linear elliptic partial differential equations, the blocks of both forward and backward
operators, when restricted to non-overlapping domains, are numerically low-rank [7].
Hence both operators can be represented in a data sparse form. Many fast algorithms
benefit from this low-rank property and apply these operators in quasi-linear scaling.
Such fast algorithms include but not limit to tree-code [4, 41], fast multipole method

∗Corresponding author. Email addresses: yingzhouli@fudan.edu.cn (Y. Li), jack@hodgestar.com (J. Poul-
son), lexing@stanford.edu (L. Ying)

http://www.global-sci.org/csiam-am 431 c©2021 Global-Science Press

432 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

(FMM) [3, 11, 18–20, 39, 42, 50], panel clustering method [21], etc. The low-rank struc-
tures in these fast algorithms are revealed via various interpolation techniques such as:
pole expansion, Chebyshev interpolation, equivalent interaction, etc [15, 19, 39, 50].

In contrast to approximating the application of operators, another group of research
focuses on approximating operators directly in compressed matrix forms. As one of the
earliest members in this group, H-matrix [5–7,17,21,22,26–28] hierarchically compresses
operators restricted to far-range interactions by low-rank matrices. The memory cost
and matrix-vector multiplication complexity are quasi-linear with respect to the degrees
of freedom (DOFs) in the problem. Shortly after introducing H-matrix, Hackbusch et
al. [23] again introduced H2-matrix, which uses nested low-rank bases to further reduce
the memory cost and multiplication complexity down to linear. Related to the fast algo-
rithms above, H-matrix and H2-matrix can be viewed as algebraic versions of tree code
and FMM respectively. But they are more flexible in choosing different admissibility con-
ditions and low-rank compression techniques, which are related to general advantages
of algebraic representations.

Developments in the H-matrix group and extensions beyond the group are explored
in the past decade. Hierarchical off-diagonal low-rank matrix (HOLDER) [2] and hi-
erarchical semi-separable matrix (HSS) [48] are two popular hierarchical matrices with
the simplest admissibility condition, i.e., weak admissibility condition. Different from
hierarchical matrices, recursive skeletonization factorization (RS) [37] and hierarchical
interpolative factorization (HIF) [24,25] introduce separators in the domain partition and
compress the operator as products of sparse matrices. The partition and factorization in
RS and HIF are in the similar spirit as that in multifrontal method [1, 12] and superLU
method [30], while extra low-rank approximations are introduced to compress the inter-
actions within frontals. Other algebraic representations include block low-rank approx-
imation [49], block basis factorization [45], etc. The benefits of algebraic representations
over analytical fast algorithms come in two folds: 1) numerical low-rank approxima-
tion is more effective than interpolation; 2) matrix factorization and inversion become
feasible. We emphases that these algebraic representations are not only valid for linear
elliptic operators, but also valid for operators associated with low-to-medium frequency
Helmholtz equations and radial basis function kernel matrices. When operators admit
high-frequency property, the low-rank structure appears in a very different way com-
paring to that in all aforementioned fast algorithms, and are also well-studied by the
community [8, 9, 13, 14, 31–34, 38].

Many of these fast algorithms and algebraic representations have been parallelized on
either shared-memory or distributed-memory setting to be applicable to practical prob-
lems of interest [10, 16, 18, 35, 40–44, 46, 47, 50]. Here we focus on the parallelization of
H-matrix. Kriemann [28, 29] implemented a shared-memory parallel H-matrix using
a block-wise distribution, i.e., each block is assigned to a single process. Processes as-
signed to blocks near root level are responsible for computations of complexity linear
in N, where N is the total DOFs. Hence the speedup of such a parallelization scheme
is theoretically upper bounded by O(logN) and limited in practice up to 16 processes.

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 433

Izadi [26, 27] published detailed algorithms for H-matrix addition, matrix-vector multi-
plication, matrix-matrix multiplication and matrix inversion under distributed-memory
setting. In [26, 27], the data of H-matrix are evenly distributed among all processes ac-
cording to their global matrix indices, which is similar to our data distribution for one-
dimensional problems with uniform discretization but different from ours for other se-
tups. The computations in [26,27] are distributed under task-based parallelization, whose
the scheduling part costs Ω(P2) operations on P processes. According to numerical re-
sults therein, good parallel efficiency is limited up to 16 processes.

1.1 Contribution

In this paper, we first propose a balanced data distribution scheme for H-matrices based
on the underlying domain geometry†. In H-matrix, the domain is usually hierarchically
partitioned and then organized in a domain tree structure. In order to avoid any expen-
sive scheduling procedure, our processes are also organized in a tree structure in corre-
spondence to that of the hierarchical domain partition. Each process then owns a unique
piece of the domain and also own the associated data in H-matrix. Following such a
data distribution, all data in H-matrix are evenly distributed among all processes. For

a H-matrix of size N distributed on P processes, the memory cost is O
(N logN

P

)

on each
process. Our data distribution scheme is scalable up to P=O(N) processes.

Building on top of our data distribution, a distributed-memory parallel algorithm is
proposed to conduct the H-matrix-vector multiplication. Our parallel algorithm con-
sists of several parts: a computation part, three consecutive communication parts, and
another computation part. When the input and output vectors are distributed accord-
ing to the tree structure of processes, both computation parts are communication-free.
Then a novel data communication scheme, known as the tree-communication, is in-
troduced to significantly reduce costs in two of the communication parts. The remain-
ing communication part consists of a constant number of point-to-point communication
on each process. Mainly due to the process organization and the tree-communication
scheme, the expensive scheduling procedure is totally avoided throughout our algo-

rithm. The overall computational and communication complexities, then, are O
(N logN

P

)

and O
(

αlogP+β
(

log2 P+log N
P +(N

P)
d−1

d

))

‡ respectively, where d is the dimension of the
problem, α denotes the message latency, and β denotes the inverse bandwidth.

Finally, the parallel algorithm is applied to two-dimensional and three-dimensional
problems of sizes varying from a few thousands to a quarter billion on massive number of
processes. The parallel scaling is still found to be near-ideal on computational resources
available to us, up to a few thousands processes. In all cases, our H-matrix-vector multi-
plications are completed within a few seconds.

†When the domain geometry of the problem is not available and only the graph connectivity of the problem
is known, our data distribution scheme can be extended to use the hierarchical partition of the graph instead.
‡This is complexity for H-matrices under standard admissibility conditions and an upper for H-matrices
under weak admissibility condition.

434 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we revisit H-matrix to-
gether with admissibility conditions. Section 3 introduces our balanced data distribu-
tion scheme. The distributed-memory H-matrix-vector multiplication algorithm is de-
tailed in Section 4. Section 5 presents numerical results for two-dimensional and three-
dimensional problems of various sizes. Finally, we conclude the paper in Section 6 to-
gether with some discussion on future work.

2 Preliminary

In this section, we first review the definition and the structure of H-matrix. Then the
H-matrix-vector multiplication follows in a straightforward way.

Let us assume that K(t,k) is a kernel satisfying the hierarchical low-rank property as
in tree code or H-matrix. Then applying Nyström discretization to the integral equation,

u(t)=
∫

Ω
K(t,s) f (s)ds, for t∈Ω, (2.1)

results a matrix-vector multiplication, and the matrix therein can be approximated by an
H-matrix. Throughout the rest paper, we use the concepts of a domain and the Nyström
discretization points in the domain interchangeably. For example, a matrix restricted to
Ω1×Ω2 means that the matrix restricted to the row and column indices corresponding
to the discretization points in Ω1 and Ω2 respectively. In (2.1), the operator maps from
the domain Ω to itself. In practice, H-matrix can also be used to approximate operators
mapping from one domain to another and the rest of the paper can be extended to such a
setting with a minor update on domain notations. To simplify our presentation, we limit
ourselves to the self mapping case.

In the above setting, the structure of the H-matrix fundamentally relies on the hierar-
chical partition of the domain Ω, which is defined as follows:

Definition 2.1 (Domain tree). A tree TΩ =(VΩ,EΩ) with the vertex set VΩ and the edge set
EΩ is called a domain tree of Ω if the following conditions hold:

1. All nodes in TΩ are subdomains of Ω;

2. The set of children of a domain ω ∈ VΩ, denoted as C(ω) = {ν∈VΩ |∃(ω,ν)∈EΩ}, is
either empty or a partition of ω;

3. Ω∈VΩ is the root of TΩ.

When a (quasi-)uniform discretization of a regular d-dimensional domain Ω= [0,1]d

is considered, the domain tree is constructed via applying a 2d uniform partition recur-
sively. Such domains are later referred as ideal d-dimensional domains. Fig. 1 illustrates

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 435

Figure 1: Hierarchical partition of ideal one-dimensional domain (left) and two-dimensional domain (right).
Gray lines indicate connections between parent domains and their child subdomains.

two domain tree associated with an ideal one-dimensional domain and an ideal two-
dimensional domain.

The low-rank submatrices in an H-matrix are determined by admissibility condi-
tions. There are many different admissibility conditions leading to different H-matrix
structures. Here we introduce two of them: weak admissibility condition and standard
admissibility condition.

Definition 2.2 (Weak admissibility condition). Two domains, ω and ν, are weakly admissible
if ω∩ν=∅.

Definition 2.3 (Standard admissibility condition). Two domains, ω and ν, are standard ad-
missible if

min
(

diam(ω),diam(ν)
)

≤ρdist(ω,ν), (2.2)

where diam(ω) is the diameter of ω, dist(ω,ν) is the distance between two domains, and ρ is a
constant adjusting the size of buffer zone.

Weak admissibility condition is the simplest admissibility condition used in practice
and leads to the simplest H-matrix structure. While standard admissibility condition is
more complicated, but widely used in many fast algorithms [4,19]. Importantly, for linear
elliptic differential operators with L∞ coefficients discretized by a local basis set, both the
forward differential operator and its inverse can be well-approximated by H-matrix un-

der standard admissibility condition. Throughout this paper, we adopt ρ≡
√

d. Fig. 2 and
Fig. 3 shows the weak admissibility condition and the standard admissibility condition
respectively for both ideal one-dimensional and two-dimensional domains. One more
popular admissibility condition, known as strong admissibility condition [6, 37], simply
replaces the “min” in (2.2) by “max”. Strong admissibility condition and standard ad-
missibility condition are the same on ideal domains.

436 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

Figure 2: Weak admissibility condition and the corresponding H-matrices for ideal one-dimensional (left) and
two-dimensional (right) domains. First row shows domain partitions and gray blocks are non-admissible domains
to ω. The second row shows the corresponding H-matrices with red submatrices being dense and white ones
being low-rank.

Figure 3: Standard admissibility condition and the corresponding H-matrices for ideal one-dimensional (left)
and two-dimensional (right) domains.

Based on the domain tree and admissibility conditions, we are ready to precisely de-
fine H-matrix as an approximation of K mapping from Ωs=Ω to Ωt=Ω, i.e., an approx-
imation of KΩt×Ωs =K|Ωt×Ωs . Domains Ωt and Ωs are called the target domain and the
source domain respectively, where the target domain is associated with row indices and
the source domain is associated with column indices.

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 437

Definition 2.4 (H-matrix). Assume that K maps vectors defined on source domain Ωs to vectors
defined on target domain Ωt. K is an H-matrix with rank r and domain trees TΩt and TΩs if
the following conditions hold in order: for each child subdomain pairs of Ωt×Ωs, i.e., ωt×ωs ∈
C(Ωt)×C(Ωs),

1. if C(ωt)=∅ or C(ωs)=∅, then Kωt×ωs is a dense matrix Dωt×ωs ; else

2. if ωt and ωs are admissible, then Kωt×ωs is a low-rank matrix with rank r, i.e., Kωt×ωs=
Uωt×ωsV

⊤
ωt×ωs

for Uωt×ωs ∈ R
|ωt|×r, Vωt×ωs ∈ R

|ωs|×r, and |·| denotes the DOFs in the
domain; otherwise

3. Kωt×ωs is an H-matrix with rank r and domain trees Tωt and Tωs .

In the above definition, three conditions must be checked in the given order. The third
condition defines the hierarchical structure of H-matrix.

In order to further clarify the definition, we walk readers through the ideal two-
dimensional domain case under weak admissibility condition. We begin with K map-
ping from Ωs = Ω = [0,1]2 to Ωt = Ω = [0,1]2. There are 16 child subdomain pairs in
C(Ωt)×C(Ωs). Among all 16 pairs, all child domains have their child domains. Hence
the first condition in Definition 2.4 fails for all pairs. We then check the weak admissibil-
ity condition. There are 12 out of 16 pairs are admissible, i.e., all non-overlapping domain
pairs on the first level as in Fig. 1. Therefore, there are 12 off-diagonal submatrices are
low-rank, which are denoted by the big white blocks in Fig. 2(right). For the rest 4 child
subdomain pairs, they are H-matrices of them own. We can continue this process until
the leaf level of the domain tree and resolve the entire H-matrix as in Fig. 2(right). The
H-matrix under standard admissibility condition is much more complicated. Fig. 3 de-
picts the H-matrices with the same domain and domain tree as that in Fig. 2 but under
the standard admissibility condition instead.

The H-matrix-vector multiplication can be processed efficiently as long as we can
read from the input vector and write to the output vector restricting to subdomains. We
denote the H-matrix as K mapping from Ω to Ω and the H-matrix-vector multiplication
as,

y=Kx,

where both x and y are vectors defined on Ω. We first initialize the output vector y
as a zero vector. Then, we traverse all submatrices in K that contains data, i.e., dense
submatrices and low-rank submatrices. For any such submatrix, denoted as Kωt×ωs , we
conduct the matrix-vector multiplication and add the results to the output vector,

yωt =yωt +Kωt×ωs xωs =

{

yωt +Dωt×ωs xωs ,

yωt +Uωt×ωs(V
⊤
ωt×ωs

xωs),
(2.3)

where yωt and xωs denote the vector restricted to domain ωt and ωs respectively. When
(2.3) is completed for all submatrices in K, the vector y is already the final H-matrix-
vector multiplication result.

438 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

As shown in many previous work [6, 21], for the regular domain with almost uni-
formly distributed discretization points, the memory cost for theH-matrix is O(rN log N),
where N is the total DOFs and r is the numerical rank. The H-matrix-vector multiplica-
tion can be achieved in O(rN log N) operations. Here we mainly reviewed the struc-
ture and matrix-vector multiplication of H-matrix. The construction algorithms of H-
matrix [6, 36] as well as other algebraic operations such as: matrix-matrix multiplication,
matrix factorization, etc., have been extensively studied in the literature, which are be-
yond the scope of this paper and we omit the detailed discussion.

3 H-matrix data distribution

The organization of processes and the associated data distribution avoid expensive par-
allel scheduling procedure as in [26, 27]. In Section 3.1, we first explain our hierarchical
organization of processes. Then in Section 3.2, the data distribution together with the
load balancing are discussed.

3.1 Hierarchical process organization

Processes are organized in correspondence with the domain tree TΩ. The main idea is to
assign subdomains to processes as balanced as possible while preserving the hierarchical
structure.

Let the P processes be indexed from 0 to P−1, and P be upper bounded by the number
of leaf nodes in TΩ

§. The set of all processes, denoted as P={0,1,··· ,P−1}, is called the
process group. We then traverse the domain tree to assign the process group, subgroups,
or individual processes to nodes in TΩ. Regarding the root node in TΩ, i.e., domain Ω, we
assign the entire process group P to it. From now on, we consider a general domain Ωℓ

in TΩ at level ℓ with a general process group P ℓ assigned. The assignment of subgroups
of P ℓ to child subdomains of Ωℓ obeys the following conditions:

1) If the number of child subdomains of Ωℓ is smaller than or equal to the number of
processes in P ℓ, i.e., |C(Ωℓ)|≤ |P ℓ|, then P ℓ is partitioned into |C(Ωℓ)| subgroups
such that the number of processes in each subgroup is proportional to the DOFs in
the corresponding child subdomain. Each subgroup is then assigned to the corre-
sponding child subdomain.

2) If the number of child subdomains of Ωℓ is bigger than the number of processes in
P ℓ, i.e., |C(Ωℓ)|> |P ℓ|, then C(Ωℓ) are organized into |P ℓ| parts such that the total
DOFs in each part are balanced. Each process is then assigned to subdomains in
one part.

§Having more processes than the number of leaf nodes (O(N)) is feasible if the later algorithm description
is slightly modified. While, such a setup is not of practical usage. Hence we omit the detail.

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 439

According to the process organization strategy, a process participates and only partic-
ipates one process group at each level. When a single process is assigned to a subdomain
ω in TΩ, it is assigned to all descendants of ω in TΩ. We can then combine all subdo-
mains that are singly owned by a process p and denote the union as ωp. All such unions

{ωp}P−1
p=0 form a balanced partition of Ω, where the balancing factor is upper bounded

by twice the balancing factor of TΩ. The balancing factor here is referring to the ratio of
the heaviest workload and the lightest workload among all processes. Further, in each
process group or subgroup, the process with smallest index is called the group leader,
e.g., 0 is the group leader of P . When a process is the group leader at a level ℓ, then it is
the group leader in all descendant groups it participates. For example, process 0 is group
leaders of all process groups it participates, whose workload is the heaviest among all
processes.

Fig. 4 top show a four level domain tree together with its process assignment of P=
{0,1,··· ,7} for an ideal one-dimensional domain. Each process is assigned to a unique
subdomain at level 3. In addition, Fig. 5 top show a three level domain tree together with
its process assignment of P = {0,1,··· ,7} for an ideal two-dimensional domain. We find
that process owns two subdomains at level 2 and eight processes form a perfect partition
of the domain.

3.2 Data distribution and load balancing

Definition 2.4 explicitly shows that all data (matrix entries) are in two types of subma-
trices, either dense submatrices or low-rank submatrices. The hierarchical submatrices
defined by the third conditions in Definition 2.4 exist virtually for recursion purpose.
Hence, we just need to distribute dense submatrices and low-rank submatrices among
processes.

Low-rank submatrix. Consider a low-rank submatrix associated with domain pair Ωt×
Ωs, where Ωt and Ωs are the target and source domains respectively. According to the
process organization defined in Section 3.1, there are two process groups assigned to Ωt

and Ωs, denoted as Pt and Ps respectively. We distribute two factors in the low-rank
submatrices, UΩt×Ωs and VΩt×Ωs , to two process groups, i.e., UΩt×Ωs is stored among
Pt and VΩt×Ωs is stored among Ps. If either Pt or Ps has only one process, then the
process owns the entire matrix. Now, assume there are more than one process in Pt.
Since UΩt×Ωs

is a tall and skinny matrix, it is distributed in a block row fashion. For each
process p ∈ Pt, the rows corresponding to ωp is owned by process p, where ωp is the
singly owned subdomain of p. If there are more than one process in Ps, then VΩt×Ωs

is
distributed in the same way among processes in Ps.

Dense submatrix. Consider a dense submatrix associated with domain pair Ωt×Ωs

and the corresponding process group pair Pt×Ps. There are three scenarios of the sizes

440 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

0, 1, 2, 3, 4, 5, 6, 7

0, 1, 2, 3 4, 5, 6, 7

0, 1 2, 3 4, 5 6, 7

0 1 2 3 4 5 6 7

Level 0

Level 1

Level 2

Level 3

Figure 4: H-matrix data distribution of an ideal one-dimensional domain with weak and standard admissibility
condition on 8 processes. Top part is the four-level domain tree together with its process assignment. Red
processes are group leaders. Middle parts and bottom parts are the distributed H-matrix with weak and
standard admissibility condition respectively. Left columns are H-matrix owned by target process groups and
right columns are owned by source process groups. Blue blocks indicate data owned by process 5 whereas light
red and yellow blocks indicate data owned by other processes.

of process groups: (i) |Pt|= |Ps|= 1; (ii) |Pt|= 1 and |Ps|> 1; (iii) |Pt|> 1 and |Ps|= 1.
In the first scenario, the dense matrix DΩt×Ωs

is owned by Ps. In the second scenario,
the transpose of dense matrix, D⊤

Ωt×Ωs
, is distributed among Ps in the same way as the

distribution of VΩt×Ωs
above. In the last scenario, the dense matrix DΩt×Ωs

is distributed
among Pt in the same way as the distribution of UΩt×Ωs

above.

Once the data distribution strategies are applied to all submatrices, the H-matrix is
then fully distributed among P . To further facilitate the understanding of the overall data
distribution, Fig. 4 and Fig. 5 show the data in H-matrices for an ideal one-dimensional

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 441

0, 1, 2, 3,

0, 1 2, 3

4, 5 6, 7

0

1

2

3

4

5

6

7

Level 0 Level 1 Level 2

0

1

2

3

4

5

6

7

4, 5, 6, 7

Figure 5: H-matrix data distribution of an ideal two-dimensional domain with weak admissibility condition on
8 processes. Top part is the three-level domain tree together with its process assignment. Red processes are
group leaders. Bottom parts are data in H-matrix owned by target process groups (left) and source process
groups (right). Blue blocks indicate data owned by process 2 whereas light red and yellow blocks indicate data
owned by other processes.

domain with weak and standard admissibility condition and an ideal two-dimensional
domain with weak admissibility condition respectively. Both H-matrices are distributed
among process group P of size eight. In Fig. 4 and Fig. 5, blue blocks highlight the data
owned by process 5 and process 2 respectively.

Remark 3.1. The data distribution strategies we introduced here are suitable and efficient
for a sequence of parallel-friendly H-matrix algebraic operations, e.g., matrix-vector mul-
tiplication, matrix-matrix multiplication, matrix compression, matrix addition, etc. While
some other H-matrix algebraic operations, like H-matrix-LU factorization and H-matrix-
inversion, are not parallel-friendly since the operations therein depends sequentially on
each other. Our data distribution strategies work for these operations as well, while the
efficiency is left to be further explored.

Remark 3.2. These data distribution strategies can also be easily extended to H2-matrix.
The nested basis in H2-matrix can be distributed among all processes in the similar way
as we distribute low-rank factors. While the tiny middle matrix in each low-rank block in
H2-matrix could be singly owned by either its source or target group leader. Given such
distribution strategies for H2-matrix, all its algebraic operations can be parallelized in an
analog way as that for H-matrix.

We now discuss the load balancing of the distributed H-matrix. As shown in Figs. 4
and 5, the load balancing is different for different admissibility conditions. Fig. 5 un-

442 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

der weak admissibility condition shows an ideal load balancing whereas Fig. 4 under
standard admissibility condition shows slightly unbalanced data distribution. In the fol-
lowing, we assume the domain is an ideal d-dimensional domain, [0,1]d with n uniform
discretization points on each dimension and N=nd discretization points in total. In such
an ideal case, each process own the same size of subdomain.

Assume that the weak admissibility condition is applied. At each level on TΩ, any
domain Ωℓ has the same number of admissible domains. Each process participate one
domain on the target side and another on the source side. Hence all processes own ex-
actly the same amount of data in low-rank submatrices at each level. For all low-rank
submatrices throughout levels, data are evenly distributed among all processes. Regard-
ing the dense submatrices, they are all of the same size and owned by their source pro-
cesses. Since all processes own the same size domains on the source side, and these do-
mains have the same amount of dense submatrices, all processes own the same amount
of dense submatrix data. Overall, the data of dense submatrices and low-rank subma-
trices are evenly distributed among all processes and the load balancing in this case is
ideal.

While, when the standard admissibility condition is applied, the load balancing de-
pends on the boundary condition of the problem. If the periodic boundary condition is
adopted, the load balancing is still ideal. While, if a non-periodic boundary condition
is adopted, the data loads are different for processes owning domains near the center
and processes owning domains near corners. Since all low-rank submatrices are evenly
owned by processes in its process groups, the load balancing factor is simply the ratio of
the numbers of low-rank submatrices for different processes, i.e., the numbers of admis-
sible domains. Consider level ℓ, which is neither the first two levels nor the last one. A
center subdomain Ωℓ

center’s parent domain has 3d non-admissible neighbor domains, each
of which is partitioned into 2d subdomains at level ℓ. Excluding non-admissible subdo-
mains of Ωℓ

center, there are 3d ·2d−3d admissible subdomains of Ωℓ
center. However, a corner

subdomain Ωℓ
corner’s parent domain is also a corner domain and has 2d non-admissible

neighbor domains. Through the similar calculation, Ωℓ
corner has 2d ·2d−2d admissible sub-

domains at level ℓ. Hence the load balancing factor is 3d

2d . Such a factor also holds to the
load balancing of dense submatrices. Overall, asymptotically as N goes to infinity, the
load balancing factor for distributed H-matrix under standard admissibility condition

and non-periodic boundary condition is upper bounded by
(

3
2

)d
. Since this factor is in-

dependent of both N and P, we still regard our data distribution in this case as a balanced
one.

4 Distributed-memory H-matrix-vector multiplication

H-matrix-vector multiplication is the fundamental operation in H-matrix algebra and
reveals the value of H-matrix as a fast algorithm. Further, it is also one of basic operations
involved in otherH-matrix algebraic operations, including, matrix-matrix multiplication,

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 443

matrix compression, matrix factorization, and matrix inversion. As briefly reviewed in
Section 2, the sequential H-matrix-vector multiplication is as simple as looping over all
low-rank and dense submatrices, multiplying the submatrix to the input vector restricted
to the source domain, and adding the result to the output vector restricted to the target
domain. However, the distributed-memory version is much more complicated. Based on
the data distribution as in Section 3, we present the distributed-memory H-matrix-vector
multiplication algorithm in this section followed by its complexity analysis.

4.1 Algorithm

Distributed-memory H-matrix-vector multiplication algorithm mainly consists of the fol-
lowing five steps:

Step 1. Source side local computation;

Step 2. Tree-reduction on source process tree;

Step 3. Data transfer from source to target;

Step 4. Tree-broadcast on target process tree;

Step 5. Target side local computation.

Among these five steps, Steps 1 and 5 only involve computations and are communication-
free whereas Steps 2, 3, and 4 focus on efficient communication under our data distribu-
tion and process organization. We will elaborate five steps in detail one-by-one. Through-
out the following description, we assume the input vector x is already distributed in the
block row fashion among process group P . More precisely, for any process p∈P , it owns
xωp =x|ωp for ωp being p’s singly owned domain. The output vector y will be distributed
exactly in the same way as x.

4.1.1 Source side local computation

The source side local computation goes through all submatrices containing data, i.e., low-
rank submatrices and dense submatrices, and conducts all communication-free calcula-
tions. We now describe specific operations for submatrices of different types.

Low-rank submatrix. Consider a low-rank submatrix associated with Ωt×Ωs and pro-
cess groups Pt×Ps. The explicit block form of VΩt×Ωs and xΩs admit,

VΩt×Ωs
=

vp0

...
vp|Ps |−1

, xΩs

=

xp0

...
xp|Ps|−1

, (4.1)

444 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

where pi ∈Ps, vpi
and xpi

are stored on process pi. We aim to compute the product of
VΩt×Ωs and xΩs as,

V⊤
Ωt×Ωs

xΩs =
|Ps|−1

∑
i=0

v⊤pi
xpi

, (4.2)

where the summation over i requires communication since v⊤pi
xpi

are owned by different
processes for different i. Hence, in this step, we only compute

zlocal =v⊤pi
xpi

(4.3)

on process pi without conducting any communication. The communication for the sum-
mation over i in (4.2) is postponed until the next step.

Dense submatrix. Consider a dense submatrix associated with Ωt×Ωs and Pt×Ps.
When there are more than one process in the target process group, i.e., |Pt|>1, the data
in this submatrix are owned by the target process group. No local computation is needed
and we assign zlocal = xΩs for later communications. When there is only one process in
the target process group, i.e., |Pt|=1, the data are distributed among the source process
group as,

DΩt×Ωs =
(

dp0 ··· dp|Ps |−1

)

, xΩs =

xp0

...
xp|Ps|−1

, (4.4)

for pi ∈Ps and |Ps|≥1. Similar to the low-rank submatrix case, we aim to compute

DΩt×Ωs
xΩs

=
|Ps|−1

∑
i=0

dpi
xpi

. (4.5)

Instead, we only conduct local computation in this step, zlocal = dpi
xpi

, on each process
pi ∈Ps without communication.

4.1.2 Tree-reduction on source process tree

This step implements the communication required summations in (4.2) and (4.5). Naı̈vely,
we can perform many MPI reductions¶, one for each submatrices and reduce the sum-
mation results to their group leaders. However, such a naı̈ve reduction strategy requires
many more messages than the tree-reduction to be introduced below, which benefits most
from the hierarchical organization of both the H-matrix and processes.

The preliminary step in tree-reduction is to collect and pack local results that require
communication in (4.2) and (4.5). For each process, we visit the H-matrix level by level
from root to leaf. At each level, each process participates and only participates in one
process group. Hence, local results are about to be reduced to the same group leader

¶We refer to “MPI Reduce” with addition operation as the reduction throughout this paper.

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 445

and are packed together in an array in the same ordering. Across levels, we concatenate
packed local results together until one level before the level where process group has
only one process. We denote the maximum number of such levels as LP.

Then a sequence of reductions are conducted from level LP backward to the root level.
At level LP, all processes reduce the entire concatenated array to their own group leaders
at this level. Group leaders at level LP then have already collected their group members’
contributions to summations from root level to level LP−1. Hence, those non-leader
group members at level LP no longer participate the rest communications in this step. At
a following level ℓ=LP−1,LP−2,··· ,1, the participating processes are those group leaders
at level ℓ+1. They reduce their concatenated array from level 1 to level ℓ (with contri-
butions from their own group members) to their own group leaders at level ℓ. When all
reductions are completed, all group leaders own the summations (4.2) and (4.5) of their
groups. Slightly abuse of notation, we still denote these summation results as zlocal.

Remark 4.1. When the domain and discretization are far from balanced ones, the process
tree is also not balanced. Hence, it is possible that at some level ℓ < LP, a process is
the process group of its own. In this case, such a process do not need to participate the
reduction at level ℓ or lower. We do not exclude such cases from our description above,
but do exclude them from our implementation.

Fig. 6 depicts the flow of a tree-reduction for an ideal one-dimensional domain dis-
tributed evenly on 8 processes. Although there is no communication-required data on
the root level in H-matrix-vector multiplication, we still include data cubics on level 0
in the figure to demonstrate the idea and show the extendability of the tree-reduction to
more than two levels.

4.1.3 Data transfer from source to target

After the previous step, all local data, zlocal, are stored on their own group leaders on the
source side. In order to finish the computation, local data should be sent to the processes
in the target group. To better benefit from the hierarchical structure, we accomplish the
communication in this and next steps. In this step, local data will be sent from the source
group leaders to the corresponding target group leaders. Then the next step is responsible
for broadcasting local data to the processes in target groups.

Given a pair of target and source group leaders, pt and ps, they could be the group
leaders of many submatrices. Hence process ps first packs local data in all those subma-
trices and then send them in one message to process pt. After process pt received the
packed local data, it then unpacks the data to submatrices.

Remark 4.2. We emphasize that a process only participates at most O(logP) number of
group leader pairs. Let us consider process 0 as the source group leader, which acts most
frequently as the source group leader among all processes. As we mentioned before, each
process only participates one process group on each level of the process tree. Process 0
is then the group leaders of one process group on each level, which adds to O(logP)

446 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

Level 0

Level 1

0

Level 2

0

0 4

0 2 4 6

Level 0

Level 1

0 1 2 3 4 5 6 7

0

Level 2

0 0 0 0 0 0 0

0 0 0 0 4 4 4 4

0 0 2 2 4 4 6 6

Level 0

Level 1

0

Level 2

0 0 0

0 0 4 4

0 2 4 6

Level 0

Level 1

0

Level 2

0 4

0 2 4 6

T
re
e
-r
e
d
u
c
ti
o
n

T
re
e
-b
ro
a
d
c
a
s
t

Figure 6: Tree-communication flowchart. Tree-reduction and tree-broadcast flow from top to bottom and from
bottom to top respectively. Different columns with gray background are the concatenated arrays owned by
different processes. Each cubic is the packed data on the corresponding level and the number in the cubic
indicates its group leader. For tree-reduction, yellow cubics are local data to be reduced to their group leaders
and summed together whereas blue cubics are the final summation results owned only by group leaders. As
shown in the figure, only yellow cubics and their owner processes participate the reduction communications. For
tree-broadcast, blue cubics are original packed data to be sent to group members. Yellow cubics are packed
data been broadcasted. Light yellow cubics are final broadcasted data.

groups. A source process group on each level only interacts with a constant number of
target process groups, where the constant depends on the admissibility condition. Hence
process 0 is paired with a constant number of target group leaders at each level. Summing
all levels together, process 0 is paired with O(logP) target group leaders.

4.1.4 Tree-broadcast on target process tree

Consider a low-rank submatrices associated with Ωt×Ωs with process groups Pt×Ps as
an example. The matrix vector multiplication admits,

UΩt×ΩsV
⊤
Ωt×Ωs

xΩs =

up0

(

V⊤
Ωt×Ωs

xΩs

)

...

up|Pt|−1

(

V⊤
Ωt×Ωs

xΩs

)

=

up0zlocal
...

up|Pt |−1
zlocal

, (4.6)

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 447

where pi∈Pt and zlocal is the summation in (4.2). After the previous step, in each subma-
trices, zlocal is owned by the target group leaders. Hence, in order to conduct the product
of upi

zlocal as in (4.6), zlocal needs to be shared with all target group members. A similar
equation can be written down for dense submatrices with target process groups of size
greater than one. In this step, we hierarchically broadcast the local data zlocal from the
group leaders to the group members together and name it as tree-broadcast, which is the
reverse procedure of tree-reduction.

Similar to tree-reduction, we first collect and pack local results that require commu-
nication. For each group leader, we visit the H-matrix level by level from root to leaf. At
each level, local results that are about to be broadcasted to the same group are packed
together in an array. Across levels, we concatenate packed local results together until
level LP.

Then a sequence of broadcasts are executed from the first level forward to level LP.
At a level ℓ= 1,··· ,LP−1, the group leaders broadcast their array from level 1 to level ℓ
to those subgroup leaders at level ℓ+1. Subgroup leaders then concatenate the received
array together with their own packed array. Once the concatenating procedure is accom-
plished, we move on to the next level. Finally, at level LP, group leaders broadcast their
entire array to all their group members. All processes in target process group, in the end,
received all needed local data for each submatrices they participated.

Similar level skipping for the unbalanced target process tree can be done for tree-
broadcast as that for tree-reduction in Remark 4.1. Fig. 6 illustrates a tree-broadcast pro-
cedure for an ideal one-dimensional domain distributed on 8 processes.

4.1.5 Target side local computation

The target side local computation goes through all low-rank and dense submatrices and
conducts aggregation of the product results onto output vector y. Here we assume the
output vector y is initialized to be all zero. We describe operations for different types of
submatrices.

Low-rank submatrix. Consider a low-rank submatrix associated with Ωt×Ωs and pro-
cess groups Pt×Ps. As shown in (4.6), for a process pi∈Pt, the product result is upi

zlocal.
After previous step, zlocal is owned by pi. Hence we only need to process the following
communication-free computation,

ypi
=ypi

+upi
zlocal, (4.7)

where ypi
is the output vector y restricted to the subdomain in Ωt owned by pi.

Dense submatrix. Consider a dense submatrix associated with Ωt×Ωs and process
groups Pt×Ps. If there is only one process in Pt, then the matrix-vector multiplication as
in (4.5) has already been conducted in the first step and the result zlocal is also owned by

448 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

Pt after previous communication steps. Hence we simply add it to the output vector,

yΩt
=yΩt

+zlocal. (4.8)

If there are more than one process in Pt, then the dense matrix is owned by Pt in a block
row fashion and the matrix vector multiplication admits,

DΩt×Ωs
xΩs

=

dp0 xΩs

...
dp|Pt |−1

xΩs

=

dp0 zlocal
...

dp|Pt |−1
zlocal

, (4.9)

where pi∈Pt and each pi has a copy of zlocal. In this step, process pi is responsible for the
following computation,

ypi
=ypi

+dpi
zlocal, (4.10)

where ypi
is the same as that in (4.7).

Remark 4.3. Here we described the algorithm computing y=Kx for a distributed-memory
H-matrix K. A more standard matrix-vector multiplication operator in linear algebra
would be y=αKx+βy, which is the “GEMV” operation in level 2 BLAS. Such an opera-
tion can be easily adopted here if we do not initialize y as a zero vector and modify (4.7),
(4.8), and (4.10) accordingly. All the rest steps remain unchanged.

4.2 Complexity analysis

In this section, we analyze the computational and the communication complexities of the
distributed-memory H-matrix-vector multiplication algorithm. To simplify the notation,
we denote Lp=O(logP) and LN =O(logN) as the number of levels in process trees‖ and
domain trees respectively.

The computational complexity is easy to conclude given our previous analysis on the
data balancing in Section 3.2. Notice that our total number of floating-point operations
stay identical to that of sequential H-matrix-vector multiplication if the extra computa-
tion in tree-reduction is excluded. While, the computation in tree-reduction is of lower
order comparing to that of dense matrix-vector multiplication conducted on each pro-
cesses. Hence, the extra computation in communication steps can be ignored in our com-
plexity analysis. Further, processes conduct float operations proportional to amounts of
data they owned. Thanks to the balanced data distribution, we conclude that the com-
putational operations are also balanced across all processes and each process conduct

O
(N logN

P

)

operations.
The communication complexity consists of two parts: the latency (α) and the per-

process inverse bandwidth (β). The complexity analysis for the latency is relatively

‖Here we count the number of levels in a process tree until the first level such that all process groups contain
one process.

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 449

simpler and stay the same for different admissibility conditions. The latency is essen-
tially counting the number of send/receive communications. Each process in the tree-
reduction and tree-broadcast steps conducts a reduction and broadcast among constant
number of processes. Hence each process conduct O(1) send/receive communications
on each level. Summing all LP levels together, the latencies for both tree-reduction and
tree-broadcast are O(αlogP). Regarding the Step 3 in our algorithm, as discussed in
Remark 4.2, each process only communicates with O(logP) other processes. Hence the
latency for Step 4 and the overall latency are O(αlogP). The complexities of inverse band-
width, however, are different for different admissibility conditions and are discussed sep-
arately.

Weak admissibility condition. Consider the tree-reduction and tree-broadcast steps.
At a given level ℓ≤ LP, each process only participates one process group and owns a
constant number of submatrices. Hence the final concatenated array is of length O(LP).
Process 0 is the most communication intensive process. For level ℓ=1,··· ,LP, it communi-
cates an array of size O(ℓ) in both tree-reduction and tree-broadcast. Therefore, process
0 in total send and receive O(L2

P) data, which is an upper bound for other processes. The
inverse bandwidth complexities for the tree-reduction and tree-broadcast steps are then
O(βlog2 P).

The inverse bandwidth complexity for the third step is very much simplified for
H-matrices under weak admissibility condition due to one crucial difference between
weak admissibility condition and other admissibility conditions. H-matrices under weak
admissibility condition only have H-submatrices along their diagonal blocks, whereas
H-matrices under other admissibility conditions have H-submatrices on off-diagonal
blocks. Under the distributed-memory setting, such a property means that the source
and target process groups remain the same for all H-submatrices when weak admis-
sibility condition is adopted. Hence only low-rank submatrices are distributed among
different source and target process groups. Now we again consider process 0, who are
group leaders across all levels. For levels below LP, process 0 does not participate any
submatrices with different source and target process groups. For level LP and above, pro-
cess 0 is responsible to send the entire reduced array of length O(LP) to other processes.
Hence the inverse bandwidth complexities for process 0 is O(βlogP), which is the upper
bound for other processes.

Overall, the complexity, including both computational complexity and communica-
tion complexity, for distributed-memory H-matrices under weak admissibility condition
on P processes is

O
(

N logN

P
+αlogP+βlog2 P

)

. (4.11)

Standard admissibility condition. All communication complexity analyses under the
weak admissibility condition carry over to that under the standard admissibility condi-

450 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

tion with a different prefactor, which is determined by the number of admissible neigh-
bors. Some extra communication costs come from those H-submatrices singly owned
by different target process and source process. In this case, no tree-communication is
needed. But the source process need to pack all local data in this H-submatrices and
send them to the target process. The amount of local data in the H-submatrices is a
constant times the number of low-rank and dense submatrices. Such H-submatrices are
mostly corresponding to neighboring subdomains and are of sizes N

P . With a complicated

calculation, which is omitted here, such H-submatrices have O
(

log N
P

)

low-rank subma-

trices and O
(

(N
P)

d−1
d

)

dense submatrices, where d is the dimension of the problem. The
number of low-rank submatrices essentially calculates the number of levels whereas the
number of dense submatrices calculates the number of the subdomains of finest scale on
the interface of the two neighboring subdomains. Hence the extra communication cost

under standard admissibility condition is O
(

β
(

log N
P +(N

P)
d−1

d

))

.
Overall, the complexity for distributed-memory H-matrices under standard admissi-

bility condition on P processes is

O
(

N logN

P
+αlogP+β

(

log2 P+log
N

P
+
(N

P

)
d−1

d

))

. (4.12)

Remark 4.4. According to (4.11) and (4.12), we notice the trade-off between the compu-
tational complexity and the communication complexity. When P is much smaller than
N, the dominate cost comes from the computational part. While as P approaches N, the
computational cost is then O(logN) whereas the communication complexity is O(log2 P)
dominating the cost.

5 Numerical results

All numerical experiments were performed on the Texas Advanced Computing Center
(TACC) cluster, Stampede2. This cluster has 4,200 Intel Knights Landing nodes, each
with 68 cores, 96 GB of DDR memory. Nodes are interconnected via Intel Omni-Path
network with a fat tree topology. We allocate various number of nodes for our tests and
each node runs 32 MPI processes. The memory limit per process is 3 GB.

In the following numerical results, we adopt a few measurements to demonstrate the
parallel efficiency of our algorithm. In addition to the regular wall-clock time (walltime),
we also calculate the speedup as well as the efficiency factor. Given a problem, we denote
P0 as the smallest number of processes that are able to solve the problem and solve it in t0

seconds. Meanwhile, solving the problem among P1 processes for P1≥P0 takes t1 seconds.
The speedup and the efficiency factor (percentage) in this case are,

Speedup=
P0t0

t1
and Eff=

P0t0

P1t1
·100, (5.1)

respectively.

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 451

5.1 H-matrices for two-dimensional problems

Let Ω = [0,1]2 be the domain of interest. We discretize the problem with n points on
each dimension for n=512,1024,··· ,65536. Hence the corresponding matrices are of size
varying from 5122×5122 up to 655362×655362. The structure of an H-matrix is then
determined by a hierarchical partition of Ω. Since the construction of H-matrix is beyond
the scope of this paper and H-matrix-vector multiplication does not rely on the properties
of the underlying problems, we fill dense submatrices and low-rank submatrices in H-
matrices by random numbers and use these random H-matrices to explore the parallel

5122

10242
20482

40962
81922

163842
327682

655362

102 103 104

Number of Processes

10-2

10-1

W
al

lti
m

e
(s

ec
)

(a) Weak admissibility, r=4

102 103 104

Number of Processes

10-2

10-1
W

al
lti

m
e

(s
ec

)

(b) Weak admissibility, r=8

102 103 104

Number of Processes

10-2

10-1

W
al

lti
m

e
(s

ec
)

(c) Standard admissibility, r=4

102 103 104

Number of Processes

10-2

10-1

W
al

lti
m

e
(s

ec
)

(d) Standard admissibility, r=8

Figure 7: Strong scaling of H-matrix-vector multiplication for various two-dimensional problems on various
number of processes (up to 16384 processes). Figures (a) and (b) are H-matrices under weak admissibility
condition with rank being 4 and 8 respectively. Figures (c) and (d) are H-matrices under standard admissibility
condition with rank being 4 and 8 respectively. Solid lines are strong scaling curves and dash lines are their
corresponding theoretical references. Different colors are problems of different sizes as indicated in the legend.

452 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

643

1283
2563

5123
10243

102 103 104

Number of Processes

10-2

10-1

W
al

lti
m

e
(s

ec
)

(a) Weak admissibility, r=4

102 103 104

Number of Processes

10-2

10-1

W
al

lti
m

e
(s

ec
)

(b) Weak admissibility, r=8

102 103 104

Number of Processes

10-2

10-1

W
al

lti
m

e
(s

ec
)

(c) Standard admissibility, r=4

102 103 104

Number of Processes

10-2

10-1

W
al

lti
m

e
(s

ec
)

(d) Standard admissibility, r=8

Figure 8: Strong scaling of H-matrix-vector multiplication for various three-dimensional problems on various
number of processes (up to 16384 processes). Figures (a) and (b) are H-matrices under weak admissibility
condition with rank being 4 and 8 respectively. Figures (c) and (d) are H-matrices under standard admissibility
condition with rank being 4 and 8 respectively. Solid lines are strong scaling curves and dash lines are their
corresponding theoretical references. Different colors are problems of different sizes as indicated in the legend.

scaling of our algorithm. Also random input vectors are used in our tests. Both weak
admissibility condition and standard admissibility condition are explored. In addition,
we use two choices of r, r=4 and r=8, where the later makes problems more computation
intensive. Each H-matrix is distributed among various number of processes, from 32 up
to 16384. The reported runtime is averaged over 128 random input vectors.

Fig. 8 depicts strong scaling plots for different H-matrices and Table 1 further details
walltimes, speedups and efficiency factors. In both weak admissibility condition cases,
Figs. 7(a) and 7(b), strong scaling is well-preserved as we keep doubling the number of
processes. Towards the end of each curve, when the communication cost dominates the

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 453

Table 1: Numerical results of distributed-memory H-matrix-vector multiplication for two-dimensional problems.

N r P
Weak Standard

Time (s) Speedup Eff (%) Time (s) Speedup Eff (%)

5122 4

32 3.58e-03 32.0x 100.0 1.39e-02 32.0x 100.0

64 3.83e-03 30.0x 46.8 7.48e-03 59.6x 93.2

128 3.08e-03 37.2x 29.1 5.31e-03 84.0x 65.6

10242 4

32 1.17e-02 32.0x 100.0 6.64e-02 32.0x 100.0

64 7.98e-03 47.0x 73.5 3.71e-02 57.2x 89.4

128 5.40e-03 69.5x 54.3 1.96e-02 108.5x 84.8

256 3.91e-03 95.9x 37.4 9.23e-03 230.3x 90.0

512 3.40e-03 110.2x 21.5 6.16e-03 345.0x 67.4

20482 4

32 5.03e-02 32.0x 100.0 3.26e-01 32.0x 100.0

64 3.02e-02 53.3x 83.2 1.80e-01 58.0x 90.6

128 1.59e-02 100.9x 78.8 8.86e-02 117.9x 92.1

256 9.72e-03 165.5x 64.6 4.60e-02 226.9x 88.6

512 6.30e-03 255.4x 49.9 2.42e-02 432.4x 84.4

1024 3.83e-03 419.9x 41.0 1.01e-02 1037.1x 101.3

2048 3.51e-03 457.8x 22.4 6.56e-03 1592.4x 77.8

40962 4

32 2.30e-01 32.0x 100.0 - - -

64 1.33e-01 55.2x 86.2 - - -

128 6.66e-02 110.4x 86.2 - - -

256 3.51e-02 209.4x 81.8 2.19e-01 256.0x 100.0

512 1.83e-02 401.3x 78.4 1.08e-01 517.7x 101.1

1024 9.95e-03 738.6x 72.1 5.56e-02 1009.2x 98.6

2048 6.36e-03 1155.7x 56.4 2.91e-02 1932.2x 94.3

81922 4

256 1.56e-01 256.0x 100.0 - - -

512 7.71e-02 516.5x 100.9 - - -

1024 4.00e-02 995.6x 97.2 - - -

2048 1.99e-02 1999.3x 97.6 1.28e-01 2048.0x 100.0

4096 1.11e-02 3577.2x 87.3 6.38e-02 4118.2x 100.5

8192 7.21e-03 5523.2x 67.4 3.40e-02 7723.1x 94.3

16384 4.12e-03 9666.5x 59.0 1.29e-02 20411.5x 124.6

163842 4

1024 1.78e-01 1024.0x 100.0 - - -

2048 8.83e-02 2066.0x 100.9 - - -

4096 4.57e-02 3991.3x 97.4 - - -

8192 2.26e-02 8091.8x 98.8 1.48e-01 8192.0x 100.0

16384 1.30e-02 14063.9x 85.8 7.36e-02 16471.7x 100.5

327682 4

4096 1.97e-01 4096.0x 100.0 - - -

8192 9.86e-02 8188.2x 100.0 - - -

16384 5.13e-02 15744.5x 96.1 - - -

655362 4 16384 2.82e-01 16384.0x 100.0 - - -

454 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

walltime, the walltime remain flat for a long time, which means that the communication
cost grows very mildly as the number of processes increases. In standard admissibility
condition cases, Figs. 7(c) and 7(d), good strong scaling is also observed in most cases.
Comparing to the weak admissibility condition cases, especially towards the end of each
curve, the communication cost kicks in earlier as the number of processes increase, which
is due to the different prefactors in the complexity analysis in Section 4.2. Table 1 provides
more evidences supporting our comments. We emphasize that the parallel efficiencies are
impressive especially for larger problems. For example, in both N=40962 and N=81922

cases, parallel efficiencies are above 72 percent in weak admissibility condition cases and
above 90 percent in standard admissibility condition cases, even when thousands of pro-
cesses are used. Finally, we would like to comment on the weak scaling. Although not
been plotted in figures, weak scaling∗∗ can be read from connecting dots vertically in fig-
ures. Clearly, on the top half of each figure, the weak scaling is near ideal (flat). Hence we
claim that our algorithm and implementation give numerical results of both good strong
scaling and weak scaling.

5.2 H-matrices for three-dimensional problems

In this section, we perform numerical results for domain Ω = [0,1]3. We discretize the
problem with n being 64,128,··· ,1024 and the corresponding matrices are of size varying
from 643×643 up to 10243×10243. Similar as in the two-dimensional cases, we adopt
random H-matrices and random input vectors to explore the parallel scaling of our al-
gorithm. Both weak admissibility condition and standard admissibility condition are
explored as well as two choices of r. Each H-matrix is distributed among various num-
ber of processes, from 32 up to 16384. Reported runtime is averaged over 128 random
input vectors.

Comments for two-dimensional problems as in Section 5.1 apply seamless to three-
dimensional problems. Both under weak and standard admissibility condition cases,
strong scaling and weak scaling are well-preserved as the number of processes increases.
H-matrices under weak admissibility condition show better parallel efficiencies compar-
ing to that under standard admissibility condition. Now we focus on the comparison of
two-dimensional problems and three-dimensional problems. Comparing Fig. 7(a) and
Fig. 7(b) to Fig. 8(a) and Fig. 8(b) respectively, we find that all four figures show simi-
lar strong scaling as well as weak scaling. This behavior has already been predicted by
(4.11), where the complexity under weak admissibility condition is independent of the
dimensionality of the problem. While, comparing Fig. 7(c) and Fig. 7(d) to Fig. 8(c) and
Fig. 8(d) respectively, two-dimensional problems show better strong scaling than their
three-dimensional counterparts. Under standard admissibility condition, the number of
neighboring subdomains increases as the dimension increases, which also implies that
the required communication cost will increase. As detailed in (4.12), the communication

∗∗The computational cost grows quasi-linearly whereas the number of processes grows linearly. Here our
weak scaling definition ignores the extra logarithmic factor.

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 455

Table 2: Numerical results of distributed-memoryH-matrix-vector multiplication for three-dimensional problems.

N r P
Weak Standard

Time (s) Speedup Eff (%) Time (s) Speedup Eff (%)

643 4

32 3.27e-03 32.0x 100.0 1.33e-02 32.0x 100.0

64 4.11e-03 25.5x 39.8 9.94e-03 42.8x 66.8

128 4.11e-03 25.4x 19.9 7.06e-03 60.2x 47.0

1283 4

32 1.70e-02 32.0x 100.0 1.85e-01 32.0x 100.0

64 1.11e-02 49.2x 76.9 1.11e-01 53.2x 83.2

128 6.93e-03 78.6x 61.4 6.20e-02 95.4x 74.6

256 5.70e-03 95.6x 37.3 2.66e-02 222.7x 87.0

512 5.12e-03 106.4x 20.8 1.59e-02 372.5x 72.8

1024 4.70e-03 115.9x 11.3 9.26e-03 638.9x 62.4

2563 4

32 1.65e-01 32.0x 100.0 - - -

64 9.20e-02 57.3x 89.6 - - -

128 4.77e-02 110.6x 86.4 - - -

256 2.52e-02 209.4x 81.8 - - -

512 1.39e-02 380.7x 74.4 - - -

1024 8.40e-03 628.4x 61.4 8.91e-02 1024.0x 100.0

2048 5.75e-03 917.6x 44.8 3.55e-02 2572.3x 125.6

4096 4.75e-03 1109.8x 27.1 2.02e-02 4510.0x 110.1

8192 5.07e-03 1039.8x 12.7 1.16e-02 7894.9x 96.4

5123 4

512 1.16e-01 512.0x 100.0 - - -

1024 5.94e-02 1004.2x 98.1 - - -

2048 3.00e-02 1987.9x 97.1 - - -

4096 1.62e-02 3674.9x 89.7 - - -

8192 9.09e-03 6561.1x 80.1 1.25e-01 8192.0x 100.0

16384 8.29e-03 7196.6x 43.9 4.50e-02 22811.5x 139.2

10243 4

4096 1.42e-01 4096.0x 100.0 - - -

8192 7.14e-02 8131.5x 99.3 - - -

16384 3.56e-02 16320.9x 99.6 - - -

complexity depends monotonically on the dimension d. Hence, as proved by numerical
results, the communication cost dominate the walltime earlier for bigger d.

6 Conclusion

In this paper, we introduce the data distribution of distributedH-matrices and a distributed-
memory H-matrices-vector multiplication algorithm.

Given the tree structure of the domain organization in H-matrix, we also organize
our processes in a process tree. Two process trees are adopted for the target and source

456 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

domains. Under our data distribution scheme, the load balancing factors are constants
for both weak admissibility condition (the constant is independent of dimension d) and
standard admissibility condition (the constant depends on d). For problems of extremely
large size N, our data distribution scheme allows the number of processes to grow as big
as O(N). In this case, each process owns a part of the H-matrix, whose size depends
only logarithmically on N. Therefore, our data distribution is feasible for problems of
extremely large sizes on massive number of processes.

The proposed distributed-memory H-matrix-vector multiplication algorithm is par-
allel efficient. Specifically under our tree organizations of both processes and data, we
introduce a tree communication scheme, i.e., “tree-reduce” and “tree-broadcast”, to sig-
nificantly reduce the latency complexity. All required computations in sequential H-
matrix-vector multiplication are evenly distributed among all processes. Importantly, our
algorithm totally avoids the expensive scheduling step, which is as expensive as Ω(P2)
on P processes. Overall, our algorithm complexities for a d-dimensional problem of size

N distributed among P processes are O
(N logN

P +αlogP+βlog2 P
)

and O
(N logN

P +αlogP+

β
(

log2 P+log N
P +(N

P)
d−1

d

))

for weakly admissibility condition and standard admissibility
condition respectively, where α denotes the latency and β denotes the per-process inverse
bandwidth.

There are several future directions for improvement, both in algorithm and in im-
plementation. Instead of pure “MPI” parallelization, one can combine “OpenMP” and
“MPI” to further reduce the local communications within a node. This could improve
the communication complexity, especially for H-matrices under standard admissibility
condition, by a big factor. Other H-matrix algebraic operations can also be efficiently
parallelized given our data distribution and process organization. In a companion pa-
per, we will introduce distributed-memory H-matrix compression, H-matrix addition,
as well as H-matrix-H-matrix multiplication.

Availability. The distributed-memory H-matrix code, DMHM, is available under the
GPLv3 license at https://github.com/YingzhouLi/dmhm. The code support both two-
dimensional and three-dimensional problems.

Acknowledgments

The authors acknowledge the Texas Advanced Computing Center (TACC) at The Univer-
sity of Texas at Austin for providing HPC resources that have contributed to the research
results reported within this paper. The work of YL is supported in part by the US Na-
tional Science Foundation under awards DMS-1454939 and DMS-2012286, and by the US
Department of Energy via grant DE-SC0019449. The work of LY is partially supported
by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Com-
puting Research, Scientific Discovery through Advanced Computing (SciDAC) program
and the National Science Foundation under award DMS-1818449.

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 457

References

[1] Amestoy, P., A. Buttari, I. Duff, A. Guermouche, J.-Y. L’Excellent, and B. Uçar (2011). Multi-
frontal method. In D. Padua (Ed.), Encyclopedia of Parallel Computing, pp. 1209–1216. Boston,
MA: Springer US.

[2] Aminfar, A. H., S. Ambikasaran, and E. Darve (2016, Jan). A fast block low-rank dense solver
with applications to finite-element matrices. J. Comput. Phys. 304, 170–188.

[3] Anderson, C. R. (1992, Jul). An implementation of the fast multipole method without multi-
poles. SIAM J. Sci. Stat. Comput. 13(4), 923–947.

[4] Barnes, J. and P. Hut (1986). A hierarchical O(NlogN) force-calculation algorithm. Na-
ture 324(6096), 446–449.

[5] Bebendorf, M. (2007, Jul). Why finite element discretizations can be factored by triangular
hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472–1494.

[6] Bebendorf, M. (2008). Hierarchical matrices (1st ed.), Volume 63. Springer Publishing Company,
Incorporated.

[7] Bebendorf, M. and W. Hackbusch (2003). Existence of H-matrix approximants to the inverse
FE-matrix of elliptic operators with L∞-coefficients. Numer. Math. 95(1), 1–28.

[8] Benson, A. R., J. Poulson, K. Tran, B. Engquist, and L. Ying (2014, Aug). A parallel directional
fast multipole method. SIAM J. Sci. Comput. 36(4), C335–C352.

[9] Candès, E. J., L. Demanet, and L. Ying (2009, Jan). A fast butterfly algorithm for the computa-
tion of Fourier integral operators. Multiscale Model. Simul. 7(4), 1727–1750.

[10] Chen, C., H. Pouransari, S. Rajamanickam, E. G. Boman, and E. Darve (2018, May). A
distributed-memory hierarchical solver for general sparse linear systems. Parallel Comput. 74,
49–64.

[11] Cheng, H., L. Greengard, and V. Rokhlin (1999, Nov). A fast adaptive multipole algorithm
in three dimensions. J. Comput. Phys. 155(2), 468–498.

[12] Duff, I. S., A. M. Erisman, and J. K. Reid (1986). Direct Methods for Sparse Matrices. USA:
Oxford University Press, Inc.

[13] Engquist, B. and L. Ying (2007, Aug). Fast directional multilevel algorithms for oscillatory
kernels. SIAM J. Sci. Comput. 29(4), 1710–1737.

[14] Engquist, B. and L. Ying (2009). A fast directional algorithm for high frequency acoustic
scattering in two dimensions. Commun. Math. Sci. 7(2), 327–345.

[15] Fong, W. and E. F. Darve (2009, Dec). The black-box fast multipole method. J. Comput.
Phys. 228(23), 8712–8725.

[16] Ghysels, P., X. S. Li, F. H. Rouet, S. Williams, and A. Napov (2016, Oct). An efficient multicore
implementation of a novel HSS-structured multifrontal solver using randomized sampling.
SIAM J. Sci. Comput. 38(5), S358–S384.

[17] Grasedyck, L. and W. Hackbusch (2003, Jul). Construction and arithmetics of H-matrices.
Computing 70(4), 295–334.

[18] Greengard, L. and W. D. Gropp (1990, Jan). A parallel version of the fast multipole method.
Comput. Math. with Appl. 20(7), 63–71.

[19] Greengard, L. and V. Rokhlin (1987, Dec). A fast algorithm for particle simulations. J. Comput.
Phys. 73(2), 325–348.

[20] Greengard, L. and V. Rokhlin (1997). A new version of the fast multipole method for the
Laplace equation in three dimensions. Acta Numer. 6, 229–269.

[21] Hackbusch, W. (1999). A sparse matrix arithmetic based on H-matrices. I. introduction to
H-matrices. Computing 62(2), 89–108.

458 Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459

[22] Hackbusch, W. and B. N. Khoromskij (2000, Dec). Sparse H-matrix arithmetic: General com-
plexity estimates. J. Comput. Appl. Math. 125(1-2), 479–501.

[23] Hackbusch, W., B. N. Khoromskij, and S. A. Sauter (2000). On H2-matrices. In Lect. Appl.
Math., pp. 9–29. Springer Berlin Heidelberg.

[24] Ho, K. L. and L. Ying (2016a). Hierarchical interpolative factorization for elliptic operators:
differential equations. Commun. Pure Appl. Math. 69(8), 1415–1451.

[25] Ho, K. L. and L. Ying (2016b, Jul). Hierarchical interpolative factorization for elliptic opera-
tors: integral equations. Commun. Pure Appl. Math. 69(7), 1314–1353.

[26] Izadi, M. (2012a, Jul). Hierarchical matrix techniques on massively parallel computers. Ph. D.
thesis, Max Planck Institute for Mathematics in the Sciences.

[27] Izadi, M. (2012b, Apr). Parallel H-matrix arithmetic on distributed-memory systems. Com-
put. Vis. Sci. 15(2), 87–97.

[28] Kriemann, R. (2005, May). Parallel H-matrix arithmetics on shared memory systems. Com-
puting 74(3), 273–297.

[29] Kriemann, R. (2013, Jun). H-LU factorization on many-core systems. Comput. Vis. Sci. 16(3),
105–117.

[30] Li, X. S., J. Demmel, J. Gilbert, L. Grigori, and M. Shao (2011). Superlu. In D. Padua (Ed.),
Encyclopedia of Parallel Computing, pp. 1955–1962. Boston, MA: Springer US.

[31] Li, Y. and H. Yang (2017). Interpolative butterfly factorization. SIAM J. Sci. Comput. 39(2),
A503–A531.

[32] Li, Y., H. Yang, E. R. Martin, K. L. Ho, and L. Ying (2015, Jan). Butterfly factorization. Multi-
scale Model. Simul. 13(2), 714–732.

[33] Li, Y., H. Yang, and L. Ying (2015, Jan). A multiscale butterfly algorithm for multidimensional
Fourier integral operators. Multiscale Model. Simul. 13(2), 1–18.

[34] Li, Y., H. Yang, and L. Ying (2018, May). Multidimensional butterfly factorization. Appl.
Comput. Harmon. Anal. 44(3), 737–758.

[35] Li, Y. and L. Ying (2017). Distributed-memory hierarchical interpolative factorization. Res.
Math. Sci. 4(12), 23.

[36] Lin, L., J. Lu, and L. Ying (2011). Fast construction of hierarchical matrix representation from
matrix-vector multiplication. J. Comput. Phys. 230(10), 4071–4087.

[37] Minden, V., K. L. Ho, A. Damle, and L. Ying (2017, Apr). A recursive skeletonization factor-
ization based on strong admissibility. Multiscale Model. Simul. 15(2), 768–796.

[38] O’Neil, M., F. Woolfe, and V. Rokhlin (2010). An algorithm for the rapid evaluation of special
function transforms. Appl. Comput. Harmon. Anal. 28(2), 203–226.

[39] Rokhlin, V. (1985, Sep). Rapid solution of integral equations of classical potential theory. J.
Comput. Phys. 60(2), 187–207.

[40] Rouet, F. H., X. S. Li, P. Ghysels, and A. Napov (2016, Jun). A distributed-memory package
for dense hierarchically semi-separable matrix computations using randomization. ACM Trans.
Math. Softw. 42(4), 1–35.

[41] Salmon, J. K. and M. S. Warren (1994, Jun). Fast parallel tree codes for gravitational and fluid
dynamical N-body problems. Int. J. Supercomput. Appl. High Perform. Comput. 8(2), 129–142.

[42] Singh, J. P., C. Holt, J. L. Hennessy, and A. Gupta (1993, Nov). A parallel adaptive fast
multipole method. In Supercomput. ’93Proceedings 1993 ACM/IEEE Conf. Supercomput., pp. 54–
65.

[43] Takahashi, T., C. Chen, and E. Darve (2020, Feb). Parallelization of the inverse fast multipole
method with an application to boundary element method. Comput. Phys. Commun. 247, 106975.

[44] Wang, R., C. Chen, J. Lee, and E. Darve (2019, Mar). PBBFMM3D: a parallel black-box algo-

Y. Li, J. Poulson and L. Ying / CSIAM Trans. Appl. Math., 2 (2021), pp. 431-459 459

rithm for kernel matrix-vector multiplication. http://arxiv.org/abs/1903.02153.
[45] Wang, R., Y. Li, M. W. Mahoney, and E. Darve (2019, Dec). Block basis factorization for

scalable kernel evaluation. SIAM J. Matrix Anal. Appl. 40(4), 1497–1526.
[46] Wang, S., X. S. Li, J. Xia, Y. Situ, and M. V. De Hoop (2013, Dec). Efficient scalable algorithms

for solving dense linear systems with hierarchically semiseparable structures. SIAM J. Sci.
Comput. 35(6).

[47] Warren, M. S. and J. K. Salmon (1993). A parallel hashed oct-tree N-body algorithm. In Proc.
Supercomput. Conf., New York, New York, USA, pp. 12–21. Published by IEEE.

[48] Xia, J., S. Chandrasekaran, M. Gu, and X. S. Li (2010, Dec). Fast algorithms for hierarchically
semiseparable matrices. Numer. Linear Algebr. with Appl. 17(6), 953–976.

[49] Xing, X. and E. Chow (2018, Nov). An efficient method for block low-rank approximations
for kernel matrix systems. http://arxiv.org/abs/1811.04134.

[50] Ying, L., G. Biros, D. Zorin, and H. Langston (2003, Nov). A new parallel kernel-independent
fast multipole method. In SC ’03 Proc. 2003 ACM/IEEE Conf. Supercomput., pp. 14.

