
SPARSE FACTORIZATIONS AND SCALABLE ALGORITHMS

FOR DIFFERENTIAL AND INTEGRAL OPERATORS

A DISSERTATION

SUBMITTED TO THE INSTITUTE FOR COMPUTATIONAL &

MATHEMATICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Yingzhou Li

May 2017

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/dm425vb5993

© 2017 by Yingzhou Li. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/dm425vb5993

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Lexing Ying, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Leonid Ryzhik

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Chao Yang

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

iv

Preface

This dissertation presents sparse factorizations and scalable algorithms for elliptic

differential operators and Fourier integral operators (FIOs). The former operators

are solved by the distributed-memory hierarchical interpolative factorization (DHIF)

whereas the later operators are addressed by the butterfly factorization.

By exploiting locality and certain low-rank properties of the elliptic differential

operators, the hierarchical interpolative factorization achieves quasi-linear complex-

ity for factorizing the discrete positive definite elliptic differential operator and linear

complexity for solving the associated linear system. In this dissertation, the DHIF is

introduced as a scalable and distributed-memory implementation of the hierarchical

interpolative factorization. The DHIF organizes the processes in a hierarchical struc-

ture and keep the communication as local as possible. The computation complexity

is O
`

N logN
P

˘

and O
`

N
P

˘

for constructing and applying the DHIF, respectively, where

N is the size of the problem and P is the number of processes. The communication

complexity is O
`
?
P log3 P

˘

α ` O
´

N2{3
?
P

¯

β where α is the latency and β is the in-

verse bandwidth. Extensive numerical examples are performed on the NERSC Edison

system with up to 8192 processes. The numerical results agree with the complexity

analysis and demonstrate the efficiency and scalability of the DHIF.

The butterfly factorization is a data-sparse approximation for the FIOs as well

v

as other matrices that satisfy a complementary low-rank property. The factorization

can be constructed efficiently if either fast algorithms for applying the matrix and its

adjoint are available or the entries of the matrix can be sampled individually. For an

N ˆ N matrix, the resulting factorization is a product of OplogNq sparse matrices,

each with OpNq non-zero entries. Hence, it can be applied rapidly in OpN logNq

operations. Numerical results are provided to demonstrate the effectiveness of the

butterfly factorization and its construction algorithms. For the kernel matrices of

multidimensional FIOs, for which the complementary low-rank property is usually not

satisfied due to a singularity at the origin, we extend this factorization by combining

it with either a polar coordinate transformation or a multiscale decomposition of the

integration domain to overcome the singularity. Numerical results are provided to

demonstrate the efficiency of the proposed algorithms as well.

vi

Acknowledgement

This dissertation would not have been possible without the help and support from

many people.

I would like to thank my adviser Lexing Ying for his guidance and encouragement.

In the past five years, he teaches me how to solve problems, how to ask questions and

how to think as an applied mathematician. His thoughts have deeply influenced both

my academic life and my everyday life.

I am grateful to Eric Darve, Lenya Ryzhik, and Chao Yang for serving on my

thesis committee and for providing valuable discussion and suggestion.

I would like to thank my collaborators Jack Poulson and Haizhao Yang for being

great teachers and constant supporters. I would also like to thank my other col-

laborators: Kenneth Ho, Lin Lin, Michael Mahoney, Eileen Martin, Victor Minden,

Ruoxi Wang, and Liming Zhang. Without their help, my achievements would not be

possible.

Through all the past five years, the faculty and staff of the institute for compu-

tational & mathematical engineering provide a great environment for me to do my

research. I also wish to thank the people I have worked with at LBNL for making a

wonderful place to work.

Finally, I want to thank my parents, Zhigang Li and Xiaohua Zhou, for their love,

vii

care and encouragement. Without them, I would be nothing.

viii

Contents

Preface v

Acknowledgement vii

1 Introduction 1

2 Elliptic PDEs and hierarchical interpolative factorization 5

2.1 Background . 5

2.1.1 Related work . 6

2.1.2 Contribution . 8

2.1.3 Organization . 9

2.2 Preliminaries . 9

2.2.1 Notations . 9

2.2.2 Sparse elimination . 11

2.2.3 Skeletonization . 14

2.2.4 Sequential hierarchical interpolative factorization 16

2.3 Distributed-memory hierarchical interpolative factorization 21

2.3.1 Process tree . 21

2.3.2 Distributed-memory method 22

ix

2.3.3 Complexity analysis . 27

2.3.3.1 Memory complexity 27

2.3.3.2 Computation complexity 29

2.3.3.3 Communication complexity 30

2.4 Numerical results . 31

2.5 Conclusion . 46

3 Oscillatory integral operator and butterfly algorithm 48

3.1 Background . 48

3.1.1 Related work . 50

3.1.2 Organization . 52

3.2 Low-rank approximations and butterfly algorithms 52

3.2.1 Complementary low-rank property 53

3.2.2 Butterfly algorithm . 55

3.2.3 Polar low-rank approximations and polar butterfly algorithm . 59

3.3 Multiscale low-rank approximations 61

3.4 Multiscale butterfly algorithm . 68

3.4.1 Single-scale butterfly algorithm 70

3.4.2 Complexity analysis . 73

3.5 Numerical results . 74

3.6 Conclusion and remarks on parallelization 80

4 Butterfly factorization 81

4.1 Introduction . 81

4.1.1 Organization . 84

4.2 Preliminaries . 84

x

4.2.1 SVD via random matrix-vector multiplication 86

4.2.2 SVD via random sampling . 87

4.3 One-dimensional butterfly factorization 90

4.3.1 Middle level factorization . 91

4.3.2 Recursive factorization . 94

4.3.2.1 Recursive factorization of Uh 95

4.3.2.2 Recursive factorization of V h 100

4.3.3 Complexity analysis . 101

4.3.4 Numerical results . 103

4.4 Multidimensional butterfly factorization 110

4.4.1 Two-dimensional butterfly factorization 110

4.4.1.1 Notations and overall structure 110

4.4.1.2 Middle level factorization 113

4.4.1.3 Recursive factorization 115

4.4.1.4 Complexity analysis 122

4.4.1.5 Extensions . 125

4.4.2 Polar butterfly factorization 126

4.4.2.1 Factorization algorithm 126

4.4.2.2 Numerical results . 127

4.4.3 Multiscale butterfly factorization 131

4.4.3.1 Factorization algorithm 131

4.4.3.2 Numerical results . 133

4.5 Remarks on parallelization . 135

4.6 Conclusion . 137

Bibliography 139

xi

List of Tables

2.1 Commonly used notations in distributed-memory hierarchical inter-

polative factorization . 12

2.2 Notations for numerical results of distributed-memory hierarchical in-

terpolative factorization . 32

2.3 Example 1. Numerical results for distributed-memory hierarchical in-

terpolative factorization . 34

2.4 Example 2. Numerical results for distributed-memory hierarchical in-

terpolative factorization . 38

2.5 Example 3. Numerical results for distributed-memory hierarchical in-

terpolative factorization . 42

2.6 Example 4. Numerical results for distributed-memory hierarchical in-

terpolative factorization and hypre 45

3.1 Example 1. Numerical results for multiscale butterfly algorithm and

polar butterfly algorithm . 76

3.2 Example 2. Numerical results for multiscale butterfly algorithm . . . 78

3.3 Example 3. Numerical results for multiscale butterfly algorithm . . . 79

xii

4.1 Computational complexity and memory complexity for butterfly fac-

torization in one dimension . 103

4.2 Example 1. Numerical resutls for butterfly factorization with random

sampling algorithm . 106

4.3 Example 2. Numerical results for butterfly factorization with random

sampling algorithm . 107

4.4 Example 3. Numerical results for butterfly factorization with random

SVD algorithm . 109

4.5 Computational complexity and memory complexity for two-dimensional

butterfly factorization . 125

4.6 Example 1. Numerical results for polar butterfly factorization with

random sampling algorithm . 129

4.7 Example 2. Numerical results for polar butterfly factorization with

random SVD algorithm . 130

4.8 Example 1. Numerical results for multiscale butterfly factorization

with random sampling algorithm . 134

4.9 Example 2. Numerical results for multiscale butterfly factorization

with random SVD algorithm . 134

xiii

List of Figures

2.1 Cell structure in distributed-memory hierarchical interpolative factor-

ization . 10

2.2 Sparse elimination in distributed-memory hierarchical interpolative fac-

torization . 13

2.3 Skeletonization in distributed-memory hierarchical interpolative fac-

torization . 16

2.4 Process tree in distributed-memory hierarchical interpolative factoriza-

tion . 21

2.5 Distributed-memory hierarchical interpolative factorization 28

2.6 Example 1. Numerical results I for distributed-memory hierarchical

interpolative factorization . 35

2.7 Example 1. Numerical results II for distributed-memory hierarchical

interpolative factorization . 36

2.8 Example 2. Random field . 37

2.9 Example 2. Numerical results I for distributed-memory hierarchical

interpolative factorization . 39

2.10 Example 2. Numerical results II for distributed-memory hierarchical

interpolative factorization . 40

xiv

2.11 Example 3. Numerical results I for distributed-memory hierarchical

interpolative factorization . 43

2.12 Example 3. Numerical results II for distributed-memory hierarchical

interpolative factorization . 44

3.1 Domain trees for butterfly algorithm 54

3.2 Hierarchical decomposition of a matrix with complementary low-rank

property . 54

3.3 Hierarchical domain trees of the two-dimensional butterfly algorithm 59

3.4 Frequency domain decomposition for multiscale butterfly algorithm . 69

4.1 Middle level factorization of a 64ˆ 64 complementary low-rank matrix 94

4.2 Recursive factorization of U3 in Figure 4.1 98

4.3 The recursive factorization pV 3q˚ « pH3q˚pH4q˚pV 5q˚ of pV 3q˚ in Fig-

ure 4.1 . 101

4.4 An illustration of Z-order curve cross levels 112

4.5 Middle level factorization of a complementary low-rank matrix for two-

dimensional problem . 114

4.6 Recursive factorization of U2 in Figure 4.5 120

4.7 A full butterfly factorization for a two-dimensional problem 123

xv

xvi

Chapter 1

Introduction

1) Many physical models are described by linear partial differential equations and/or

integral equations.

2) One of the important problems in scientific computing and applied mathematics is

to develop efficient and scalable algorithms for differential and integral operators.

Most computational problems from real applications cannot be evaluated or solved

explicitly. Numerical methods provide a powerful hammer to tackle these practical

problems.

Differential operators are usually discretized by local schemes, for instance, finite

difference method and finite element method. The resulting equation is a sparse linear

system,

Au “ f,

where A is a sparse matrix of size NˆN with OpNq non-zeros, u and f are vectors of

length N , and N is the total number of discretization points. Due to the sparsity, the

forward application of the matrix can be efficiently calculated in OpNq operations.

1

2 CHAPTER 1. INTRODUCTION

However, solving the sparse linear system näıvely costs OpN3q operations, which is

intractable for large N . Even if the sparse matrix is carefully permuted, solving it

for three-dimensional problems still costs OpN2q operations [33]. Therefore, fast and

scalable algorithms are required for solving these large scale sparse matrices.

On the other hand side, integral operator is usually discretized via Nyström

method, collocation method, and Galerkin method. The resulting equation is a dense

linear system,

Ku “ f,

where K is a dense kernel matrix of size N ˆN , u and f are vectors of length N , and

N is the total number of discretization points. Applying a dense matrix of size N to a

vector costs OpN2q operations, whereas solving for u costs OpN3q operations. In this

case, both applying the matrix and solving the linear system need to be accelerated.

In this dissertation, we consider two specific classes of operators, elliptic partial

differential operators with rough coefficients and Fourier integral operators.

Rough coefficient elliptic partial differential operators

Rough coefficient elliptic partial differential operators are of the form

´∇ ¨ papxq∇upxqq ` bpxqupxq “ fpxq, x P Ω Ă Rd (1.1)

with appropriate boundary conditions on BΩ, where upxq is the unknown function,

apxq ą 0, bpxq, fpxq are given functions. Such equations are of fundamental impor-

tance in science and engineering and encompass many PDEs from classical physics,

e.g., the Laplace equations, the Stockes equations, and the low-frequency time-harmonic

Helmholtz and Maxwell equations, etc. Solving the associated sparse linear systems

3

efficiently would have significant impact in practice. Hierarchical interpolative fac-

torization (HIF) proposed in [50] is an efficient and accurate way to factorize this

linear system. Chapter 2 proposes a distributed-memory HIF implementation to ad-

dress this issue. The sparse matrix A can be represented as a product of a sequence

of sparse lower or upper triangular matrices. The inversion of any of these sparse

triangular matrices has the same sparsity pattern as the matrix itself. Therefore, the

inverse of A is representable as a reverse order product of the inverses of these sparse

lower or upper triangular matrices. Solving the linear system Au “ f can be calcu-

lated via a sequence of sparse matrix vector multiplications, and costs OpN logNq

operations. As many of these sparse matrices can be generated, applied, and inverted

independently and simultaneously, our implementation achieves almost perfect par-

allelization: given P processes, each process runs in OpN
P

logNq operations in the

algorithm.

Fourier integral operators

Fourier integral operators (FIOs) are defined as

upxq “

ż

Rd
apx, ξqe2πıΦpx,ξq

pfpξq dξ, (1.2)

where apx, ξq is an amplitude function, Φpx, ξq is a phase function that is smooth in

px, ξq for ξ ‰ 0 and obeys the homogeneity condition of degree 1 in ξ, pfpξq is the

Fourier transform of the input fpxq. An especially important example of an FIO is

the solution operator to the scalar wave equation with variable but smooth sound

speeds. For small times, the solution operator is a sum of two FIOs with smooth

phases and amplitudes. Since the FIOs are dense, their forward applications require

fast and scalable algorithms. Chapter 3 proposes an efficient multiscale butterfly

algorithm with low pre-factor. Chapter 4 first proposes a sparse factorization for the

4 CHAPTER 1. INTRODUCTION

operator for one-dimensional problems. In the same chapter, combining techniques

developed in Chapter 3, we obtain three multidimensional sparse factorizations to

accelerate the application of FIOs in multidimensional problems. The key in all

butterfly factorizations is to factorize the kernel matrix K as a product of OplogNq

sparse matrices, each of which contains OpNq non-zeros, where N is the size of K.

Once the factorization is available, the application of K costs OpN logNq operations.

The application of each sparse matrix can be fully parallelized. Communications

are needed for redistributing the vector according to the sparsity patterns. Due to

the special block pattern in the sparse matrices, each process communicates with a

constant number of other processes in the redistribution.

Chapter 2

Elliptic PDEs and hierarchical

interpolative factorization

2.1 Background

This chapter proposes an efficient distributed-memory algorithm for solving elliptic

partial differential equations (PDEs) of the form,

´∇ ¨ papxq∇upxqq ` bpxqupxq “ fpxq x P Ω Ă R3, (2.1)

with a certain boundary condition, where apxq ą 0, bpxq and fpxq are given functions

and upxq is an unknown function. Since this elliptic equation is of fundamental

importance to several problems in physical sciences, solving (2.1) effectively has a

significant impact in practice. Discretizing this with local schemes such as the finite

difference or finite element methods leads to a sparse linear system,

Au “ f, (2.2)

5

6 CHAPTER 2. ELLIPTIC PDES AND HIF

where A P RNˆN is a sparse symmetric matrix with OpNq non-zero entries with N

being the number of the discretization points, and u and f are the discrete approxi-

mations of the functions upxq and fpxq, respectively. For many practical applications,

one often needs to solve (2.1) on a sufficient fine mesh for which N can be very large,

especially for three-dimensional (3D) problems. Hence, there is a practical need for

developing fast and parallel algorithms for the efficient solution of (2.1).

2.1.1 Related work

A great deal of effort in the field of scientific computing has been devoted to the

efficient solution of (2.2). Beyond the OpN3q complexity näıve matrix inversion ap-

proach, one can classify the existing fast algorithms into the following groups.

The first one consists of the sparse direct algorithms, which take advantage of

the sparsity of the discrete problem. The most noticeable example in this group is

the nested dissection multifrontal method (MF) method [38, 33, 66]. By carefully

exploring the sparsity and the locality of the problem, the multifrontal method fac-

torizes the matrix A (and thus A´1) as a product of sparse lower and upper triangular

matrices. For 3D problems, the factorization step costs OpN2q operations while the

application step takes OpN4{3q operations. Many parallel implementations [3, 4, 77]

of the multifrontal method were proposed and they typically work quite well for

problem of moderate size. However, as the problem size goes beyond a couple of

millions, most implementations, including the distributed-memory ones, hit severe

bottlenecks in memory consumption. Another closely related method is the supern-

odal method [32, 42]. Asymptotically, it behaves similar as the multifrontal method.

The second group consists of iterative solvers [14, 79, 80, 37], including famous

algorithms such as the conjugate gradient (CG) method and the multigrid method.

2.1. BACKGROUND 7

Each iteration of these algorithms typically takes OpNq steps and hence the overall

cost for solving (2.2) is proportional to the number of iterations required for conver-

gence. For problems with smooth coefficient functions apxq and bpxq, the number of

iterations typically remains rather small and the optimal linear complexity is achieved.

However, if the coefficient functions lack regularity or have high contrast, the iteration

number typically grows quite rapidly as the problem size increases.

The third group contains the methods based on structured matrices [11, 10, 12, 22].

These methods, for example the H-matrix [43, 45], the H2-matrix [44], and the hier-

archically semi-separable matrix (HSS) [21, 93], are shown to have efficient approxi-

mations of linear or quasi-linear complexity for the matrices A and A´1. As a result,

the algebraic operations of these matrices are of linear or quasi-linear complexities

as well. More specifically, the recursive inversion and the rocket-style inversion [1]

are two popular methods for the inverse operation. For distributed-memory imple-

mentations, however, the former lacks parallel scalability [55, 57] while the latter

demonstrates scalability only for 1D and 2D problems [1]. For 3D problems, these

methods typically suffer from large prefactors that make them less efficient for prac-

tical large-scale problems.

A recent group of methods explore the idea of integrating the MF method with the

hierarchical matrix [69, 92, 91, 90, 39, 88, 47] or block low-rank matrix [81, 82, 2, 87]

approach in order to leverage the efficiency of both methods. Instead of directly

applying the hierarchical matrix structure to the 3D problems, these methods apply

it to the representation of the frontal matrices (i.e., the interactions between the

lower dimensional fronts). These methods are of linear or quasi-linear complexities in

theory with much smaller prefactors. However, due to the combined complexity, the

implementation is highly non-trivial and quite difficult for parallelization [67, 94].

8 CHAPTER 2. ELLIPTIC PDES AND HIF

More recently, the hierarchical interpolative factorization (HIF) [50, 51, 73, 62] is

proposed as a new way for solving elliptic PDEs and integral equations. As compared

to the multifrontal method, the HIF includes an extra step of skeletonizing the fronts

in order to reduce the size of the dense frontal matrices. Based on the key observation

that the number of skeleton points on each front scales linearly as the one-dimensional

fronts, the HIF factorizes the matrix A (and thus A´1) as a product of sparse matrices

that contains only OpNq non-zero entries in total. In addition, the factorization and

application of the HIF are of complexities OpN logNq and OpNq, respectively, for

N being the total number of degrees of freedom (DOFs) in (2.2). In practice, the

HIF shows significant saving in terms of computational resources required for 3D

problems.

2.1.2 Contribution

This chapter proposes the first distributed-memory hierarchical interpolative factoriza-

tion (DHIF) for solving very large scale problems. In a nutshell, the DHIF organizes

the processes in an octree structure in the same way that the HIF partitions the com-

putation domain. In the simplest setting, each leaf node of the computation domain is

assigned a single process. Thanks to the locality of the operator in (2.1), this process

only communicates with its neighbors and all algebraic computations are local within

the leaf node. At higher levels, each node of the computation domain is associated

with a process group that contains all processes in the subtree starting from this node.

The computations are all local within this process group via parallel dense linear al-

gebra and the communications are carried out between neighboring process groups.

By following this octree structure, we make sure that both the communication and

computations in the distributed-memory HIF are evenly distributed. As a result,

2.2. PRELIMINARIES 9

the distributed-memory HIF implementation achieves O
`

N logN
P

˘

and O
`

N
P

˘

parallel

complexity for constructing and applying the factorization, respectively, where N is

the number of DOFs and P is the number of processes.

We have performed extensive numerical tests. The numerical results support the

complexity analysis of the distributed-memory HIF and suggest that the DHIF is a

scalable method up to thousands of processes and can be applied to solve large scale

elliptic PDEs.

2.1.3 Organization

The rest of this chapter is organized as follow. In Section 2.2, we introduce the basic

tools needed, and review the sequential HIF. Section 2.3 presents the DHIF as a

parallel extension of the sequential HIF for 3D problems. Complexity analyses for

memory usage, computation time and communication volume are given at the end

of this section. The numerical results detailed in Section 2.4 show that the DHIF is

applicable to large scale problems and achieves parallel scalability up to thousands of

processes. Finally, Section 2.5 concludes with some extra discussions on future work.

2.2 Preliminaries

This section reviews the basic tools and the sequential HIF. First, we start with the

notations that are widely used throughout this chapter.

2.2.1 Notations

In this chapter, we adopt MATLAB notations for simple representation of submatri-

ces. For example, given a matrix A and two index sets, s1 and s2, Aps1, s2q represents

10 CHAPTER 2. ELLIPTIC PDES AND HIF

the submatrix of A with the row indices in s1 and column indices in s2. The next

two examples explore the usage of MATLAB notation “:”. With the same settings,

Aps1, :q represents the submatrix of A with row indices in s1 and all columns. Another

usage of notation “:” is to create regularly spaced vectors for integer values i and j,

for instance, i : j is the same as ri, i` 1, i` 2, . . . , js for i ď j.

In order to simplify the presentation, we consider the problem (2.1) with periodic

boundary condition and assume that the domain Ω “ r0, 1q3, and is discretized with

a grid of size n ˆ n ˆ n for n “ 2Lm, where L “ Oplog nq and m “ Op1q are both

integers. In the rest of this chapter, L ` 1 is known as the number of levels in the

hierarchical structure and L is the level number of the root level. We use N “ n3 to

denote the total number of DOFs, which is the dimension of the sparse matrix A in

(2.2). Furthermore, each grid point xj is defined as

xj “ hj “ hpj1, j2, j3q (2.3)

where h “ 1{n, j “ pj1, j2, j3q and 0 ď j1, j2, j3 ă n.

Top

Front

Left

Interior

Figure 2.1: Cell structure: top, front, left, and interior points are indicated by arrows;
bottom, back, and right points are not plotted in the figure; the black dots denote
the edge points; the dash line indicates that the front frame is pulled away in order
to show the interior points.

2.2. PRELIMINARIES 11

In order to fully explore the hierarchical structure of the problem, we recur-

sively bipartite each dimension of the grid into L ` 1 levels. Let the leaf level be

level 0 and the root level be level L. At level `, a cell indexed with j is of size

m2`ˆm2`ˆm2` and each point in the cell is in the range,
“

m2`j1 ` p0 : m2` ´ 1q
‰

ˆ

“

m2`j2 ` p0 : m2` ´ 1q
‰

ˆ
“

m2`j3 ` p0 : m2` ´ 1q
‰

, for j “ pj1, j2, j3q and 0 ď j1, j2, j3 ă

2L´`. C`
j denotes the grid point set of the cell at level ` indexed with j.

A cell C`
j owns three faces: top, front, and left. Each of these three faces con-

tains the grid points on the first frame in the corresponding direction. For exam-

ple, the front face contains the grid points in
“

m2`j1 ` p0 : m2` ´ 1q
‰

ˆ
“

m2`j2

‰

ˆ

“

m2`j3 ` p0 : m2` ´ 1q
‰

. Besides these three in-cell faces (top, front, and left) that

are owned by a cell, each cell is also adjacent to three out-of-cell faces (bottom, back,

right) owned by its neighbors. Each of these three faces contains the grid points on the

next to the last frame in the corresponding dimension. As a result, these faces con-

tain DOFs that belong to adjacent cells. For example, the bottom face of C`
j contains

the grid points in
“

m2`pj1 ` 1q
‰

ˆ
“

m2`j2 ` p0 : m2` ´ 1q
‰

ˆ
“

m2`j3 ` p0 : m2` ´ 1q
‰

.

These six faces are the surrounding faces of C`
j . One also defines the interior of C`

j to

be I`j “
“

m2`j1 ` p1 : m2` ´ 1q
‰

ˆ
“

m2`j2 ` p1 : m2` ´ 1q
‰

ˆ
“

m2`j3 ` p1 : m2` ´ 1q
‰

for the same j “ pj1, j2, j3q and 0 ď j1, j2, j3 ă 2L´`. Figure 2.1 gives an illustration

of a cell, its faces, and its interior. These definitions and notations are summarized

in Table 2.1. Also included here are some notations used for the processes, which will

be introduced later.

2.2.2 Sparse elimination

Suppose that A is a symmetric matrix. The row/column indices of A are partitioned

into three sets I
Ť

F
Ť

R where I refers to the interior point set, F refers to the

12 CHAPTER 2. ELLIPTIC PDES AND HIF

Notation Description

n Number of points in each dimension of the grid
N Number of points in the grid
h Grid gap size
` Level number in the hierarchical structure
L Level number of the root level in the hierarchical structure

e1, e2, e3 Unit vector along each dimension
0 Zero vector
j Triplet index j “ pj1, j2, j3q
xj Point on the grid indexed with j

Ω The set of all points on the grid
C`

j Cell at level ` with index j
C` C` “ tC`

j uj is the set of all cells at level `
F `j Set of all surrounding faces of cell C`

j

F ` Set of all faces at level `
I`j Interior of C`

j

I` I` “ tI`j uj is the set of all interiors at level `

Σ` The set of active DOFs at level `
Σ`

j The set of active DOFs at level ` with process group index j

p`j, p
` The process group at level ` with/without index j

Table 2.1: Commonly used notations

surrounding face point set, and R refers to the rest point set. We further assume that

there is no interaction between the indices in I and the ones in R. As a result, one

can write A in the following form

A “

»

—

—

—

–

AII ATFI

AFI AFF ATRF

ARF ARR

fi

ffi

ffi

ffi

fl

. (2.4)

Let the LDLT decomposition of AII be AII “ LIDIL
T
I , where LI is lower trian-

gular matrix with unit diagonal. According to the block Gaussian elimination of A

2.2. PRELIMINARIES 13

given by (2.4), one defines the sparse elimination to be

STI ASI “

»

—

—

—

–

DI

BFF ATRF

ARF ARR

fi

ffi

ffi

ffi

fl

, (2.5)

where BFF “ AFF ´AFIA
´1
II A

T
FI is the associated Schur complement and the explicit

expressions for SI is

SI “

»

—

—

—

–

L´TI ´A´1
II A

T
FI

I

I

fi

ffi

ffi

ffi

fl

. (2.6)

The sparse elimination removes the interaction between the interior points I and

the corresponding surrounding face points F and leaves ARF and ARR untouched.

We call the entire point set, I
Ť

F
Ť

R, the active point set. Then, after the sparse

elimination, the interior points are decoupled from other points, which is conceptually

equivalent to eliminate the interior points from the active point set. After this, the

new active point set can be regarded as F
Ť

R.

Figure 2.2: Sparse elimination: the interior points are eliminated after the sparse
elimination; the rest points are not all plotted in the figure.

Figure 2.2 illustrates the impact of the sparse elimination. The dots in the figure

represent the active points. Before the sparse elimination (left), edge points, face

14 CHAPTER 2. ELLIPTIC PDES AND HIF

points and interior points are active while after the sparse elimination (right) the

interior points are eliminated from the active point set.

2.2.3 Skeletonization

Skeletonization is a tool for eliminating redundant point set from a symmetric ma-

trix that has low-rank off-diagonal blocks. The key step in skeletonization uses the

interpolative decomposition [23, 71] of low-rank matrices.

Let A be a symmetric matrix of the form,

A “

»

–

AFF ATRF

ARF ARR

fi

fl , (2.7)

where ARF is a numerically low-rank matrix. The interpolative decomposition of ARF

is (up to a permutation)

ARF “
”

AR s

sF AR pF

ı

«

”

AR pFTF AR pF

ı

, (2.8)

where TF is the interpolation matrix, pF is the skeleton point set, s

sF is the redundant

point set, and F “ pF
Ť

s

sF . Applying this approximation to A results

A «

»

—

—

—

—

–

A
s

sF s

sF AT
pF s

sF
T TF A

T
R pF

A
pF s

sF A
pF pF AT

R pF

AR pFTF AR pF ARR

fi

ffi

ffi

ffi

ffi

fl

, (2.9)

2.2. PRELIMINARIES 15

and be symmetrically factorized as

ST
s

sF
QT
FAQFS s

sF « ST
s

sF

»

—

—

—

—

–

B
s

sF s

sF BT
pF s

sF

B
pF s

sF A
pF pF AT

R pF

AR pF ARR

fi

ffi

ffi

ffi

ffi

fl

S
s

sF “

»

—

—

—

—

–

D
s

sF

B
pF pF AT

R pF

AR pF ARR

fi

ffi

ffi

ffi

ffi

fl

, (2.10)

where

B
s

sF s

sF “ A
s

sF s

sF ´ T
T
F A pF s

sF ´ A
T
pF s

sF
TF ` T

T
F A pF pFTF , (2.11)

B
pF s

sF “ A
pF s

sF ´ A pF pFTF , (2.12)

B
pF pF “ A

pF pF ´B pF s

sFB
´1
s

sF s

sF
BT

pF s

sF
. (2.13)

The factor QF is generated by the block Gaussian elimination, which is defined to be

QF “

»

—

—

—

—

–

I

´TF I

I

fi

ffi

ffi

ffi

ffi

fl

. (2.14)

Meanwhile, the factor S
s

sF is introduced in the sparse elimination:

S
s

sF “

»

—

—

—

—

–

L´T
s

sF
´B´1

s

sF s

sF
BT

pF s

sF

I

I

fi

ffi

ffi

ffi

ffi

fl

(2.15)

where L
s

sF and D
s

sF come from the LDLT factorization of B
s

sF s

sF , i.e., B
s

sF s

sF “ L
s

sFD s

sFL
T
s

sF
.

Similar to what happens in Section 2.2.2, the skeletonization eliminates the redundant

point set s

sF from the active point set.

16 CHAPTER 2. ELLIPTIC PDES AND HIF

Figure 2.3: Skeletonization: the working face is colored by red and pink; red points
are the skeleton points on the face whereas pink points are the redundant points on
the face; skeletonization eliminates the redundant points from the active point set.

The point elimination idea of the skeletonization is illustrated in Figure 2.3. Before

the skeletonization (left), the edge points, interior points, skeleton face points (red)

and redundant face points (pink) are all active, while after the skeletonization (right)

the redundant face points are eliminated from the active point set.

2.2.4 Sequential hierarchical interpolative factorization

This section reviews the sequential hierarchical interpolative factorization (HIF) for

3D elliptic problems (2.1) with the periodic boundary condition. Without loss of

generality, we discretize (2.1) with the seven-point stencil on a uniform grid, which is

defined in Section 2.2.1. The discrete system is

1

h2

´

aj´ 1
2
e1
` aj` 1

2
e1
` aj´ 1

2
e2
` aj` 1

2
e2
` aj´ 1

2
e3
` aj` 1

2
e3

¯

uj

´
1

h2

´

aj´ 1
2
e1
uj´e1 ` aj` 1

2
e1
uj`e1 ` aj´ 1

2
e2
uj´e2 ` aj` 1

2
e2
uj`e2

`aj´ 1
2
e3
uj´e3 ` aj` 1

2
e3
uj`e3

¯

` bjuj “ fj

(2.16)

at each grid point xj for j “ pj1, j2, j3q and 0 ď j1, j2, j3 ă n, where aj “ apxjq,

bj “ bpxjq, fj “ fpxjq, and uj approximates the unknown function upxq at xj. The

2.2. PRELIMINARIES 17

corresponding linear system is

Au “ f (2.17)

where A is a sparse symmetric matrix. Further if b ą 0, A is SPD matrix.

We first introduce the notion of active and inactive DOFs.

• A set Σ of DOFs of A is called active if AΣΣ is not a diagonal matrix or AΣ̄Σ

is a non-zero matrix;

• A set Σ of DOFs of A is called inactive if AΣΣ is a diagonal matrix and AΣ̄Σ

is a zero matrix.

Here Σ̄ refers to the complement of the set Σ. Sparse elimination and skeletonization

provide concrete examples of active and inactive DOFs. For example, sparse elimi-

nation turns the indices I from active DOFs of A to inactive DOFs of rA “ STI ASI in

(2.5). Skeletonization turns the indices s

sF from active DOFs of A to inactive DOFs

of rA “ ST
s

sF
QT
FAQFS s

sF in (2.10).

With these notations, the sequential HIF in [50] is summarized as follows. A

more illustrative representation of the sequential HIF is given on the left column of

Figure 2.5.

• Preliminary. Let A0 “ A be the sparse symmetric matrix in (2.17), Σ0 be the

initial active DOFs of A, which includes all indices.

• Level ` for ` “ 0, . . . , L´ 1.

– Preliminary. Let A` denote the matrix before any elimination at level

`. Σ` is the corresponding active DOFs. Let us recall the notations in

Section 2.2.1. C`
j denotes the active DOFs in the cell at level ` indexed

18 CHAPTER 2. ELLIPTIC PDES AND HIF

with j. F `j and I`j denote the surrounding faces and interior active DOFs

in the corresponding cell, respectively.

– Sparse Elimination. We first focus on a single cell at level ` indexed with

j, i.e., C`
j . To simplify the notation, we drop the superscript and subscript

for now and introduce C “ C`
j , I “ I`j , F “ F `j , and R “ R`

j . Based on

the discretization and previous level eliminations, the interior active DOFs

interact only with itself and its surrounding faces. The interactions of the

interior active DOFs and the rest DOFs are empty and the corresponding

matrix is zero, A`pR, Iq “ 0. Hence, by applying sparse elimination, we

have,

STI A
`SI “

»

—

—

—

–

DI

B`
FF

`

A`RF
˘T

A`RF A`RR

fi

ffi

ffi

ffi

fl

, (2.18)

where the explicit definitions of B`
FF and SI are given in the discussion of

sparse elimination. This factorization eliminates I from the active DOFs

of A`.

Looping over all cells C`
j at level `, we obtain

rA` “

˜

ź

IPI`
SI

¸T

A`

˜

ź

IPI`
SI

¸

, (2.19)

rΣ`
“ Σ`

z
ď

IPI`
I. (2.20)

Now all the active interior DOFs at level ` are eliminated from Σ`.

– Skeletonization. Each face at level ` not only interacts within its own cell

but also interacts with faces of neighbor cells. Since the interaction between

2.2. PRELIMINARIES 19

any two different faces is low-rank, this leads us to apply skeletonization.

The skeletonization for any face F P F ` gives,

ST
s

sF
QT
F
rA`QFS s

sF “

»

—

—

—

—

–

rD
s

sF

rB`
pF pF

´

rA`
R pF

¯T

rA`
R pF

rA`RR

fi

ffi

ffi

ffi

ffi

fl

, (2.21)

where pF is the skeleton DOFs of F , s

sF is the redundant DOFs of F ,

and R refers to the rest DOFs. Due to the elimination from previous

levels, |F | scales as Opm2`q and rA`RF contains a non-zero submatrix of

size Opm2`q ˆOpm2`q. Therefore, the interpolative decomposition can be

formed efficiently. Readers are referred to Section 2.2.3 for the explicit

forms of each matrix in (2.21).

Looping over all faces at level `, we obtain

A``1
«

˜

ź

FPF`
S

s

sFQF

¸T

rA`

˜

ź

FPF`
S

s

sFQF

¸

“

˜

ź

FPF`
S

s

sFQF

¸T ˜
ź

IPI`
SI

¸T

A`

˜

ź

IPI`
SI

¸˜

ź

FPF`
S

s

sFQF

¸

“
`

W `
˘T
A`W `,

(2.22)

where W ` “ p
ś

IPI` SIq
`
ś

FPF` S s

sFQF

˘

. The active DOFs for the next

level is now defined as,

Σ``1
“ rΣ`

z
ď

FPF`

s

sF “ Σ`
z

˜˜

ď

IPI`
I

¸

ď

˜

ď

FPF`

s

sF

¸¸

. (2.23)

• Level L. Finally, AL and ΣL are the matrix and active DOFs at level L. Up

20 CHAPTER 2. ELLIPTIC PDES AND HIF

to a permutation, AL can be factorized as

AL “

»

–

ALΣLΣL

DR

fi

fl “

»

–

LΣL

I

fi

fl

»

–

DΣL

DR

fi

fl

»

–

LTΣL

I

fi

fl

:“
`

WL
˘´T

D
`

WL
˘´1

.

(2.24)

Combining all these factorization results

A «
`

W 0
˘´T

¨ ¨ ¨
`

WL´1
˘´T `

WL
˘´T

D
`

WL
˘´1`

WL´1
˘´1

¨ ¨ ¨
`

W 0
˘´1

” F
(2.25)

and

A´1
« W 0

¨ ¨ ¨WL´1WLD´1
`

WL
˘T `

WL´1
˘T
¨ ¨ ¨

`

W 0
˘T
“ F´1. (2.26)

A´1 is factorized into a multiplicative sequence of matrices W ` and each W `

corresponding to level ` is again a multiplicative sequence of sparse matrices, SI ,

S
s

sF and QF . Due to the fact that any SI , S s

sF or QF contains a small non-trivial

(i.e., neither identity nor empty) matrix of size OpN
1{3

2L´`
q ˆ OpN

1{3

2L´`
q, the overall

complexity for strong and applying W ` is OpN{2`q. Hence the application of

the inverse of A is of OpNq computation and memory complexity.

2.3. DISTRIBUTED-MEMORYHIERARCHICAL INTERPOLATIVE FACTORIZATION21

2.3 Distributed-memory hierarchical interpolative

factorization

This section describes our main contribution, the algorithm for the distributed-

memory HIF.

2.3.1 Process tree

For simplicity, assume that there are 8L processes. We introduce a process tree that

has L` 1 levels and resembles the hierarchical structure of the computation domain.

Each node of this process tree is called a process group. First at the leaf level, there

are 8L leaf process groups denoted as tp0
j uj. Here j “ pj1, j2, j3q, 0 ď j1, j2, j3 ă 2L

and the superscript 0 refers to the leaf level (level 0). Each group at this level only

contains a single process. Each node at level 1 of the process tree is constructed by

merging 8 leaf processes. More precisely, we denote the process group at level 1 as p1
j

for j “ pj1, j2, j3q, 0 ď j1, j2, j3 ă 2L´1, and p1
j “

Ť

tjc{2u“j
p0
jc

. Similarly, we recursively

define the node at level ` as p`j “
Ť

tjc{2u“j
p`´1
jc

. Finally, the process group pL0 at the

root includes all processes. Figure 2.4 illustrates the process tree. Each cube in the

process tree is a process group.

Figure 2.4: Process tree: 64 processes are organized in the process tree.

22 CHAPTER 2. ELLIPTIC PDES AND HIF

2.3.2 Distributed-memory method

Same as in Section 2.2.4, we define the n ˆ n ˆ n grid on Ω “ r0, 1q3 for n “ m2L,

where m “ Op1q is a small positive integer and L “ OplogNq is the level number

of the root level. Discretizing (2.1) with seven-point stencil on the grid provides the

linear system Au “ f , where A is a sparse N ˆ N symmetric matrix, u P RN is the

unknown function at grid points, and f P RN is the given function at grid points.

Given the process tree (Section 2.3.1) with 8L processes and the sequential HIF

structure (Section 2.2.4), the construction of the distributed-memory hierarchical

interpolative factorization (DHIF) consists of the following steps.

• Preliminary. Construct the process tree with 8L processes. Each process

group p0
j owns the data corresponding to cell C0

j and the set of active DOFs in

C0
j is denoted as Σ0

j , for j “ pj1, j2, j3q and 0 ď j1, j2, j3 ă 2L. Set A0 “ A and

let the process group p0
j own A0p:,Σ0

j q, which is a sparse tall-skinny matrix with

OpN{P q non-zero entries.

• Level ` for ` “ 0, . . . , L´ 1.

– Preliminary. Let A` denote the matrix before any elimination at level

`. Σ`
j denotes the active DOFs owned by the process group p`j for j “

pj1, j2, j3q, 0 ď j1, j2, j3 ă 2L´`, and the non-zero submatrix of A`p:,Σ`
jq is

distributed among the process group p`j using the two-dimensional block-

cyclic distribution.

– Sparse Elimination. The process group p`j owns A`p:,Σ`
jq, which is suf-

ficient for performing sparse elimination for I`j . To simplify the notation,

we define I “ I`j as the active interior DOFs of cell C`
j , F “ F `j as the

2.3. DISTRIBUTED-MEMORY HIF 23

surrounding faces, and R “ R`
j as the rest active DOFs. Sparse elimination

at level ` within the process group p`j performs essentially

STI A
`SI “

»

—

—

—

–

DI

B`
FF

`

A`RF
˘T

A`RF A`RR

fi

ffi

ffi

ffi

fl

, (2.27)

where B`
FF “ A`FF ´ A

`
FI

`

A`II
˘´1`

A`FI
˘T

,

SI “

»

—

—

—

–

`

L`I
˘´T

´
`

A`II
˘´1`

A`FI
˘T

I

I

fi

ffi

ffi

ffi

fl

(2.28)

with L`IDI

`

L`I
˘T
“ A`II . Since A`p:,Σ`

jq is owned locally by p`j, both A`FI

and A`II are local matrices. All non-trivial (i.e., neither identity nor empty)

submatrices in SI are formed locally and stored locally for application. On

the other hand, updating on A`FF requires some communication in the next

step.

– Communication after sparse elimination. After all sparse elimina-

tions are performed, some communication is required to update A`FF for

each cell C`
j . For the problem (2.1) with the periodic boundary conditions,

each face at level ` is the surrounding face of exactly two cells. The owning

process groups of these two cells need to communicate with each other to

apply the additive updates, a submatrix of ´A`FI
`

A`II
˘´1`

A`FI
˘T

. Once all

communications are finished, the parallel sparse elimination does the rest

24 CHAPTER 2. ELLIPTIC PDES AND HIF

of the computation, which can be conceptually denoted as,

rA` “

˜

ź

IPI`
SI

¸T

A`

˜

ź

IPI`
SI

¸

,

rΣ`
j “ Σ`

jz
ď

IPI`
I,

(2.29)

for j “ pj1, j2, j3q, 0 ď j1, j2, j3 ă 2L´`.

– Skeletonization. For each face F owned by p`j, the corresponding ma-

trices rA`p:, F q is stored locally. Similar to the parallel sparse elimination

part, most operations are local at the process group p`j and can be carried

out using the parallel dense linear algebra efficiently. By forming a parallel

interpolative decomposition (ID) for rA`RF “
”

rA`
R pF
T `F

rA`
R pF

ı

, the parallel

skeletonization can be, conceptually, written as,

S
s

sFQF
rA`pQF q

T
`

S
s

sF

˘T
«

»

—

—

—

—

–

D
s

sF

rB`
pF pF

rA`
R pF

rA`
R pF

rA`RR

fi

ffi

ffi

ffi

ffi

fl

, (2.30)

where the definitions of QF and S
s

sF are given in the discussion of skele-

tonization. Since rA`
s

sF s

sF
, rA`

pF s

sF
, rA`

pF pF
and T `F are all owned by p`j, it requires

only local operations to form

rB`
s

sF s

sF
“ rA`

s

sF s

sF
´
`

T `F
˘T

rA`
pF s

sF
´

´

rA`
pF s

sF

¯T

T `F `
`

T `F
˘T

rA`
pF pF
T `F ,

rB`
pF s

sF
“ rA`

pF s

sF
´ rA`

pF pF
T `F ,

rB`
pF pF
“ rA`

pF pF
´ rB`

pF s

sF

´

rB`
s

sF s

sF

¯´1´

rB`
pF s

sF

¯T

.

(2.31)

2.3. DISTRIBUTED-MEMORY HIF 25

Similarly, L
s

sF , which is the LDLT factor of rB
s

sF s

sF , is also formed within the

process group p`j. Moreover, since non-trivial blocks in QF and S
s

sF are both

local, this implies that the applications of QF and S
s

sF are local operations.

As a result, the parallel skeletonization factorizes A` conceptually as,

A``1
«

˜

ź

FPF`
S

s

sFQF

¸T

rA`

˜

ź

FPF`
S

s

sFQF

¸

“

˜

ź

FPF`
S

s

sFQF

¸T˜
ź

IPI`
SI

¸T

A`

˜

ź

IPI`
SI

¸˜

ź

FPF`
S

s

sFQF

¸

(2.32)

and we can define

W `
“

˜

ź

IPI`
SI

¸˜

ź

FPF`
S

s

sFQF

¸

,

Σ
``1{2
j “rΣ`

jz
ď

FPF`

s

sF

“Σ`
jz

˜˜

ď

FPF`

s

sF

¸

ď

˜

ď

IPI`
I

¸¸

.

(2.33)

We would like to emphasize that the factors W ` are evenly distributed

among the process groups at level ` and that all non-trivial blocks are

stored locally.

– Merging and Redistribution. Towards the end of the factorization at

level `, we need to merge the process groups and redistribute the data

associated with the active DOFs in order to prepare for the work at level

` ` 1. For each process group at level ` ` 1, p``1
j , for j “ pj1, j2, j3q,

0 ď j1, j2, j3 ă 2L´`´1, we first form its active DOF set Σ``1
j by merging

Σ
``1{2
jc

from all its children p`jc , where tjc{2u “ j. In addition, A``1p:, s``1
j q

26 CHAPTER 2. ELLIPTIC PDES AND HIF

is separately owned by

p`jc
(

tjc{2u“j
. A redistribution among p``1

j is needed

in order to reduce the communication cost for future parallel dense linear

algebra. Although this redistribution requires a global communication

among p``1
j , the complexities for message and bandwidth are bounded by

the cost for parallel dense linear algebra. Actually, as we shall see in the

numerical results, its cost is far lower than that of the parallel dense linear

algebra.

• Level L Factorization. The parallel factorization at level L is quite similar to

the sequential one. After factorizations from all previous levels, ALpΣL
0 ,Σ

L
0 q is

distributed among pL0 . A parallel LDLT factorization of AL
ΣL0 ΣL0

“ ALpΣL
0 ,Σ

L
0 q

among the processes in pL0 results

AL “

»

–

AL
ΣL0 ΣL0

DR

fi

fl

“

»

–

LL
ΣL0

I

fi

fl

»

–

DL
ΣL0

DR

fi

fl

»

–

´

LL
ΣL0

¯T

I

fi

fl “
`

WL
˘´T

D
`

WL
˘´1

.

(2.34)

Consequently, we forms the DHIF for A and A´1 as

A «
`

W 0
˘´T

¨ ¨ ¨
`

WL´1
˘´T `

WL
˘´T

D
`

WL
˘´1`

WL´1
˘´1

¨ ¨ ¨
`

W 0
˘´1

” F
(2.35)

and

A´1
« W 0

¨ ¨ ¨WL´1WLD´1
`

WL
˘T `

WL´1
˘T
¨ ¨ ¨

`

W 0
˘T
“ F´1. (2.36)

2.3. DISTRIBUTED-MEMORY HIF 27

The factors, W ` are evenly distributed among all processes and the application

of F´1 is basically a sequence of parallel dense matrix-vector multiplications.

In Figure 2.5, we illustrate an example of DHIF for problem of size 24ˆ24ˆ24 with

m “ 6 and L “ 2. The computation is distributed on a process tree with 43 “ 64

processes. Particularly, Figure 2.5 highlights the DOFs owned by process groups

involving p0
p0,1,0q, i.e., p0

p0,1,0q, p
1
p0,0,0q, and p2

p0,0,0q. Yellow points denote interior active

DOFs, blue and brown points denote face active DOFs, and black points denote edge

active DOFs. Meanwhile, we also have unfaded and faded groups of points. Unfaded

points are owned by the process groups involving p0
p0,1,0q. In other words, p0

p0,1,0q is

the owner for part of the unfaded points. The faded points are owned by other

process groups. In the second row and the forth row, we also see faded brown points,

which indicates the required communication to process p0
p0,1,0q. Here Figure 2.5 works

through two levels of the elimination processes of the DHIF step by step.

2.3.3 Complexity analysis

2.3.3.1 Memory complexity

There are two places in the distributed algorithm that require heavy memory usage.

The first one is to store the original matrix A and its updated version A` for each

level `. As we mentioned above in the parallel algorithm, A` contains at most OpNq

non-zeros and they are evenly distributed on P processes as follows. At level `,

there are 8L´` cells, and empirically each of which contains O
´

N1{3

2L´`

¯

active DOFs.

Meanwhile, each cell is evenly owned by a process group with 8` processes. Hence,

O

ˆ

´

N1{3

2L´`

¯2
˙

non-zero entries of A`p:, s`jq is evenly distributed on process group p`j

with 8` processes. Overall, there are O
´

8L´` ¨ N
2{3

4L´`

¯

“ OpN ¨ 2´`q non-zero entries in

28 CHAPTER 2. ELLIPTIC PDES AND HIF

Figure 2.5: Distributed-memory hierarchical interpolative factorization

2.3. DISTRIBUTED-MEMORY HIF 29

A` evenly distributed on 8L´` ¨ 8` “ P processes, and each process owns O
`

N
P
¨ 2´`

˘

data for A`. Moreover, the factorization at level ` does not rely on the matrix A`
1

for

`1 ă `´ 1. Therefore, the memory cost for storing A`s is OpN
P
q for each process.

The second place is to store the factors W `. It is not difficult to see that the

memory cost for each W ` is the same as A`. Only non-trivial blocks in SI , QF , and

S
s

sF require storage. Since each of these non-trivial blocks is of size O
´

N1{3

2L´`

¯

ˆO
´

N1{3

2L´`

¯

and evenly distributed on 8` processes, the overall memory requirement for each W `

on a process is O
`

N
P
¨ 2´`

˘

. Therefore, O
`

N
P

˘

memory is required on each process to

store all W `s.

2.3.3.2 Computation complexity

The majority of the computation work goes to the construction of SI , QF and S
s

sF . As

stated in the previous section, at level `, each non-trivial dense matrix in these factors

is of size O
´

N1{3

2L´`

¯

ˆO
´

N1{3

2L´`

¯

. The construction adopts the matrix-matrix multipli-

cation, the interpolative decomposition (pivoting QR), the LDLT factorization, and

the triangular matrix inversion. Each of these operation is of cubic computation com-

plexities and the corresponding parallel computation cost over 8` processes is O
`

N
P

˘

.

Since there is only a constant number of these operations per process at a single level,

the total computational complexity across all OplogNq levels is O
`

N logN
P

˘

.

The application computational complexity is simply the complexity of applying

each non-zero entries in W `s once, hence, the overall computational complexity is the

same as the memory complexity O
`

N
P

˘

.

30 CHAPTER 2. ELLIPTIC PDES AND HIF

2.3.3.3 Communication complexity

The communication complexity is composed of three parts: the communication in

the parallel dense linear algebra, the communication after sparse elimination, and the

merging and redistribution step within DHIF. It is clear to see that the communication

cost for the second part is bounded by either of the rest. Hence, we will simply derive

the communication cost for the first and third parts. Here, we adopt the simplified

communication model, Tcomm “ α ` β, where α is the latency, and β is the inverse

bandwidth.

At level `, the parallel dense linear algebra involves the matrix-matrix multiplica-

tion, the ID, the LDLT factorization, and the triangular matrix inversion for matrices

of size O
´

N1{3

2L´`

¯

ˆ O
´

N1{3

2L´`

¯

. All these basic operations are carried out on a process

group of size 8`. Following the discussion in [8], the communication cost for these

operations are bounded by O
´

`3
?

8`
¯

α ` O
´

N2{3

4L´`8`
`
¯

β. Summing over all levels,

one can control the communication cost of the parallel dense linear algebra part by

O
´?

P log3 P
¯

α `O

ˆ

N2{3

P 2{3

˙

β. (2.37)

On the other hand, the merging and redistribution step at level ` involves 8``1

processes and redistributes matrices of size O
´

N1{3

2L´`
¨ 8
¯

ˆ O
´

N1{3

2L´`
¨ 8
¯

. The current

implementation adopts the MPI routine MPI AllToAll to handle the redistribution

on a 2D process mesh. Further, we assume the all-to-all communication sends and

receives long messages. The standard upper bound for the cost of this routine is

O
´?

8``1
¯

α `O
´

N2{3

4L´`
?

8``1
¨ 64

¯

β [83]. Therefore, the over all cost is

O
´?

P
¯

α `O

ˆ

N2{3

?
P

˙

β. (2.38)

2.4. NUMERICAL RESULTS 31

The complexity of the latency part is not scalable. However empirically, the cost for

this communication is relatively small in the actual running time.

2.4 Numerical results

Here we present a couple of numerical examples to demonstrate the parallel efficiency

of the distributed-memory HIF. The algorithm is implemented in C++11 and all inter-

process communication is expressed via the Message Passing Interface (MPI). The

distributed-memory dense linear algebra computation is done through the Elemental

library [78]. All numerical examples are performed on Edison at the National Energy

Research Scientific Computing center (NERSC). The numbers of processes used are

always powers of two, ranging from 1 to 8192. The memory allocated for each process

is limited to 2GB.

All numerical results are measured in two ways: the strong scaling and weak

scaling. The strong scaling measurement fixes the problem size, and increases the

number of processes. For a fixed problem size, let T SP be the running time of P

processes. The strong scaling efficiency is defined as,

ES
“

T S1
P ¨ T SP

. (2.39)

In the case that T S1 is not available, e.g., the fixed problem can not fit into the single

process memory, we adopts the first available running time, T Sm, associating with the

smallest number of processes, m, as a reference. And the modified strong scaling

efficiency is,

ES
“
m ¨ T Sm
P ¨ T SP

. (2.40)

32 CHAPTER 2. ELLIPTIC PDES AND HIF

The weak scaling measurement fixes the ratio between the problem size and the

number of processes. For a fixed ratio, we define the weak scaling efficiency as,

EW
“
TWm
TWP

, (2.41)

where TWm is the first available running time with m processes, and TWP is the running

time of P processes.

Notation Explanation

ε Relative precision of the ID
N Total number of DOFs in the problem

es
Relative error for solving, ‖pI ´ F´1Aqx‖ { ‖x‖, where x
is a Gaussian random vector

|ΣL| Number of remaining active DOFs at the root level

mf
Maximum memory required to perform the factorization
in GB across all processes

tf Time for constructing the factorization in seconds
ES
f Strong scaling efficiency for factorization time

ts Time for applying F´1 to a vector in seconds
ES
s Strong scaling efficiency for application time

niter
Number of iterations to solve Au “ f with GMRES with
F´1 being a preconditioner to a tolerance of 10´12

Table 2.2: Notations for the numerical results of DHIF

The notations used in the following tables and figures are explained in Table 2.2.

For simplicity, all examples are defined over Ω “ r0, 1q3 with periodic boundary

condition, discretized on a uniform grid, nˆnˆn, with n being the number of points

in each dimension and N “ n3. The PDEs defined in (2.1) is discretized using the

second-order central difference method with seven-point stencil, which is the same as

(2.16). Octrees are adopted to partition the computation domain with the block size

at leaf level bounded by 64.

2.4. NUMERICAL RESULTS 33

Example 1. We first consider the problem in (2.1) with apxq ” 1 and bpxq ” 0.1.

The relative precision of the ID is set to be ε “ 10´3.

As shown in Table 2.3, given the tolerance ε “ 10´3 the relative error remains

well below this for all N and P . The number of skeleton points on the root level,

|ΣL|, grows linearly as the one-dimensional problem size increases. The empirical

linear scaling of the root skeleton size strongly supports the quasi linear scaling for

the factorization, linear scaling for the application, and linear scaling for memory

cost. The column labeled with mf in Table 2.3, or alternatively Figure 2.6c, illus-

trates the perfect strong scaling for the memory cost. Since the bottleneck for most

parallel algorithms is the memory cost, this point is especially important in practice.

Perfect distribution of the memory usage allows us to solve very large problem on a

massive number of processes, even through the communication penalty on massive

parallel computing would be relatively large. The factorization time and application

time show good scaling up to thousands of processes. Figure 2.6a and Figure 2.6b

present the strong scaling plot for the running time of factorization and application

respectively. Together with Figure 2.6d, which illustrates the timing for each part of

the factorization, we conclude that the communication cost beside the parallel dense

linear algebra (labeled with “El”) remains small comparing to the cost of the parallel

dense linear algebra. It is the parallel dense linear algebra part that stops the strong

scaling. As it is also well know that parallel dense linear algebra achieves good weak

scaling, so does our DHIF implementation. Finally, the last column of Table 2.3

shows the number of iterations for solving Au “ f using the GMRES algorithm with

a relative tolerance of 10´12 and with the DHIF as a preconditioner. As the num-

bers in the entire column are equal to 6, this shows that DHIF serves an excellent

preconditioner with the iteration number almost independent of the problem size.

34 CHAPTER 2. ELLIPTIC PDES AND HIF

N P es |sL| mf tf ESf ts ESs niter

323

1 4.84e-04 3440 1.92e-01 4.85e+00 100% 1.36e-01 100% 6
2 5.26e-04 3440 9.60e-02 2.60e+00 93% 6.65e-02 103% 6
4 3.78e-04 3440 4.80e-02 1.45e+00 84% 3.47e-02 98% 6
8 4.93e-04 3440 2.40e-02 8.38e-01 72% 1.99e-02 85% 6

16 3.97e-04 3440 1.20e-02 5.83e-01 52% 1.31e-02 65% 6
32 7.33e-04 3440 6.03e-03 4.35e-01 35% 1.47e-02 29% 6

643

2 5.92e-04 7760 9.07e-01 3.87e+01 100% 6.08e-01 100% 6
4 5.98e-04 7760 4.54e-01 2.36e+01 82% 2.99e-01 102% 6
8 5.59e-04 7760 2.27e-01 1.48e+01 65% 1.61e-01 94% 6

16 6.30e-04 7760 1.13e-01 1.03e+01 47% 9.52e-02 80% 6
32 5.89e-04 7760 5.68e-02 5.34e+00 45% 6.88e-02 55% 6
64 5.45e-04 7760 2.84e-02 2.67e+00 45% 4.10e-02 46% 6

128 5.43e-04 7760 1.42e-02 1.52e+00 40% 3.43e-02 28% 6
256 6.29e-04 7760 7.14e-03 1.27e+00 24% 2.69e-02 18% 6

1283

16 6.19e-04 16208 9.77e-01 1.43e+02 100% 8.24e-01 100% 6
32 5.98e-04 16208 4.89e-01 7.40e+01 97% 4.37e-01 94% 6
64 5.85e-04 16208 2.44e-01 3.87e+01 92% 2.26e-01 91% 6

128 6.23e-04 16208 1.22e-01 2.11e+01 85% 1.40e-01 74% 6
256 6.14e-04 16208 6.12e-02 1.00e+01 89% 9.76e-02 53% 6
512 5.96e-04 16208 3.06e-02 5.80e+00 77% 1.98e-01 13% 6

1024 5.86e-04 16208 1.54e-02 3.46e+00 65% 6.13e-02 21% 6

2563

128 6.18e-04 33104 1.01e+00 2.24e+02 100% 9.18e-01 100% 6
256 6.11e-04 33104 5.07e-01 1.19e+02 94% 4.88e-01 94% 6
512 6.06e-04 33104 2.53e-01 6.33e+01 88% 2.85e-01 81% 6

1024 6.25e-04 33104 1.27e-01 3.19e+01 88% 1.86e-01 62% 6
2048 6.18e-04 33104 6.35e-02 2.44e+01 57% 1.58e-01 36% 6
4096 6.16e-04 33104 3.18e-02 1.27e+01 55% 1.73e-01 17% 6
8192 6.14e-04 33104 1.60e-02 1.16e+01 30% 4.14e-01 3% 6

5123

1024 6.16e-04 66896 1.03e+00 3.32e+02 100% 1.08e+00 100% 6
2048 6.15e-04 66896 5.16e-01 1.84e+02 90% 6.53e-01 82% 6
4096 6.14e-04 66896 2.58e-01 9.55e+01 87% 4.90e-01 55% 6
8192 6.13e-04 66896 1.29e-01 5.58e+01 74% 4.58e-01 29% 6

10243 8192 6.15e-04 134480 1.04e+00 4.67e+02 100% 1.48e+00 100% 6

Table 2.3: Example 1. Numerical results for DHIF

2.4. NUMERICAL RESULTS 35

10 0 10 1 10 2 10 3 10 4

P

10 0

10 1

10 2

T
im

e
 (

s
e

c
)

Scaling for DHIF Factorization

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

N = 1024
3

(a)

10 0 10 1 10 2 10 3 10 4

P

10 -2

10 -1

10 0

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Application

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

N = 1024
3

(b)

10 0 10 1 10 2 10 3 10 4

P

10 -2

10 -1

10 0

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Peak Memory

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

N = 1024
3

(c)

1 8 64 512 4096

P

10 0

10 1

10 2

T
im

e
 (

s
e

c
)

Stacked Bar for Uniform-Time with Ratio=32768

El

SpComm

SkelComm

Merge

RootMrg

(d)

Figure 2.6: Example 1. (a) is the scaling plot for the DHIF factorization time, the
solid lines indicate the weak scaling results, the dashed lines are the strong scaling
results, and the dotted lines are the reference lines for perfect strong scaling, the line
style apples to all figures below; (b) is the strong scaling for the DHIF application
time; (c) is the strong scaling for the DHIF peak memory usage; (d) shows a stacked
bar plot for factorization time for fixed ratio between the problem size and the number
of processes.

36 CHAPTER 2. ELLIPTIC PDES AND HIF

10 0 10 1 10 2 10 3 10 4

P

10 0

10 1

10 2

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Factorization

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

N = 1024
3

(a)

10 0 10 1 10 2 10 3 10 4

P

10 0

10 1

10 2

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Elemental

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

N = 1024
3

(b)

10 0 10 1 10 2 10 3 10 4

P

10 -1

10 0

T
im

e
 (

s
e
c
)

Strong Scaling for DHIF Merging

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

N = 1024
3

(c)

10 0 10 1 10 2 10 3 10 4

P

10 -2

10 -1

10 0

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Root Merging

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

N = 1024
3

(d)

Figure 2.7: Example 1. (a) is the strong scaling plot for the DHIF factorization
time; (b) is the strong scaling for the Elemental time; (c) is the strong scaling for the
merging time excluding the root level; (d) is the strong scaling for the merging time
at root level.

2.4. NUMERICAL RESULTS 37

Example 2. This example is a problem of (2.1) with high-contrast random field

apxq and bpxq ” 0.1. The high-contrast random field apxq is defined as follows,

1. Generate uniform random value aj between 0 and 1 for each discretization point;

2. Convolve the random value aj with an isotropic three-dimensional Gaussian

with standard deviation 1;

3. Quantize the field via

aj “

$

&

%

0.1, aj ď 0.5

1000, aj ą 0.5
. (2.42)

The given tolerance is set to be 10´5.

20 40 60 80 100 120

20

40

60

80

100

120

Figure 2.8: A slice in a random field realization of size 1283.

Figure 2.8 shows a slice in a realization of the random field. The corresponding

matrix A is clearly of high-contrast. Solving such a problem is harder than example

1 due to the raise of the condition number. The performance results of our algorithm

are presented in Table 2.4. As we expect, the relative error for solving is lower than

that in Table 2.3 and the number of iterations in GMRES is higher.

Table 2.4, Figure 2.9 and Figure 2.10 demonstrate the efficiency of the DHIF for

high-contrast random field. Almost all comments regarding the numerical results in

38 CHAPTER 2. ELLIPTIC PDES AND HIF

N P es |sL| mf tf ESf ts ESs niter

323

1 3.02e-03 3865 2.00e-01 5.80e+00 100% 1.34e-01 100% 7
2 3.39e-03 3632 9.31e-02 2.48e+00 117% 6.69e-02 100% 7
4 2.69e-03 3934 5.13e-02 1.72e+00 84% 3.75e-02 89% 7
8 3.18e-03 3660 2.37e-02 9.50e-01 76% 2.20e-02 76% 7

16 3.13e-03 3693 1.24e-02 6.22e-01 58% 1.32e-02 63% 7
32 3.00e-03 3744 6.42e-03 4.83e-01 38% 1.49e-02 28% 7

643

2 3.29e-03 8580 9.45e-01 4.33e+01 100% 6.15e-01 100% 7
4 3.13e-03 8938 4.94e-01 2.91e+01 74% 3.10e-01 99% 7
8 3.09e-03 9600 2.51e-01 1.98e+01 55% 1.68e-01 91% 7

16 3.07e-03 8919 1.19e-01 1.27e+01 43% 9.86e-02 78% 7
32 3.09e-03 9478 6.59e-02 6.99e+00 39% 7.89e-02 49% 7
64 3.18e-03 9111 3.03e-02 3.17e+00 43% 4.90e-02 39% 7

128 3.02e-03 9419 1.58e-02 2.15e+00 31% 3.31e-02 29% 7
256 3.03e-03 9349 7.97e-03 1.60e+00 21% 3.66e-02 13% 7

1283

16 3.16e-03 19855 1.07e+00 2.11e+02 100% 8.89e-01 100% 7
32 3.09e-03 20487 5.58e-01 1.18e+02 90% 4.86e-01 91% 7
64 3.06e-03 21345 2.78e-01 6.43e+01 82% 2.45e-01 91% 7

128 3.10e-03 20344 1.37e-01 3.39e+01 78% 1.34e-01 83% 7
256 3.07e-03 21152 7.43e-02 1.76e+01 75% 1.10e-01 51% 7
512 3.07e-03 20779 3.51e-02 8.46e+00 78% 8.80e-02 32% 7

1024 3.04e-03 21361 1.76e-02 5.38e+00 61% 6.31e-02 22% 7

2563

128 3.11e-03 42420 1.14e+00 4.15e+02 100% 1.04e+00 100% 7
256 3.12e-03 43828 5.91e-01 2.12e+02 98% 5.77e-01 90% 8
512 3.11e-03 44126 2.90e-01 1.25e+02 83% 3.86e-01 67% 7

1024 3.08e-03 43302 1.46e-01 6.31e+01 82% 2.12e-01 61% 7
2048 3.09e-03 44131 7.78e-02 3.43e+01 76% 1.86e-01 35% 7
4096 3.10e-03 43691 3.71e-02 1.96e+01 66% 2.28e-01 14% 7
8192 3.10e-03 43952 1.85e-02 2.05e+01 32% 4.03e-01 4% 7

5123

1024 3.11e-03 88070 1.16e+00 6.37e+02 100% 1.22e+00 100% 7
2048 3.11e-03 88577 6.11e-01 3.47e+02 92% 6.84e-01 89% 8
4096 3.11e-03 88757 3.03e-01 1.89e+02 84% 5.31e-01 58% 7
8192 3.11e-03 85877 1.50e-01 1.02e+02 78% 6.20e-01 25% 7

10243 8192 3.11e-03 177323 1.18e+00 9.35e+02 100% 1.95e+00 100% 8

Table 2.4: Example 2. Numerical results for DHIF

2.4. NUMERICAL RESULTS 39

10
0

10
1

10
2

10
3

10
4

P

10
0

10
1

10
2

10
3

T
im

e
 (

s
e

c
)

Scaling for DHIF Factorization

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

(a)

10
0

10
1

10
2

10
3

10
4

P

10
-2

10
-1

10
0

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Application

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

(b)

10
0

10
1

10
2

10
3

10
4

P

10
-2

10
-1

10
0

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Peak Memory

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

(c)

1 8 64 512 4096

P

10
0

10
1

10
2

10
3

T
im

e
 (

s
e

c
)

Stacked Bar for HighCont-Time with Ratio=32768

El

SpComm

SkelComm

Merge

RootMrg

(d)

Figure 2.9: Example 2. (a) provides a scaling plot for DHIF factorization time; (b)
is the strong scaling for DHIF application time; (c) is the strong scaling for DHIF
peak memory usage; (d) shows a stacked bar plot for factorization time for fixed ratio
between problem size and number of processes.

40 CHAPTER 2. ELLIPTIC PDES AND HIF

10
0

10
1

10
2

10
3

10
4

P

10
0

10
1

10
2

10
3

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Factorization

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

(a)

10
0

10
1

10
2

10
3

10
4

P

10
0

10
1

10
2

10
3

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Elemental

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

(b)

10
0

10
1

10
2

10
3

10
4

P

10
-1

10
0

10
1

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Merging

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

(c)

10
0

10
1

10
2

10
3

10
4

P

10
-2

10
-1

10
0

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Root Merging

N = 323

N = 643

N = 1283

N = 2563

N = 5123

N = 10243

(d)

Figure 2.10: Example 2. (a) is the strong scaling plot for the DHIF factorization
time; (b) is the strong scaling for the Elemental time; (c) is the strong scaling for the
merging time excluding the root level; (d) is the strong scaling for the merging time
at root level.

2.4. NUMERICAL RESULTS 41

Example 1 apply here. To focus on the difference between Example 1 and Example

2, the most noticeable difference is about the relative error, es. Though we give a

higher relative precision ε “ 10´5, the relative error for Example 2 is about 3 ¨ 10´3,

which is about ten times larger than es in Example 1. The reason for the decrease

of accuracy is most likely the increase of the condition number for Example 2. This

also increases the number of iterations in GMRES. However, both es and niter remain

roughly constant for varying problem sizes. This means that DHIF still serves as a

robust and efficient solver and preconditioner for such problems. Another difference

is the number of skeleton points on the root level, |ΣL|. Due to the fact that the field

apxq is random, and different rows in Table 2.4 actually adopts different realizations,

the small fluctuation of |ΣL| for the same N and different P is expected. Overall

|ΣL| still grows linearly as n “ N1{3 increases. This again supports the complexity

analysis given above.

Example 3. This example is a problem of (2.1) with constant apxq “ 1 and bpxq “

´p2πκq2, where κ is the number of wavelengths. In this case, (2.1) becomes Helmholtz

equation. As problem becomes more oscillatory, the DOFs per wavelength is fixed to

be 8. The given tolerance is set to be 10´6 while the accuracy for GMRES is reduced

to be 10´8.

Table 2.5, Figure 2.11 and Figure 2.12 demonstrate the efficiency of the DHIF for

Helmholtz problems. There are two major observations from this numerical example.

First, for Helmholtz problem, given the same tolerance, the solving accuracy actually

decreases as the problem size growths, which means that the domain contains more

wavelengths. Second, the size of the skeleton, indicated by |sL|, increases super-linear

as problem size growths. Both of these observations are caused by the wave property.

The ranks in the low-rank submatrices are no longer constant but depend on the

42 CHAPTER 2. ELLIPTIC PDES AND HIF

N P es |sL| mf tf ESf ts ESs niter

323

1 5.60e-07 5264 3.17e-01 1.03e+01 100% 2.55e-01 100% 2
2 6.04e-07 5264 1.59e-01 5.62e+00 92% 1.22e-01 105% 2
4 6.83e-07 5264 7.93e-02 3.14e+00 82% 6.27e-02 102% 2
8 7.29e-07 5264 3.97e-02 1.80e+00 72% 3.53e-02 91% 2

16 7.21e-07 5264 1.99e-02 1.19e+00 54% 2.14e-02 74% 2
32 9.33e-07 5264 9.95e-03 8.47e-01 38% 3.50e-02 23% 2

643

2 1.45e-05 14008 1.81e+00 1.58e+02 100% 1.11e+00 100% 2
4 1.31e-05 14008 9.03e-01 8.92e+01 89% 5.69e-01 98% 2
8 1.87e-05 14008 4.52e-01 5.26e+01 75% 3.04e-01 92% 2

16 1.79e-05 14008 2.26e-01 3.73e+01 53% 1.73e-01 80% 2
32 1.23e-05 14008 1.13e-01 2.02e+01 49% 1.23e-01 57% 2
64 1.46e-05 14008 5.65e-02 1.04e+01 48% 7.76e-02 45% 2

128 1.20e-05 14008 2.83e-02 4.78e+00 52% 5.33e-02 33% 2
256 1.96e-05 14008 1.42e-02 3.49e+00 35% 8.87e-02 10% 2

1283

32 4.28e-05 34968 1.11e+00 3.90e+02 100% 8.78e-01 100% 3
64 4.79e-05 34968 5.53e-01 1.99e+02 98% 4.49e-01 98% 3

128 5.82e-05 34968 2.77e-01 1.06e+02 92% 2.56e-01 86% 3
256 4.86e-05 34968 1.38e-01 6.01e+01 81% 2.10e-01 52% 3
512 4.55e-05 34968 6.93e-02 3.28e+01 74% 1.68e-01 33% 3

1024 4.01e-05 34968 3.47e-02 1.68e+01 73% 1.74e-01 16% 3
2048 4.20e-05 34968 1.74e-02 1.32e+01 46% 1.56e-01 9% 3

2563

256 1.03e-03 81136 1.24e+00 8.60e+02 100% 1.18e+00 100% 4
512 1.06e-03 81136 6.19e-01 4.55e+02 94% 6.74e-01 88% 4

1024 1.17e-03 81136 3.10e-01 2.59e+02 83% 4.51e-01 66% 4
2048 1.24e-03 81136 1.55e-01 1.46e+02 73% 3.42e-01 43% 4
4096 1.17e-03 81136 7.77e-02 8.29e+01 65% 3.78e-01 20% 4
8192 1.25e-03 81136 3.89e-02 5.45e+01 49% 4.36e-01 8% 4

5123
2048 2.90e-03 208528 1.35e+00 1.74e+03 100% 1.59e+00 100% 5
4096 2.74e-03 208528 6.77e-01 9.75e+02 89% 1.20e+00 66% 5
8192 2.37e-03 208512 3.39e-01 5.85e+02 74% 9.99e-01 40% 5

Table 2.5: Example 3. Numerical results for DHIF

2.4. NUMERICAL RESULTS 43

10 0 10 1 10 2 10 3 10 4

P

10 0

10 1

10 2

10 3

T
im

e
 (

s
e
c
)

Scaling for DHIF Factorization

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

(a)

10 0 10 1 10 2 10 3 10 4

P

10 -1

10 0

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Application

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

(b)

10 0 10 1 10 2 10 3 10 4

P

10 -2

10 -1

10 0

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Peak Memory

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

(c)

1 8 64 512 4096

P

10 0

10 1

10 2

10 3

T
im

e
 (

s
e
c
)

Stacked Bar for Helmholtz-Time with Ratio=32768

El

SpComm

SkelComm

Merge

RootMrg

(d)

Figure 2.11: Example 3. (a) provides a scaling plot for DHIF factorization time; (b)
is the strong scaling for DHIF application time; (c) is the strong scaling for DHIF
peak memory usage; (d) shows a stacked bar plot for factorization time for fixed ratio
between problem size and number of processes.

44 CHAPTER 2. ELLIPTIC PDES AND HIF

10 0 10 1 10 2 10 3 10 4

P

10 0

10 1

10 2

10 3

T
im

e
 (

s
e
c
)

Strong Scaling for DHIF Factorization

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

(a)

10 0 10 1 10 2 10 3 10 4

P

10 0

10 1

10 2

10 3

T
im

e
 (

s
e
c
)

Strong Scaling for DHIF Elemental

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

(b)

10 0 10 1 10 2 10 3 10 4

P

10 -1

10 0

10 1

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Merging

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

(c)

10 0 10 1 10 2 10 3 10 4

P

10 -1

10 0

T
im

e
 (

s
e

c
)

Strong Scaling for DHIF Root Merging

N = 32
3

N = 64
3

N = 128
3

N = 256
3

N = 512
3

(d)

Figure 2.12: Example 3. (a) is the strong scaling plot for the DHIF factorization
time; (b) is the strong scaling for the Elemental time; (c) is the strong scaling for the
merging time excluding the root level; (d) is the strong scaling for the merging time
at root level.

2.4. NUMERICAL RESULTS 45

problem size. Finally, the number of iterations in GMRES also growths mildly as

problem size increases. According to the numerical results, we claim that HIF and

DHIF are still efficient preconditioners for Helmholtz problems.

Example 4. This example provides a concrete comparison between the proposed

DHIF and multigrid method (hypre [24]). The problem behaves similar as example

2 without randomness, (2.1) with high-contrast field apxq and bpxq ” 0.1. The high-

contrast field apxq is defined as follows,

apxq “

$

&

%

1000,
ř3
i“1txin

7
u ” 0 pmod 2q

0.1,
ř3
i“1txin

7
u ” 1 pmod 2q

, (2.43)

where n is the number of grid points on each dimension.

We adopt GMRES iterative method in both DHIF and hypre to solve the elliptic

problem to a relative error 10´12. The given tolerance in DHIF is set to be 10´4. And

SMG interface in hypre is used as preconditioner for the problem on regular grids.

The numerical results for DHIF and hypre are given in Table 2.6.

DHIF hypre
N P tsetuppsecq tsolvepsecq niter tsetuppsecq tsolvepsecq niter

643 8 15.27 18.10 21 0.29 9.67 67
64 2.46 3.45 21 1.47 17.37 60

1283 64 29.20 24.53 22 1.78 140.90 394
512 3.93 4.41 22 2.11 113.57 455

2563 512 59.66 26.33 21 4.11 258.22 492
4096 11.58 6.78 21 8.97 191.15 375

Table 2.6: Numerical results for DHIF and hypre. tsetup is the setup time which is
identical to tf in previous examples for DHIF, tsolve is the total iterative solving time
using GMRES, niter is the number of iterations in GMRES.

46 CHAPTER 2. ELLIPTIC PDES AND HIF

As we can read from Table 2.6, there are a few advantages of DHIF over hypre in

the given settings. First, the solving time of DHIF is faster than hypre’s SMG except

for on small problems with small numbers of processes. And the number of iterations

grows as the problem size grows in hypre, while it remains almost the same in DHIF.

In truly large problems, the advantages of DHIF are more pronounced. Second, the

scalability of DHIF appears to be better than that of hypre’s SMG. Finally, DHIF

only requires powers of two numbers of processes, whereas hypre’s SMG requires

powers of eight for 3D problems.

2.5 Conclusion

In this chapter, we introduced the distributed-memory hierarchical interpolative fac-

torization (DHIF) for solving discretized elliptic partial differential equations in 3D.

The computational and memory complexity for DHIF are

O

ˆ

N logN

P

˙

and O

ˆ

N

P

˙

, (2.44)

respectively, where N is the total number of DOFs and P is the number of processes.

The communication cost is

O
´?

P log3 P
¯

α `O

ˆ

N2{3

?
P

˙

β, (2.45)

where α is the latency, and β is the inverse bandwidth. Not only the factorization is

efficient, the application can also be done in O
`

N
P

˘

operations. Numerical examples in

Section 2.4 illustrate the efficiency and parallel scaling of the algorithm. The results

show that DHIF can be used both as a direct solver and as an efficient preconditioner

2.5. CONCLUSION 47

for iterative solvers.

We have described the algorithm using the periodic boundary condition in order to

simplify the presentation. However, the implementation can be extended in a straight-

forward way to problems with other type of boundary conditions. The discretization

adopted here is the standard Cartesian grid. For more general discretizations such

as finite element methods on unstructured meshes, one can generalize the current

implementation by combining with the idea proposed in [82].

Here we have only considered the parallelization of the HIF for differential equa-

tions. As shown in [50], the HIF is also applicable to solving integral equations with

non-oscillatory kernels. Parallelization of this case is also of practical importance.

Chapter 3

Oscillatory integral operator and

butterfly algorithm

3.1 Background

This chapter is concerned with the rapid application of Fourier integral operators

(FIOs), which are defined as

pLfqpxq “

ż

Rd
apx, ξqe2πıΦpx,ξq

pfpξq dξ, (3.1)

where

• apx, ξq is an amplitude function that is smooth both in x and ξ,

• Φpx, ξq is a phase function that is smooth in px, ξq for ξ ‰ 0 1 and obeys the

homogeneity condition of degree 1 in ξ, namely, Φpx, λξq “ λΦpx, ξq for each

λ ą 0;

1Φpx, ξq is allowed to be singular at ξ “ 0. The (possible) singularity at ξ “ 0 is application
dependent, e.g., see the example of a generalized Radon transform in the numerical results section.

48

3.1. BACKGROUND 49

• pfpξq is the Fourier transform of the input function fpxq defined by

pfpξq “

ż

Rd
e´2πıx¨ξfpxqdx.

The computation of Fourier integral operators appears quite often in the numerical

solution of wave equations and related applications in computational geophysics [31,

53, 85, 96]. In a typical setting, it is often assumed that the problem is periodic

(i.e., apx, ξq, Φpx, ξq, and fpxq are all periodic in x) or the function fpxq decays

sufficiently fast so that one can embed the problem in a sufficiently large periodic

cell. To simplify the discussion, we restrict to the case d “ 2. A simple discretization

in two dimensions considers functions fpxq given on a Cartesian grid

X “

!

x “
´n1

n
,
n2

n

¯

, 0 ď n1, n2 ă n with n1, n2 P Z
)

(3.2)

in a unit square and defines the discrete Fourier integral operator by

pLfqpxq “
ÿ

ξPΩ

apx, ξqe2πıΦpx,ξq
pfpξq, x P X,

where n is the number of discretization points on each dimension, N “ n2 denotes

the total number of discretization points,

Ω “
!

ξ “ pn1, n2q,´
n

2
ď n1, n2 ă

n

2
with n1, n2 P Z

)

, (3.3)

and pfpξq is the discrete Fourier transform of fpxq,

pfpξq “
1

n2

ÿ

xPX

e´2πıx¨ξfpxq.

50 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

In most examples, apx, ξq is numerically low-rank in the joint X and Ω domain [16,

30, 95] and its numerical treatment is relatively easy. Therefore, we will simplify the

problem by assuming apx, ξq “ 1 in the following algorithmic description and analysis.

Under this assumption, the discrete FIO discussed in this chapter takes the following

form:

pLfqpxq “
ÿ

ξPΩ

e2πıΦpx,ξq
pfpξq, x P X. (3.4)

A direct computation of (3.4) takes Opn4q operations, which is quadratic in the num-

ber of DOFs N “ n2. Hence, a practical need is to design efficient and accurate

algorithms to evaluate (3.4).

3.1.1 Related work

An earlier method for the rapid computation of general FIOs is the algorithm for

two-dimensional problems proposed in [16]. This method starts by partitioning the

frequency domain Ω into Op
?
nq wedges of equal angle. The summation (3.4) re-

stricted to each wedge is then factorized into two components, both of which can be

handled efficiently. The first one has a low-rank structure that leads to an OpN logNq

fast computation, while the second one is a non-uniform Fourier transform which can

be evaluated in OpN logNq steps with the algorithms developed in [5, 34]. Summing

the computational cost over all Op
?
nq wedges gives an OpN1.25 logNq computational

cost.

The butterfly algorithm proposed in [72, 75] gives rise a way to apply (3.4) for

one-dimensional problems. These algorithms consist of two stages: the off-line stage

and the on-line stage. In the off-line stage, it conducts simultaneously a top down

traversal of a tree associated with domain X and a bottom up traversal of another

3.1. BACKGROUND 51

tree associated with domain Ω to recursively compress all low-rank submatrices (see

Figure 3.2 for an example of necessary submatrices). In the end, a dense kernel matrix

is factorized as a multiplication of OplogNq sparse matrices, each of which has OpNq

non-zeros. This typically takes OpN2q operations for the off-line stage. In the on-line

stage, simply multiplying the sparse matrices to a given input vector g P CN costs

OpN logNq operations.

Shortly after, an algorithm with strict quasilinear complexity for general FIOs

for two-dimensional problems was proposed in [17] using the framework in [72, 75].

This approach introduces a polar coordinate transformation in the frequency domain

to remove the singularity of Φpx, ξq at ξ “ 0, proves the existence of low-rank sep-

arated approximations between certain pairs of spatial and frequency domains, and

implements the low-rank approximations with oscillatory Chebyshev interpolations.

The resulting algorithm evaluates (3.4) with OpN logNq operations and OpNq mem-

ory. Both are essentially linear in terms of the number of DOFs. Inspired by these

butterfly algorithms, more variants of the butterfly algorithm were designed to effi-

ciently address other closely related problems, e.g., FIOs with the parallel butterfly

algorithm [76], the sparse Fourier transforms [97], the numerical solutions of acoustic

wave equations [31].

Another related research direction aims at sparse representations of the FIOs un-

der modern basis functions from harmonic analysis. Such a sparse representation

allows fast matrix-vector products in the transformed domain. Local Fourier trans-

forms [7, 13, 25], wavelet-packet transforms [54], curvelet transforms [15, 18, 20, 19],

wave atom frames [28, 29], wave packet frames [6, 27] have been investigated for the

purpose of operator sparsification. In spite of favorable asymptotic behaviors, the ac-

tual representations of the FIOs typically have a large pre-factor in terms of both the

52 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

computational time and the memory requirement. This makes them less competitive

compared to the approaches in [72, 16, 17, 75].

3.1.2 Organization

The rest of this chapter is organized as follows. Section 3.2 defines the complementary

low-rank property, and reviews several butterfly algorithms and low-rank approxima-

tions. Section 3.3 proves a multiscale low-rank approximation that is essential to

the multiscale butterfly algorithm. Section 3.4 combines the results of the previous

two sections and describes the multiscale butterfly algorithm in detail. In Section

3.5, numerical results of several examples are provided to demonstrate the efficiency

of the multiscale butterfly algorithm. Finally, we conclude this chapter with some

discussion on parallelization in Section 3.6.

3.2 Low-rank approximations and butterfly algo-

rithms

This section first summarizes the complementary low-rank property, which is the core

to all butterfly algorithms and butterfly factorizations. We then briefly review the

classical butterfly algorithm and the polar version. In this section, X and Ω refer to

two general sets of N points, respectively. We assume the points in these two sets are

distributed quasi-uniformly in their domains.

3.2. LR APPROXIMATIONS AND BAS 53

3.2.1 Complementary low-rank property

For a matrix, the rows are typically indexed by a set of points, say X, and the columns

by another set of points, say Ω. Both X and Ω are often point sets in Rd for some

dimension d. Associated with X and Ω are two trees TX and TΩ, respectively and

both trees are assumed to have the same depth L “ OplogNq, with the top level

being level 0 and the bottom one being level L.

Definition 3.2.1. A matrix K of size N ˆN is said to satisfy the complementary

low-rank property if for any level `, any node A in TX at level `, and any node B

in TΩ at level L´`, the submatrix KA,B, obtained by restricting K to the rows indexed

by the points in A and the columns indexed by the points in B, is numerically low-

rank. More precisely, for any ε, there exists a constant rε and two sets of functions

tαABt pxqu1ďtďrε and tβABt pξqu1ďtďrε such that the following holds

ˇ

ˇ

ˇ

ˇ

ˇ

Kpx, ξq ´
rε
ÿ

t“1

αABt pxqβABt pξq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε, @x P A, @ξ P B. (3.5)

The number rε is called the ε-separation rank.

The exact forms of the functions tαABt pxqu1ďtďrε and tβABt pξqu1ďtďrε of course

depend on the problem to which the butterfly algorithm is applied. In many applica-

tions, one can even show that the rank is only bounded polynomially in logp1{εq and

is independent of N . While it is straightforward to generalize the concept of the com-

plementary low-rank property to a matrix with different row and column dimensions,

the following discussion is restricted to the square matrices for simplicity.

54 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

TX TΩ

L
2

L
2

Figure 3.1: Trees of the row and column indices. Left: TX for the row indices X.
Right: TΩ for the column indices Ω. The interaction between A P TX and B P TΩ

starts at the root of TX and the leaves of TΩ.

A simple yet important example is the Fourier matrix K of size N ˆN , where

X “ Ω “ t0, . . . , N ´ 1u,

K “ pexpp2πıjk{Nqq0ďj,kăN .

Here the trees TX and TΩ are generated by bisecting the sets X and Ω recursively.

Both trees have the same depth L “ log2N . For each pair of nodes A P TX and

B P TΩ with A at level ` and B at level L ´ `, the numerical rank of the submatrix

KA,B for a fixed precision ε is bounded by a number that is independent of N and

scales linearly with respect to logp1{εq [75].

Column Index

R
o
w

 I
n
d
e
x

Column Index

R
o
w

 I
n
d
e
x

Column Index

R
o
w

 I
n
d
e
x

Column Index

R
o
w

 I
n
d
e
x

Column Index

R
o
w

 I
n
d
e
x

Figure 3.2: Hierarchical decomposition of the row and column indices of a 16 ˆ 16
matrix. The trees TX and TΩ have roots containing 16 column and row indices and
leaves containing a single column and row index. The rectangles above indicate the
submatrices satisfying the complementary low-rank property.

3.2. LR APPROXIMATIONS AND BAS 55

The concept of complementary low-rank property can be directly applied to FIOs

in one dimension. In higher dimensions, the Fourier transform is a class of FIOs

that satisfies the complementary low-rank property. For other general FIOs with

dimension higher than 1, they typically have a singularity at the origin ξ “ 0 in

the Ω domain and the complementary low-rank property does not hold at the range

close to the origin. More effort is needed to show a special complementary low-rank

property, which involves either special transform of the domain or special partition

of the domain.

3.2.2 Butterfly algorithm

In this section, we review the butterfly algorithm for kernels that satisfy the comple-

mentary low-rank property.

Given an input tgpξq, ξ P Ωu, the goal is to compute the potentials tupxq, x P Xu

defined by

upxq “
ÿ

ξPΩ

Kpx, ξqgpξq, x P X,

where Kpx, ξq is a kernel function. For FIOs in (3.4), Kpx, ξq “ e2πıΦpx,ξq and

gpξq “ pfpξq. Let DX Ą X and DΩ Ą Ω be two square domains containing X

and Ω respectively. The main data structure of the butterfly algorithm is a pair of

quadtrees TX and TΩ as in the complementary low-rank property. Having DX as its

root box, the tree TX is built by recursive dyadic partitioning of DX until each leaf

box contains at most a certain number of points. The tree TΩ is constructed by recur-

sively partitioning in the same way. With the convention that a root node is at level

0, a leaf node is at level L “ OplogNq under the quasi-uniformity condition about the

point distributions. Throughout, we shall use A and B to denote the square boxes of

56 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

TX and TΩ with `A and `B denoting their levels, respectively.

For a given square B in DΩ, define uBpxq to be the restricted potential over the

sources ξ P B

uBpxq “
ÿ

ξPB

Kpx, ξqgpξq.

The low-rank property gives a compact expansion for tuBpxquxPA as summing (3.5)

over ξ P B with weights gpξq gives

ˇ

ˇ

ˇ

ˇ

ˇ

uBpxq ´
rε
ÿ

t“1

αABt pxq

˜

ÿ

ξPB

βABt pξqgpξq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

ξPB

|gpξq|

¸

ε, @x P A.

Therefore, if one can find coefficients tδABt u1ďtďrε obeying

δABt «
ÿ

ξPB

βABt pξqgpξq, 1 ď t ď rε, (3.6)

then the restricted potential tuBpxquxPA admits a compact expansion

ˇ

ˇ

ˇ

ˇ

ˇ

uBpxq ´
rε
ÿ

t“1

αABt pxqδABt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

ξPB

|gpξq|

¸

ε, @x P A.

A key point of the butterfly algorithm is that for each pair pA,Bq, the number of

terms in the expansion is independent of N .

Computing tδABt u1ďtďrε by means of (3.6) for all pairs A,B is not efficient when

B is a large box because for each B there are many paired boxes A. The butterfly

algorithm, however, comes with an efficient way for computing tδABt u1ďtďrε recursively.

The general structure of the algorithm consists of a top down traversal of TX and a

bottom up traversal of TΩ, carried out simultaneously.

1. Construct the trees TX and TΩ with root nodes DX and DΩ.

3.2. LR APPROXIMATIONS AND BAS 57

2. Let A be the root of TX . For each leaf box B of TΩ, construct the expansion

coefficients tδABt u1ďtďrε for the potential tuBpxquxPA by simply setting

δABt “
ÿ

ξPB

βABt pξqgpξq, 1 ď t ď rε. (3.7)

3. For ` “ 1, 2, . . . , L, visit level ` in TX and level L´` in TΩ. For each pair pA,Bq

with `A “ ` and `B “ L´ `, construct the expansion coefficients tδABt u1ďtďrε for

the potential tuBpxquxPA using the low-rank representation constructed at the

previous level (` “ 0 is the initialization step). Let P be A’s parent and C be

a child of B. Throughout, we shall use the notation C ą B when C is a child

of B. At level ` ´ 1, the expansion coefficients tδPCs u1ďsďrε of tuCpxquxPP are

readily available and we have

ˇ

ˇ

ˇ

ˇ

ˇ

uCpxq ´
rε
ÿ

s“1

αPCs pxqδPCs

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

ξPC

|gpξq|

¸

ε, @x P P.

Since uBpxq “
ř

CąB u
Cpxq, the previous inequality implies that

ˇ

ˇ

ˇ

ˇ

ˇ

uBpxq ´
ÿ

CąB

rε
ÿ

s“1

αPCs pxqδPCs

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

ξPB

|gpξq|

¸

ε, @x P P.

Since A Ă P , the above approximation is of course true for any x P A. However,

since `A ` `B “ L, the sequence of restricted potentials tuBpxquxPA also has a

low-rank approximation of size rε, namely,

ˇ

ˇ

ˇ

ˇ

ˇ

uBpxq ´
rε
ÿ

t“1

αABt pxqδABt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

ξPB

|gpξq|

¸

ε, @x P A.

58 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

Combining the last two approximations, we obtain that tδABt u1ďtďrε should obey

rε
ÿ

t“1

αABt pxqδABt «
ÿ

CąB

rε
ÿ

s“1

αPCs pxqδPCs , @x P A. (3.8)

This is an over-determined linear system for tδABt u1ďtďrε when tδPCs u1ďsďrε,CąB

are available. Instead of computing tδABt u1ďtďrε with a least-square method,

the butterfly algorithm typically uses an efficient linear transformation approx-

imately mapping tδPCs u1ďsďrε,CąB into tδABt u1ďtďrε . The actual implementation

of this step is very much application-dependent.

4. Finally, ` “ L and set B to be the root node of TΩ. For each leaf box A P TX ,

use the constructed expansion coefficients tδABt u1ďtďrε to evaluate upxq for each

x P A,

upxq “
rε
ÿ

t“1

αABt pxqδABt . (3.9)

A schematic illustration of this algorithm in two dimension is provided in Figure

3.3. We would like to emphasize that the strict balance between the levels of the

target boxes A and source boxes B maintained throughout this procedure is the key

to obtain the accurate low-rank separated approximations.

However, as been mentioned in Section 3.2.1, many important multidimensional

FIO kernel matrices fail to satisfy the complementary low-rank property in the entire

domain X ˆ Ω. The rest of this chapter will address this issue.

3.2. LR APPROXIMATIONS AND BAS 59

Figure 3.3: Hierarchical domain trees of the 2D butterfly algorithm. Left: TX for
the spatial domain DX . Right: TΩ for the frequency domain DΩ. The interactions
between subdomains A Ă DX and B Ă DΩ are represented by left right arrow lines.

3.2.3 Polar low-rank approximations and polar butterfly al-

gorithm

When the dimension is higher than 1, the phase function Φpx, ξq is usually singular at

ξ “ 0, and the numerical rank of the kernel e2πıΦpx,ξq in a domain near or containing

ξ “ 0 is typically large. Hence, in general, Kpx, ξq “ e2πıΦpx,ξq does not satisfy the

complementary low-rank property over the domain X ˆ Ω with quadtree structures

TX and TΩ. To fix this problem, the polar butterfly algorithm introduces a scaled

polar transformation on Ω,

ξ “ pξ1, ξ2q “

?
2

2
np1 ¨ pcos 2πp2, sin 2πp2q, (3.10)

for ξ P Ω and p “ pp1, p2q P r0, 1s
2. We use p to denote a point in the polar coordinate

and P for the set of all points p transformed from ξ P Ω. This transformation gives

rise to a new phase function Ψpx, pq in variables x and p satisfying

Ψpx, pq “
1

n
Φpx, ξppqq “

?
2

2
Φ px, pcos 2πp2, sin 2πp2qq ¨ p1, (3.11)

60 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

where the last equality comes from the fact that Φpx, ξq is homogeneous of degree 1

in ξ. This new phase function Ψpx, pq is smooth in the entire domain X ˆ P and the

FIO in (3.4) takes the new form

upxq “
ÿ

pPP

e2πınΨpx,pqgppq, x P X. (3.12)

The transformation (3.10) ensures that X ˆ P Ă r0, 1s2 ˆ r0, 1s2. By partitioning

r0, 1s2 recursively, we can construct two quadtrees TX and TP of depth L “ Oplog nq

for X and P , respectively. The following theorem is a rephrased version of Theorem

3.1 in [17] that shows analytically the complementary low-rank property of e2πınΨpx,pq

in the X ˆ P domain.

Theorem 3.2.2. Suppose A is a node in TX at level ` and B is a node in TP at level

L´ `. Given an FIO kernel function e2πınΨpx,pq with a real-analytic phase function in

the joint variables x and p, there exist ε0 ą 0 and n0 ą 0 such that for any positive

ε ď ε0 and n ě n0, there exist rε pairs of functions tαA,Bt pxq, βA,Bt ppqu1ďtďrε satisfying

ˇ

ˇ

ˇ

ˇ

ˇ

e2πınΨpx,pq
´

rε
ÿ

t“1

αA,Bt pxqβA,Bt ppq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε,

for x P A and p P B with rε À log4
p1{εq.

The polar butterfly algorithm

Based on Theorem 3.2.2, the polar butterfly algorithm traverses upward in TP

and downward in TX simultaneously and visits the low-rank submatrices KA,B “

tKpxi, pjq “ e2πınΨpxi,pjquxiPA,pjPB for pairs pA,Bq in TX ˆ TP . Replacing notations Ω

by P and ξ by p in the above algorithm results the polar butterfly algorithm. The

algorithm is asymptotically very efficient: for a given input vector gppq for p P P , it

3.3. MULTISCALE LOW-RANK APPROXIMATIONS 61

evaluates (3.12) in OpN logNq operations with OpNq memory. We refer the readers

to [17] for a detailed description of this algorithm.

Though having optimal complexity, this polar-Cartesian transformation comes

with several drawbacks, which results in a large pre-factor of the computational com-

plexity. First, due to the polar grid in the frequency domain, the points in P for the

butterfly algorithm are irregularly distributed and a separate Chebyshev interpolation

matrix is required for the evaluation at each point. In order to avoid the memory

bottleneck from storing these interpolation matrices, the polar butterfly algorithm

generates these interpolation matrices on-the-fly during the evaluation. This turns

out to be expensive in the operation count. Second, since the amplitude and phase

functions are often written in the Cartesian coordinates, the polar butterfly algo-

rithm applies the polar-Cartesian transformation for each kernel evaluation. Finally,

in order to maintain a reasonable accuracy, the polar butterfly algorithm divides the

frequency domain into multiple parts and applies the same butterfly algorithm to

each part separately. This also increases the actual running time by a non-trivial

constant factor.

Those drawbacks of the polar butterfly algorithm motivate us to propose a new

multiscale butterfly algorithm using a Cartesian grid both in the spatial and frequency

domain.

3.3 Multiscale low-rank approximations

In order to introduce the new multiscale butterfly algorithm that significantly reduces

the pre-factor, one would require the existence of the following low-rank separated

62 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

representation

e2πıΦpx,ξq
«

rε
ÿ

t“1

αABt pxqβABt pξq

for any pair of boxes A and B such that `A ` `B “ L. If the frequency domain B

is well-separated from the origin ξ “ 0 in a relative sense, one can prove a low-rank

separated representation.

In order to make it more precise, for two given squares A Ă X and B Ă Ω, we

introduce a new function called the residue phase function

RAB
px, ξq :“ Φpx, ξq ´ ΦpcA, ξq ´ Φpx, cBq ` ΦpcA, cBq, (3.13)

where cA and cB are the centers of A and B respectively. Using this new definition,

the kernel can be written as

e2πıΦpx,ξq
“ e2πıΦpcA,ξqe2πıΦpx,cBqe´2πıΦpcA,cBqe2πıRABpx,ξq. (3.14)

Below is our main theorem in this chapter. It provides theoretical support to

the low-rank approximations we used in the multiscale butterfly algorithm. In this

theorem, wA and wB denote the side lengths of A and B, respectively; dist pB, 0q

denotes the distance between the square B and the origin 0 in the frequency domain.

The distance is given by dist pB, 0q “ minξPB ‖ξ ´ 0‖. Throughout this dissertation,

when we write Op¨q, À and Á, the implicit constant is independent of n and ε.

Theorem 3.3.1. Suppose Φpx, ξq is a phase function that is real analytic for x and

ξ away from ξ “ 0. There exists positive constants ε0 and n0 such that the following

is true. Let A and B be two squares in X and Ω, respectively, obeying wAwB ď 1 and

3.3. MULTISCALE LOW-RANK APPROXIMATIONS 63

dist pB, 0q ě n
4
. For any positive ε ď ε0 and n ě n0, there exists an approximation

ˇ

ˇ

ˇ

ˇ

ˇ

e2πıRABpx,ξq
´

rε
ÿ

t“1

α̃ABt pxqβ̃ABt pξq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

for x P A and ξ P B with rε À log4
p1
ε
q. Moreover,

• when wB ď
?
n, the functions tβ̃ABt pξqu1ďtďrε can all be chosen as monomials

in pξ ´ cBq with a degree not exceeding a constant times log2
p1{εq,

• and when wA ď 1{
?
n, the functions tα̃ABt pxqu1ďtďrε can all be chosen as mono-

mials in px´ cAq with a degree not exceeding a constant times log2
p1{εq.

Proof. Since wAwB ď 1, we either have wA ď 1{
?
n or wB ď

?
n or both.

Let us first consider the case wB ď
?
n. Then

RAB
px, ξq “ Φpx, ξq ´ ΦpcA, ξq ´ Φpx, cBq ` ΦpcA, cBq

“ rΦpx, ξq ´ ΦpcA, ξqs ´ rΦpx, cBq ´ ΦpcA, cBqs

“ Hpx, ξq ´Hpx, cBq,

where Hpx, ξq :“ Φpx, ξq ´ ΦpcA, ξq. The function RABpx, ξq inherits the smoothness

from Φpx, ξq. Applying the multi-variable Taylor expansion of degree k in ξ centered

at cB gives

RAB
px, ξq “

ÿ

1ď|i|ăk

BiξHpx, cBq

i!
pξ ´ cBq

i
`

ÿ

|i|“k

BiξHpx, ξ
˚q

i!
pξ ´ cBq

i, (3.15)

where ξ˚ is a point in the segment between cB and ξ. Here i “ pi1, i2q is a multi-index

with i! “ i1!i2!, and |i| “ i1 ` i2. Let us first choose the degree k so that the second

sum in (3.15) is bounded by ε{p4πq. For each i with |i| “ k, the definition of Hpx, ξq

64 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

gives

B
i
ξHpx, ξ

˚
q “

ÿ

|j|“1

B
j
xB

i
ξΦpx

˚, ξ˚qpx´ cAq
j,

for some point x˚ in the segment between cA and x. Using the fact that Φpx, ξq is

real-analytic over |ξ| “ 1 gives that there exists a radius R such that

|B
j
xB

i
ξΦpx, ξq| ď Ci!j!

1

R|i`j|
“ Ci!j!

1

Rk`1
,

for ξ with |ξ| “ 1. Here the constant C is independent of k. Since Φpx, ξq is homoge-

neous of degree 1 in ξ, a scaling argument shows that

|B
j
xB

i
ξΦpx

˚, ξ˚q| ď Ci!j!
1

Rk`1|ξ˚|k´1
.

Since dist pB, 0q ě n{4 and wAwB ď 1, we have

ˇ

ˇ

ˇ

ˇ

ˇ

BiξHpx, ξ
˚q

i!
pξ ´ cBq

i

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2Ci!j!

i!

1

Rk`1|ξ˚|k´1
wAw

k
B ď

2C

Rk`1

ˆ

4
?
n

˙k´1

.

Combining this with (3.15) gives

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

RAB
px, ξq ´

ÿ

1ď|i|ăk

BiξHpx, cBq

i!
pξ ´ cBq

i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

|i|“k

BiξHpx, ξ
˚q

i!
pξ ´ cBq

i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2Cpk ` 1q

Rk`1

ˆ

4
?
n

˙k´1

.

Therefore, for a sufficient large n0pRq, if n ą n0pRq, choosing k “ kε “ Oplogp1{εqq

ensures that the difference is bounded by ε{p4πq.

3.3. MULTISCALE LOW-RANK APPROXIMATIONS 65

The special case k “ 1 results in the following bound for RABpx, ξq

|RAB
px, ξq| ď

4C

R2
.

To simplify the notation, we define

RAB
ε px, ξq :“

ÿ

1ď|i|ăkε

BiξHpx, cBq

i!
pξ ´ cBq

i,

i.e., the first sum on the right hand side of (3.15) with k “ kε. The choice of kε

together with (3.15) implies the bound

|RAB
ε px, ξq| ď

4C

R2
` ε.

Since RAB
ε px, ξq is bounded, a direct application of Lemma 3.2 of [17] gives

ˇ

ˇ

ˇ

ˇ

ˇ

e2πıRABε px,ξq
´

dε
ÿ

p“0

p2πıRAB
ε px, ξqqp

p!

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε{2, (3.16)

where dε “ Oplogp1{εqq. Since RAB
ε px, ξq is a polynomial in pξ´cBq, the sum in (3.16)

is also a polynomial in pξ ´ cBq with degree bounded by kεdε “ Oplog2
p1{εqq. Since

our problem is in 2D, there are at most Oplog4
p1{εqq possible monomial in pξ ´ cBq

with degree bounded by kεdε. Grouping the terms with the same multi-index in ξ

results in an Oplog4
p1{εqq term ε-accurate separated approximation for e2πıRABε px,ξq

with the factors tβ̃ABt pξqu1ďtďrε being monomials of pξ ´ cBq.

Finally, from the inequality |eıa ´ eıb| ď |a ´ b|, it is clear that a separated ap-

proximation for e2πıRABε px,ξq with accuracy ε{2 is also one for e2πıRABpx,ξq with accuracy

ε{2` ε{2 “ ε. This completes the proof for the case wB ď
?
n.

66 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

The proof for the case wA ď 1{
?
n is similar. The only difference is that we now

group with

RAB
px, ξq “ rΦpx, ξq ´ Φpx, cBqs ´ rΦpcA, ξq ´ ΦpcA, cBqs

and apply the multivariable Taylor expansion in x centered at cA instead. This

results an Oplog4
p1{εqq term ε-accurate separated approximation for e2πıRABpx,ξq with

the factors tα̃ABt pxqu1ďtďrε being monomials of px´ cAq.

Though the above proof is constructive, it is cumbersome to construct the sep-

arated approximation this way. On the other hand, the proof shows that when

wB ď
?
n, the ξ-dependent factors in the low-rank approximation of e2πıRABpx,ξq can

be monomials in pξ ´ cBq. Similarly, when wA ď 1{
?
n, the x-dependent factors

are monomials in px ´ cAq. This suggests to use Chebyshev interpolation in x when

wA ď 1{
?
n and in ξ when wB ď

?
n. For this purpose, we associate with each box a

Chebyshev grid as follows.

For a fixed integer q, the Chebyshev grid of order q on r´1{2, 1{2s is defined by

"

zi “
1

2
cos

ˆ

iπ

q ´ 1

˙*

0ďiďq´1

.

A tensor-product grid adapted to a square with center c and side length w is then

defined via shifting and scaling as

tc` wpzi, zjqui,j“0,1,...,q´1

In what follows, MB
t is the 2D Lagrange interpolation polynomial on the Chebyshev

grid adapted to the square B (i.e., using c “ cB and w “ wB).

3.3. MULTISCALE LOW-RANK APPROXIMATIONS 67

Theorem 3.3.2. Let A and B be as in Theorem 3.3.1. Then for any ε ď ε0 and

n ě n0 where ε0 and n0 are the constants in Theorem 3.3.1, there exists qε À log2
p1{εq

such that

• when wB ď
?
n, the Lagrange interpolation of e2πıRABpx,ξq in ξ on a qε ˆ qε

Chebyshev grid tgBt u1ďtďrε adapted to B obeys

ˇ

ˇ

ˇ

ˇ

ˇ

e2πıRABpx,ξq
´

rε
ÿ

t“1

e2πıRABpx,gBt qMB
t pξq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε, @x P A, @ξ P B, (3.17)

• when wA ď 1{
?
n, the Lagrange interpolation of e2πıRABpx,ξq in x on a qε ˆ qε

Chebyshev grid tgAt u1ďtďrε adapted to A obeys

ˇ

ˇ

ˇ

ˇ

ˇ

e2πıRABpx,ξq
´

rε
ÿ

t“1

MA
t pxqe

2πıRABpgAt ,ξq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε, @x P A, @ξ P B. (3.18)

Both (3.17) and (3.18) provide a low-rank approximation with rε “ q2
ε À log4

p1{εq

terms.

The proof for this follows exactly the one of Theorem 3.3 of [17].

Finally, we are ready to construct the low-rank approximation for the kernel

e2πıΦpx,ξq, i.e.,

e2πıΦpx,ξq
«

rε
ÿ

t“1

αABt pxqβABt pξq. (3.19)

When wB ď
?
n, we multiply (3.17) with e2πıΦpcA,ξqe2πıΦpx,cBqe´2πıΦpcA,cBq, which gives

that @x P A, @ξ P B

ˇ

ˇ

ˇ

ˇ

ˇ

e2πıΦpx,ξq
´

rε
ÿ

t“1

e2πıΦpx,gBt q
´

e´2πıΦpcA,g
B
t qMB

t pξqe
2πıΦpcA,ξq

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε.

68 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

In terms of the notations in (3.19), the expansion functions are given by

αABt pxq “ e2πıΦpx,gBt q, βABt pξq “ e´2πıΦpcA,g
B
t qMB

t pξqe
2πıΦpcA,ξq, 1 ď t ď rε. (3.20)

This is a special interpolant of the function e2πıΦpx,ξq in the ξ variable, which pre-

factors the oscillation, performs the interpolation, and then remodulates the outcome.

When wA ď 1{
?
n, multiply (3.18) with e2πıΦpcA,ξqe2πıΦpx,cBqe´2πıΦpcA,cBq and obtain

that @x P A, @ξ P B

ˇ

ˇ

ˇ

ˇ

ˇ

e2πıΦpx,ξq
´

rε
ÿ

t“1

´

e2πıΦpx,cBqMA
t pxqe

´2πıΦpgAt ,cBq
¯

e2πıΦpgAt ,ξq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε.

The expansion functions are now

αABt pxq “ e2πıΦpx,cBqMA
t pxqe

´2πıΦpgAt ,cBq, βABt pξq “ e2πıΦpgAt ,ξq, 1 ď t ď rε. (3.21)

Due to the presence of the demodulation and remodulation steps in the definitions

(3.20) and (3.21), we refer to them as oscillatory Chebyshev interpolations.

3.4 Multiscale butterfly algorithm

In this section, we combine the multiscale low-rank approximations described in Sec-

tion 3.3 with the butterfly algorithm in Section 3.2.2 to propose a multiscale butterfly

algorithm for the FIOs in two dimensions. Extension to higher dimensions is straight-

forward.

To deal with the singularity of the kernel Φpx, ξq at ξ “ 0, we hierarchically

decompose the frequency domain into a union of non-overlapping Cartesian coronas

3.4. MULTISCALE BUTTERFLY ALGORITHM 69

with a common center ξ “ 0 (see Figure 3.4). More precisely, define

Ωj “

!

pn1, n2q :
n

2j`1
ă maxp|n1|, |n2|q ď

n

2j

)

X Ω

for j “ 1, . . . , log n ´ s, where s is just a small constant integer. The domain Ωd “

Ωz Yj Ωj is the remaining square grid at the center of constant size. Following this

decomposition of the frequency domain, one can write (3.4) accordingly as

pLfqpxq “
ÿ

j

¨

˝

ÿ

ξPΩj

e2πıΦpx,ξq
pfpξq

˛

‚`
ÿ

ξPΩd

e2πıΦpx,ξq
pfpξq. (3.22)

Ω1 Ω2

¨ ¨ ¨

¨ ¨ ¨ Ωlogn´s Ωd

Figure 3.4: This figure shows the frequency domain decomposition of Ω. Each sub-
domain Ωj, j “ 1, . . . , log n´ s, is a corona and Ωd is a small square domain near the
origin.

The kernel function of (3.22) is smooth in each sub-domain Ωj and a classical

butterfly algorithm as described in Section 3.2.2 can be applied to evaluate the con-

tribution from Ωj. In contrast to the polar butterfly algorithm that works in the polar

coordinates for Ω, we refer to this one as the single-scale butterfly algorithm. For the

center square Ωd, since it contains only a constant number of points, a direct summa-

tion is used. Because of the multiscale nature of the frequency domain decomposition,

70 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

we refer to this algorithm as the multiscale butterfly algorithm. As we shall see,

the computational and memory complexity of the multiscale butterfly algorithm are

still OpN logNq and OpNq, respectively. On the other hand, the pre-factors are much

smaller, since the multiscale butterfly is based on the Cartesian grids and requires no

polar-Cartesian transformation.

3.4.1 Single-scale butterfly algorithm

To make it more explicit, let us first consider the interaction between pX,Ω1q, with

the multiscale low-rank approximation implemented using the oscillatory Chebyshev

interpolation discussed in Section 3.3.

1. Preliminaries. Construct two quadtrees TX and TΩ1 for X and Ω1 by uniform

hierarchical partitioning. Let b be a constant greater than or equal to 4 and

define n1 “ n.

2. Initialization. For each square A P TX of width 1{b and each square B P TΩ1 of

width b, the low-rank approximation functions are

αABt pxq “ e2πıΦpx,gBt q, (3.23)

βABt pξq “ e´2πıΦpcA,g
B
t qMB

t pξqe
2πıΦpcA,ξq, 1 ď t ď rε. (3.24)

Hence, we can define the expansion weights tδABt u1ďtďrε with

δABt :“
ÿ

ξPB

βABt pξq pfpξq “ e´2πıΦpcA,g
B
t q

ÿ

ξPB

´

MB
t pξqe

2πıΦpcA,ξq
pfpξq

¯

. (3.25)

3. Recursion. Go up in tree TΩ1 and down in tree TX at the same time until

we reach the level such that wB “
?
n1. At each level, visit all the pairs

3.4. MULTISCALE BUTTERFLY ALGORITHM 71

pA,Bq. We apply the Chebyshev interpolation in variable ξ and still define the

approximation functions given in (3.23). Let tδPCs u1ďsďrε denote the expansion

coefficients available in previous steps, where P is A’s parent, C is a child of B,

and s indicates the Chebyshev grid points in previous domain pairs. We define

the new expansion coefficients tδABt u1ďtďrε as

δABt :“ e´2πıΦpcA,g
B
t q

ÿ

CąB

rε
ÿ

s“1

MB
t pg

C
s qe

2πıΦpcA,g
C
s qδPCs , (3.26)

where we recall that the notation C ą B means that C is a child of B.

4. Switch. For the levels visited, the Chebyshev interpolation is applied in variable

ξ, while the interpolation is applied in variable x for levels l ą logpn1q{2. Hence,

we are switching the interpolation method at this step. Now we are still working

on level l “ logpn1q{2 and the same domain pairs pA,Bq in the last step. Let δABs

denote the expansion weights obtained by Chebyshev interpolation in variable

ξ in the last step. Correspondingly, tgBs us are the grid points in B in the last

step. We take advantage of the interpolation in variable x in A and generate

grid points tgAt u1ďtďrε in A. Then we can define new expansion weights

δABt :“
rε
ÿ

s“1

e2πıΦpgAt ,g
B
s qδABs .

5. Recursion. Go up in tree TΩ1 and down in tree TX at the same time until we

reach the level such that wB “ n1{b. We construct the approximation functions

by Chebyshev interpolation in variable x as follows:

αABt pxq “ e2πıΦpx,cBqMA
t pxqe

´2πıΦpgAt ,cBq, βABt pξq “ e2πıΦpgAt ,ξq. (3.27)

72 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

We define the new expansion coefficients tδABt u1ďtďrε as

δABt :“
ÿ

CąB

e2πıΦpgAt ,cCq
rε
ÿ

s“1

´

MP
s pg

A
t qe

´2πıΦpgPs ,cCqδPCs

¯

, (3.28)

where again P is A’s parent and C is a child box of B.

6. Termination. Finally, we reach the level that wB “ n1{b. For each B on this

level and for each square A P TX of width b{n1, we apply the approximation

functions given by (3.27) and obtain

uBpxq :“ e2πıΦpx,cBq
rε
ÿ

t“1

´

MA
t pxqe

´2πıΦpgAt ,cBqδABt

¯

(3.29)

for each x P A. Finally, summing over all B on this level, we have

uΩ1pxq :“
ÿ

B

uBpxq (3.30)

for each x P A.

We would like to emphasize that the center part of the tree TΩj is always empty since

Ωj is a corona. Accordingly, the algorithm skips this empty part.

For a general Ωj, the interaction between pX,Ωjq follows a similar algorithm,

except that we replace Ω1 with Ωj, u
Ω1pxq with uΩjpxq, n1 with nj “ n{2j´1, and stop

at the level that wB “ nj{b.

Finally, (3.4) is evaluated via

pLfqpxq “ uΩdpxq `
ÿ

j

uΩjpxq. (3.31)

The multiscale butterfly algorithm can be adapted to non-uniform grid points in

3.4. MULTISCALE BUTTERFLY ALGORITHM 73

X and Ω. The only difference is that the oscillatory Chebyshev interpolation for low-

rank approximation uses non-uniform grid points. In this case, we have to generate

different interpolation matrices when we visit different leaf domain pairs AˆB, i.e.,

either A is a leaf box of TX or B is a leaf box of TΩ. This will end up with extra

operation and memory requirement. But careful calculation shows that the overall

operation and memory complexity remains the same.

3.4.2 Complexity analysis

The cost of evaluating the term of Ωd takes at most Opn2q steps since |Ωd| “ Op1q.

Let us now consider the cost of the terms associated with tΩju.

For the interaction between X and Ω1, the computation consists of two parts: the

recursive evaluation of tδABt u and the final evaluation of uΩ1pxq. The recursive part

takes Opq3n2 log nq since there are at most Opn2 log nq pairs of squares pA,Bq and

the evaluation of tδABt u for each pair takes Opq3q steps via dimension-wise Chebyshev

interpolation. The final evaluation of uΩ1pxq clearly takes Opq2n2q steps as we spend

Opq2q on each point x P X.

For the interaction between X and Ωj, the analysis is similar. The recursive part

takes now Opq3n2
j log njq steps (with nj “ n{2j´1) as there are at most Opn2

j log njq

pairs of squares involved. The final evaluation still takes Opq2n2q steps.

Summing these contributions together results in the total computational complex-

ity

Opq3n2 log nq `Opq2n2 log nq “ Opq3n2 log nq “ Opr3{2
ε n2 log nq.

The multiscale butterfly algorithm is also highly efficient in terms of memory as

the Cartesian butterfly algorithm is applied sequentially to evaluate (3.29) for each

Ωj. Although the overall memory complexity is still Opn2q, the peak memory could

74 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

be significantly reduced since only 1
b2

memory of the original Cartesian butterfly

algorithm is used to evaluate the FIO in Ωj.

3.5 Numerical results

This section presents several numerical examples to demonstrate the effectiveness of

the multiscale butterfly algorithm introduced above. In truth, FIOs usually have

non-constant amplitude functions. Nevertheless, the main computational difficulty is

the oscillatory phase term. We refer to [17] for detailed fast algorithms to deal with

non-constant amplitude functions. Our MATLAB implementation can be found on

the authors’ personal homepages. The numerical results were obtained on a desktop

with a 3.5 GHz CPU and 32 GB of memory. Let tudpxq, x P Xu, tumpxq, x P Xu

and tuppxq, x P Xu be the results of a discrete FIO computed by a direct matrix-

vector multiplication, the multiscale butterfly algorithm and the polar butterfly algo-

rithm [17], respectively. To report on the accuracy, we randomly select a set S of 256

points from X and evaluate the relative errors of the multiscale butterfly algorithm

and the polar butterfly algorithm by

εm “

d

ř

xPS|udpxq ´ umpxq|2
ř

xPS|udpxq|2
and εp “

d

ř

xPS|udpxq ´ uppxq|2
ř

xPS|udpxq|2
. (3.32)

According to the description of the multiscale butterfly algorithm in Section 3.4,

we recursively divide Ω into Ωj, j “ 1, 2, . . . , log n ´ s, where s is 5 in the following

examples. This means that the center square Ωd is of size 25ˆ 25 and the interaction

from Ωd is evaluated via a direct matrix-vector multiplication. Suppose qε is the

number of Chebyshev points in each dimension. There is no sense to use butterfly

algorithms to construct tδABt u when the number of points in B is fewer than q2
ε .

3.5. NUMERICAL RESULTS 75

Hence, the recursion step in butterfly algorithms starts from the squares B that are

a couple of levels away from the bottom of TΩ such that each square contains at

least q2
ε points. Similarly, the recursion stops at the squares in TX that are the same

number of levels away from the bottom. In the following examples, we start from

level log n ´ 3 and stop at level 3 (corresponding to b “ 23 defined in Section 3.4)

which matches with qε (4 to 11).

In order to make a fair comparison, we compare the MATLAB versions of the

polar butterfly algorithm and the multiscale butterfly algorithm. Hence, the running

time of the polar butterfly algorithm here is slower than the one in [17], which was

implemented in C++.

Example 1. This example is a generalized Radon transform whose kernel is given

by

Φpx, ξq “ x ¨ ξ `
b

c2
1pxqξ

2
1 ` c

2
2pxqξ

2
2 ,

c1pxq “ p2` sinp2πx1q sinp2πx2qq{3,

c2pxq “ p2` cosp2πx1q cosp2πx2qq{3.

(3.33)

We assume the amplitude of this example is a constant 1. Now the FIO models

an integration over ellipses where c1pxq and c2pxq are the axis lengths of the ellipse

centered at the point x P X. Table 3.1 summarize the results of this example given

by the polar butterfly algorithm and the multiscale butterfly algorithm.

Example 2. Next, we provide an FIO example with a smooth amplitude function,

upxq “
ÿ

ξPΩ

apx, ξqe2πıΦpx,ξq
pfpξq, (3.34)

76 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

Multiscale Butterfly Polar Butterfly
n, qε εm Tmpsecq n, qε εp Tppsecq Tp{Tm

256,5 7.89e-02 6.96e+01 256,5 4.21e-02 4.84e+02 6.96e+00
512,5 9.01e-02 3.62e+02 512,5 5.54e-02 2.34e+03 6.46e+00

1024,5 9.13e-02 1.81e+03 1024,5 4.26e-02 1.14e+04 6.31e+00
2048,5 9.47e-02 8.79e+03 2048,5 - - -
256,7 6.95e-03 8.20e+01 256,7 5.66e-03 5.97e+02 7.28e+00
512,7 8.43e-03 4.16e+02 512,7 5.89e-03 2.82e+03 6.79e+00

1024,7 8.45e-03 2.03e+03 1024,7 4.84e-03 1.35e+04 6.64e+00
2048,7 8.42e-03 1.04e+04 2048,7 - - -
256,9 3.90e-04 1.10e+02 256,9 8.25e-04 7.74e+02 7.04e+00
512,9 3.42e-04 5.39e+02 512,9 6.78e-04 3.57e+03 6.61e+00

1024,9 7.61e-04 2.74e+03 1024,9 4.18e-04 1.67e+04 6.09e+00
2048,9 4.82e-04 1.25e+04 2048,9 - - -
256,11 2.15e-05 1.84e+02 256,11 3.69e-05 1.15e+03 6.27e+00
512,11 1.89e-05 8.60e+02 512,11 5.53e-05 5.10e+03 5.93e+00

1024,11 1.96e-05 4.27e+03 1024,11 2.042e-05 2.30e+04 5.39e+00
2048,11 1.50e-05 1.82e+04 2048,11 - - -

Table 3.1: Comparison of the multiscale butterfly algorithm and the polar butterfly
algorithm for the phase function in (3.33). Tm is the running time of the multiscale
butterfly algorithm; Ta is the running time of the polar butterfly algorithm; and
Tm{Tp is the speedup factor.

3.5. NUMERICAL RESULTS 77

where the amplitude and phase functions are given by

apx, ξq “ pJ0p2πρpx, ξqq ` ıY0p2πρpx, ξqqqe
´πıρpx,ξq,

Φpx, ξq “ x ¨ ξ ` ρpx, ξq,

ρpx, ξq “
a

c2
1pxqξ

2
1 ` c

2
2pxqξ

2
2 ,

c1pxq “ p2` sinp2πx1q sinp2πx2qq{3,

c2pxq “ p2` cosp2πx1q cosp2πx2qq{3.

Here, J0 and Y0 are Bessel functions of the first and second kinds. We refer to [16]

for more details of the derivation of these formulas. As discussed in [17], we compute

the low rank approximation of the amplitude functions apx, ξq first:

apx, ξq «
sε
ÿ

t“1

gtpxqhtpξq.

In the second step, we apply the multiscale butterfly algorithm to compute

utpxq “
ÿ

ξPΩ

e2πıΦpx,ξq
pfpξqhtpξq,

and sum up all gtpxqutpxq to evaluate

upxq “
ÿ

t

gtpxqutpxq.

Table 3.2 summarizes the results of this example given by the direct method and the

multiscale butterfly algorithm.

Note that the accuracy of the multiscale butterfly algorithm is well controlled by

the number of Chebyshev points qε. This indicates that our algorithm is numerically

78 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

n, qε εm Tdpsecq Tmpsecq Td{Tm
256,7 5.10e-03 3.78e+03 6.07e+02 6.23e+00
512,7 7.29e-03 3.71e+04 3.50e+03 1.06e+01

1024,7 6.16e-03 6.42e+05 1.70e+04 3.77e+01
256,9 4.49e-04 2.34e+03 7.88e+02 2.97e+00
512,9 4.04e-04 3.66e+04 4.64e+03 7.90e+00

1024,9 3.88e-04 6.21e+05 2.17e+04 2.86e+01
256,11 1.86e-05 2.48e+03 1.33e+03 1.86e+00
512,11 1.80e-05 3.60e+04 6.94e+03 5.18e+00

1024,11 2.39e-05 5.96e+05 2.83e+04 2.11e+01

Table 3.2: Numerical results given by the multiscale butterfly algorithm for the FIO
in (3.34). Td is the running time of the direct evaluation; Tm is the running time of
the multiscale butterfly algorithm; and Td{Tm is the speedup factor.

stable. Another observation is that the relative error improves on average by a factor

of 12 every time qε is incremented by a factor of 2. As we can see in those tables, for a

fixed kernel and a fixed qε, the accuracy is almost independent of n. In fact, as we keep

on incrementing qε, the relative error decreases until it reaches the machine precision,

independent of n. Hence, in practical applications, one can increase the value of qε

until a desired accuracy is reached. In the comparison in Table 3.1, the multiscale

butterfly algorithm and the polar butterfly algorithm use qε “ t5, 7, 9, 11u and achieve

comparable accuracy. Meanwhile, as we observed from Table 3.1, the relative error

decreasing rate of the multiscale butterfly algorithm is larger than the decreasing

rate of the polar butterfly algorithm. This means if a high accuracy is desired, the

multiscale butterfly algorithm requires a smaller qε to achieve it comparing to the

polar butterfly algorithm.

The second concern about the algorithm is the asymptotic complexity. From the

Tm column of Table 3.1 and 3.2, we see that Tm almost quadrupled when the problem

size doubled under the same qε. According to this, we are convinced that the empirical

running time of the multiscale butterfly algorithm follows the O pn2 log nq asymptotic

3.5. NUMERICAL RESULTS 79

complexity. Note that the speedup factor over the polar butterfly algorithm is about

6 and the multiscale butterfly algorithm obtains better accuracy. This makes the

multiscale butterfly algorithm quite attractive to practitioners who are interested in

evaluating an FIO with a large n.

Example 3. Extending the multiscale butterfly algorithm to higher dimensions is

straightforward. There are two main modifications: higher dimensional multiscale do-

main decomposition and Chebyshev interpolation. In three dimensions, the frequency

domain is decomposed into cubic shells instead of coronas. The kernel interpolation

is applied on a three dimensional Chebyshev grids. We apply our three-dimensional

multiscale butterfly algorithm to a simple example integrating over spheres with dif-

ferent radii. We assume a constant amplitude function and the kernel function is

given by

Φpx, ξq “ x ¨ ξ ` cpxq
b

ξ2
1 ` ξ

2
2 ` ξ

2
3 ,

cpxq “ p3` sinp2πx1q sinp2πx2q sinp2πx3qq{4.
(3.35)

Table 3.3 summarizes the results of this example given by the direct method and the

multiscale butterfly algorithm.

n, qε εm Tdpsecq Tmpsecq Td{Tm
64,5 9.41e-02 1.82e+04 2.50e+03 7.31e+00

128,5 7.57e-02 6.21e+05 2.42e+04 2.57e+01
256,5 8.23e-02 3.91e+07 2.35e+05 1.66e+02
64,7 1.20e-02 1.83e+04 7.32e+03 2.50e+00

128,7 1.03e-02 6.03e+05 4.48e+04 1.35e+01
256,7 8.13e-03 4.39e+07 3.81e+05 1.15e+02

Table 3.3: Numerical results given by the multiscale butterfly algorithm for the phase
function in (3.35).

80 CHAPTER 3. OSCILLATORY INTEGRAL OPERATOR AND BA

3.6 Conclusion and remarks on parallelization

A simple and efficient multiscale butterfly algorithm for evaluating FIOs is introduced

in this chapter. This method hierarchically decomposes the frequency domain into

multiscale coronas in order to avoid possible singularity of the phase function Φpx, ξq

at ξ “ 0. A single-scale butterfly algorithm is applied to evaluate the FIO over

each corona. Many drawbacks of the original butterfly algorithm based on a polar-

Cartesian transform in [17] can be avoided. The new multiscale butterfly algorithm

has an OpN logNq operation complexity with a smaller pre-factor, while keeping the

same OpNq memory complexity.

The multiscale butterfly algorithm is also a scalable algorithm and can be effi-

ciently parallelized. Assume that we are given P processes together with a problem

of size N . The multiscale butterfly algorithm decomposes the frequency domain into

OplogNq multiscale coronas, and the evaluation on each corona is achieved through

a single-scale butterfly algorithm. Naturally, the single-scale butterfly algorithm on

each corona can be efficiently parallelized on OpP { logNq processes via the parallel

butterfly algorithm [76]. Combining the complexity analysis in Section 3.4.2 and [76],

we conclude that the computational cost for the parallel butterfly algorithm on each

corona is OpN
P

log2N`βN
P

logN logP `α logP q , where α is the message latency and

β is the inverse bandwidth. Direct evaluation on the center disk of Ω can be näıvely

parallelized with OpN
P

logNq operations and zero communication. Putting all pieces

together gives rise to a parallel multiscale butterfly algorithm with computational

cost OpN
P

log3N ` βN
P

log2N logP ` α logN logP q.

Chapter 4

Butterfly factorization

4.1 Introduction

As we mentioned earlier in Section 3.1, the butterfly algorithms [17, 97, 76] apply

the kernel matrix to a vector in quasi-linear time without precomputation. However,

these algorithms, including the one proposed in the previous chapter, rely on the

analytic properties of the kernel. When such information is not available, we are

forced to fall back to algorithms in [72, 75] with OpN2q precomputation cost.

A natural question is whether it is possible to reduce the cost of the precompu-

tation phase if the analytic properties of the kernel are not directly accessible. The

following two cases are quite common in applications:

(i) Only black-box routines for computing Kg and K˚g in OpN logNq operations

are given;

(ii) Only a black-box routine for evaluating any entry of the matrix K in Op1q

operations is given.

81

82 CHAPTER 4. BUTTERFLY FACTORIZATION

To answer this question, we propose in this chapter the butterfly factorization,

which, more precisely, represents K as a product of a sequence of sparse matrices:

K « ULGL´1
¨ ¨ ¨GhMh

pHh
q
˚
¨ ¨ ¨ pHL´1

q
˚
pV L

q
˚, (4.1)

where the depth L “ OplogNq of TX and TΩ is assumed to be even, h “ L{2 is a

middle level index, and all factors are sparse matrices with OpNq nonzero entries.

The construction of the butterfly factorization proceeds as follows in two stages.

The first stage is to construction a preliminary middle level factorization that is

associated with the middle level of TX and TΩ

K « UhMh
pV h

q
˚, (4.2)

where Uh and V h are block diagonal matrices and Mh is a weighted permutation

matrix. In the first case, this is achieved by applying K to a set of OpN1{2q structured

random vectors and then applying the random singular value decomposition (SVD)

to the result. This typically costs OpN3{2 logNq operations. In the second case,

(4.2) is built via the random sampling method proposed in [36, 95] for computing

approximate SVDs. This random sampling needs to make the assumption that the

columns and rows of middle level blocks of K to be incoherent with respect to the

delta functions and it typically takes only OpN3{2q operations in practice.

Once the middle level factorization (4.2) is available, the second stage is a sequence

of truncated SVDs that further factorize each of Uh and V h into a sequence of sparse

matrices, resulting in the final factorization (4.1). The operation count of this stage

is OpN3{2q and the total memory complexity for constructing butterfly factorization

is OpN3{2q.

4.1. INTRODUCTION 83

When the butterfly factorization (4.1) is constructed, the cost of applying K to

a given vector g P CN is OpN logNq because (4.1) is a sequence of OplogNq sparse

matrices, each with OpNq non-zero entries.

This work is motivated by problems that require repeated applications of a but-

terfly algorithm. In several applications, such as inverse scattering [85, 96] and fast

spherical harmonic transform (SHT) [86], the butterfly algorithm is called repeatedly

either in an iterative process of minimizing some regularized objective function or to

a large set of different input vectors. Therefore, it becomes important to reduce the

constant prefactor of the butterfly algorithm to save actual runtime. For example in

[17], Chebyshev interpolation is applied to recover low-rank structures of submatrices

with a sufficiently large number of interpolation points. The recovered rank is far from

the optimum. Hence, the prefactor of the corresponding butterfly algorithm in [17]

is large. The butterfly factorization can further compress this butterfly algorithm to

obtain nearly optimal low-rank approximations resulting in a much smaller prefactor,

as will be shown in the numerical results. Therefore, it is more efficient to construct

the butterfly factorization using this butterfly algorithm and then apply the butterfly

factorization repeatedly. In this sense, the butterfly factorization can be viewed as a

compression of certain butterfly algorithms.

Another important application is the computation of a composition of several

FIOs. A direct method to construct the composition takes OpN3q operations, while

the butterfly factorization provides a data-sparse representation of this composition in

OpN3{2 logNq operations, once the fast algorithm for applying each FIO is available.

After the construction, the application of the butterfly factorization is independent

of the number of FIOs in the composition, which is significant when the number of

FIOs is large.

84 CHAPTER 4. BUTTERFLY FACTORIZATION

Recently, there has also been a sequence of papers on recovering a structured

matrix via applying it to (structured) random vectors. For example, the random

SVD algorithms [46, 63, 89] recover a low-rank approximation to an unknown matrix

when it is numerically low-rank. The work in [70] constructs a sparse representation

for an unknown HSS matrix. More recently, [64] considers the more general problem of

constructing a sparse representation of an unknownH-matrix. To our best knowledge,

the present work is the first to address such matrix recovery problem if the unknown

matrix satisfies the complementary low-rank property.

4.1.1 Organization

The rest of this chapter is organized as follows. Section 4.2 briefly reviews some

basic tools that shall be used repeatedly in later sections. Section 4.3 describes in

detail the butterfly factorization in one dimension and its construction algorithm.

Section 4.4 proposes several fast algorithms for multidimensional operators. The

corresponding numerical examples are provided right after the description of each

algorithm. Section 4.5 discusses the parallelism issue for the butterfly factorizations.

4.2 Preliminaries

For a matrix Z P Cmˆn, we define a rank-r approximate singular value decomposition

(SVD) of Z as

Z « U0Σ0V
˚

0 ,

where U0 P Cmˆr is unitary, Σ0 P Rrˆr is diagonal, and V0 P Cnˆr is unitary. A

straightforward method to obtain the optimal rank-r approximation of Z is to com-

pute its truncated SVD, where U0 is the matrix with the first r left singular vectors,

4.2. PRELIMINARIES 85

Σ0 is a diagonal matrix with the first r singular values in decreasing order, and V0 is

the matrix with the first r right singular vectors.

A typical computation of the truncated SVD of Z takes Opmnminpm,nqq oper-

ations, which can be quite expensive when m and n are large. Therefore, a lot of

research has been devoted to faster algorithms for computing approximate SVDs, es-

pecially for matrices with fast decaying singular values. In Sections 4.2.1 and 4.2.2,

we will introduce two random algorithms for computing approximate SVDs for nu-

merically low-rank matrices Z: the first one [46] is based on applying the matrix to

random vectors while the second one [36, 95] relies on sampling the matrix entries

randomly.

Once an approximate SVD Z « U0Σ0V
˚

0 is computed, it can be written in several

equivalent ways, each of which is convenient for certain purposes. First, one can write

Z « USV ˚,

where

U “ U0Σ0, S “ Σ´1
0 and V ˚ “ Σ0V

˚
0 . (4.3)

This construction is analogous to the well-known CUR decomposition [68] in the sense

that the left and right factors in both factorization methods inherit similar singular

values of the original numerical low-rank matrix. Here, the middle matrix S in (4.3)

can be carefully constructed to ensure numerical stability, since the singular values

in Σ0 can be computed to nearly full relative precision.

As we shall see, sometimes it is also convenient to write the approximation as

Z « UV ˚

86 CHAPTER 4. BUTTERFLY FACTORIZATION

where

U “ U0 and V ˚ “ Σ0V
˚

0 , (4.4)

or

U “ U0Σ0 and V ˚ “ V ˚0 . (4.5)

Here, one of the factors U and V share the singular values of Z.

4.2.1 SVD via random matrix-vector multiplication

One popular approach is the random algorithm in [46] that reduces the cubic com-

plexity to Oprmnq complexity. We briefly review this following [46] for constructing

a rank-r approximation SVD Z « U0Σ0V
˚

0 below.

Algorithm 4.2.1. Randomized SVD

1. Generate two tall skinny random Gaussian matrices Rcol P Cnˆpr`pq and Rrow P

Cmˆpr`pq, where p “ Op1q is an additive oversampling parameter that increases

the approximation accuracy.

2. Apply the pivoted QR factorization to ZRcol and let Qcol be the matrix of the

first r columns of the Q matrix. Similarly, apply the pivoted QR factorization

to Z˚Rrow and let Qrow be the matrix of the first r columns of the Q matrix.

3. Generate a tiny middle matrix M “ pR˚rowQcolq
:R˚rowZRcolpQ

˚
rowRcolq

: and com-

pute its rank-r truncated SVD: M « UMΣMV
˚
M , where p¨q: denotes the pseudo

inverse.

4. Let U0 “ QcolUM , Σ0 “ ΣM , and V ˚0 “ V ˚MQ
˚
row. Then Z « U0Σ0V

˚
0 .

4.2. PRELIMINARIES 87

The dominant complexity comes from the application of Z to Oprq random vectors.

If fast algorithms for applying Z are available, the quadratic complexity can be further

reduced.

Once the approximate SVD of Z is ready, the equivalent forms in (4.3), (4.4), and

(4.5) can be constructed easily. Under the condition that the singular values of Z

decay sufficiently rapidly, the approximation error of the resulting rank-r is nearly

optimal with an overwhelming probability. Typically, the additive over-sampling

parameter p “ 5 is sufficient to obtain an accurate rank-r approximation of Z.

For most applications, the goal is to construct a low-rank approximation up to a

fixed relative precision ε, rather than a fixed rank r. The above procedure can then

be embedded into an iterative process that starts with a relatively small r, computes

a rank-r approximation, estimates the error probabilistically, and repeats the steps

with doubled rank 2r if the error is above the threshold ε [46].

4.2.2 SVD via random sampling

The above algorithm relies only on the product of the matrix Z P Cmˆn or its trans-

pose with given random vectors. If one is allowed to access the individual entries of

Z, the following random sampling method for low-rank approximations introduced in

[36, 95] can be more efficient. This method only visits Oprq columns and rows of Z

and hence only requires Opr2pm` nqq operations and Oprpm` nqq memory.

Here, we adopt the standard notation for a submatrix: given a row index set I

and a column index set J , ZI,J “ ZpI, Jq is the submatrix with entries from rows

in I and columns in J ; we also use “ : ” to denote the entire columns or rows of

the matrix, i.e., ZI,: “ ZpI, :q and Z:,J “ Zp:, Jq. With these handy notations, we

briefly introduce the random sampling algorithm to construct a rank-r approximation

88 CHAPTER 4. BUTTERFLY FACTORIZATION

of Z « U0Σ0V
˚

0 .

Algorithm 4.2.2. Randomized sampling for low-rank approximation

1. Let Πcol and Πrow denote the important columns and rows of Z that are used to

form the column and row bases. Initially Πcol “ H and Πrow “ H.

2. Randomly sample rq rows and denote their indices by Srow. Let I “ SrowYΠrow.

Here q “ Op1q is a multiplicative oversampling parameter. Perform a pivoted

QR decomposition of ZI,: to get

ZI,:P “ QR,

where P is the resulting permutation matrix and R “ prijq is an Oprqˆn upper

triangular matrix. Define the important column index set Πcol to be the first r

columns picked within the pivoted QR decomposition.

3. Randomly sample rq columns and denote their indices by Scol. Let J “ Scol Y

Πcol. Perform a pivoted LQ decomposition of Z:,J to get

PZ:,J “ LQ,

where P is the resulting permutation matrix and L “ plijq is an mˆOprq lower

triangular matrix. Define the important row index set Πrow to be the first r rows

picked within the pivoted LQ decomposition.

4. Repeat steps 2 and 3 a few times to ensure Πcol and Πrow sufficiently sample the

important columns and rows of Z.

4.2. PRELIMINARIES 89

5. Apply the pivoted QR factorization to Z:,Πcol and let Qcol be the matrix of the

first r columns of the Q matrix. Similarly, apply the pivoted QR factorization

to Z˚Πrow,: and let Qrow be the matrix of the first r columns of the Q matrix.

6. We seek a middle matrix M such that Z « QcolMQ˚row. To solve this problem

efficiently, we approximately reduce it to a least-squares problem of a smaller

size. Let Scol and Srow be the index sets of a few extra randomly sampled columns

and rows. Let J “ Πcol Y Scol and I “ Πrow Y Srow. A simple least-squares

solution to the problem

min
M
‖ZI,J ´ pQcolqI,:MpQ

˚
rowq:,J‖

gives M “ pQcolq
:

I,:ZI,JpQ
˚
rowq

:

:,J , where p¨q: stands for the pseudo-inverse.

7. Compute an SVD M « UMΣMV
˚
M . Then the low-rank approximation of Z «

U0S0V
˚

0 is given by

U0 “ QcolUM , Σ0 “ ΣM , V ˚0 “ V ˚MQ
˚
row. (4.6)

We have not been able to quantify the error and success probability rigorously for

this procedure at this point. On the other hand, when the columns and rows of K are

incoherent with respect to “delta functions” (i.e., vectors that have only one signifi-

cantly larger entry), this procedure works well in our numerical experiments. Here, a

vector u is said to be incoherent with respect to a vector v if µ “ |uTv|{p‖u‖2 ‖v‖2q is

small. In the typical implementation, the multiplicative oversampling parameter q is

equal to 3 and Steps 2 and 3 are iterated no more than three times. These parameters

are empirically sufficient to achieve accurate low-rank approximations and are used

90 CHAPTER 4. BUTTERFLY FACTORIZATION

through out numerical examples.

As we mentioned above, for most applications the goal is to construct a low-rank

approximation up to a fixed relative error ε, rather than a fixed rank. This process

can also be embedded into an iterative process to achieve the desired accuracy.

4.3 One-dimensional butterfly factorization

This section presents the butterfly factorization algorithm for a matrix K P CNˆN

discretized from one-dimensional problems. For simplicity let X “ Ω “ t1, . . . , Nu.

The trees TX and TΩ are complete binary trees with L “ log2N ´ Op1q levels. We

assume that L is an even integer and the number of points in each leaf node of TX

and TΩ is bounded by a uniform constant.

At each level `, ` “ 0, . . . , L, we denote the ith node at level ` in TX as A`i for

i “ 0, 1, . . . , 2`´1 and the jth node at level L´` in TΩ asBL´`
j for j “ 0, 1, . . . , 2L´`´1.

These nodes naturally partition K into OpNq submatrices KA`i ,B
L´`
j

. For simplicity,

we write K`
i,j :“ KA`i ,B

L´`
j

, where the superscript is used to indicate the level (in TX).

The butterfly factorization utilizes rank-r approximations of all submatrices K`
i,j with

r “ Op1q.

The butterfly factorization of K is built in two stages. In the first stage, we

compute a rank-r approximations of each submatrix Kh
i,j at the level ` “ h “ L{2

and then organize them into an initial factorization:

K « UhMh
pV h

q
˚,

where Uh and V h are block diagonal matrices and Mh is a weighted permutation

matrix. This is referred as the middle level factorization and is described in detail

4.3. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 91

in Section 4.3.1.

In the second stage, we recursively factorize U ` « U ``1G` and pV `q˚ « pH`q˚pV ``1q˚

for ` “ h, h ` 1, . . . , L ´ 1, since U ` and pV `q˚ inherit the complementary low-rank

property from K, i.e., the low-rank property of U ` comes from the low-rank property

of K`
i,j and the low-rank property of V ` results from the one of KL´`

i,j . After this

recursive factorization, one reaches at the butterfly factorization of K

K « ULGL´1
¨ ¨ ¨GhMh

pHh
q
˚
¨ ¨ ¨ pHL´1

q
˚
pV L

q
˚, (4.7)

where all factors are sparse matrices with OpNq nonzero entries. We refer to this

stage as the recursive factorization and it is discussed in detail in Section 4.3.2.

4.3.1 Middle level factorization

The first step of the middle level factorization is to compute a rank-r approximation

to every Kh
i,j. Recall that we consider one of the following two cases.

Assumption 4.3.1.

(i) Only black-box routines for computing Kg and K˚g in OpN logNq operations

are given;

(ii) Only a black-box routine for evaluating any entry of the matrix K in Op1q op-

erations is given.

The actual computation of this step proceeds differently depending on which case

is under consideration. Through the discussion, m “ 2h “ OpN1{2q is the number

of nodes in the middle level h “ L{2 and we assume without loss of generality that

N{m is an integer.

92 CHAPTER 4. BUTTERFLY FACTORIZATION

• In the first case, the rank-r approximation of each Kh
i,j is constructed with the

SVD algorithm via random matrix-vector multiplication in Section 4.2.1. This

requires us to apply Kh
i,j and its adjoint to random Gaussian matrices of size

pN{mqˆpr`pq, where r is the desired rank and p is an oversampling parameter.

In order to take advantage of the fast algorithm for multiplying K, we construct

a matrix C of size N ˆmpr ` pq. C is partitioned into an m ˆm blocks with

each block Cij for i, j “ 0, 1, . . . ,m´1 of size pN{mqˆpr`pq. In additional, C

is block-diagonal and its diagonal blocks are random Gaussian matrices. This

is equivalent to applying each Kh
i,j to the same random Gaussian matrix Cjj

for all i. We then use the fast algorithm to apply K to each column of C and

store the results. Similarly, we form another random block diagonal matrix R

similar to C and use the fast algorithm of applying K˚ to R. This is equivalent

to applying each pKh
i,jq

˚ to an pN{mqˆ pr` pq Gaussian random matrix Rii for

all j “ 0, 1, . . . ,m´ 1. With Kh
i,jCjj and pKh

i,jq
˚Rii ready, we can compute the

rank-r approximate SVD of Kh
i,j following the procedure described in Section

4.2.1.

• In the second case, it is assumed that an arbitrary entry of K can be calculated

in Op1q operations. We simply apply the SVD algorithm via random sampling

in Section 4.2.2 to each Kh
i,j to construct a rank-r approximate SVD.

In either case, once the approximate SVD of Kh
i,j is ready, it is transformed in the

form

Kh
i,j « Uh

i,jS
h
i,jpV

h
j,iq

˚

following (4.3). We would like to emphasize that the columns of Uh
i,j and V h

j,i are

scaled with the singular values of the approximate SVD so that they keep track of

4.3. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 93

the importance of these columns in approximating Kh
i,j.

After calculating the approximate rank-r factorization of each Kh
i,j, we assemble

these factors into three block matrices Uh, Mh and V h as follows:

K «

¨

˚

˚

˚

˚

˚

˚

˚

˝

Uh
0,0S

h
0,0pV

h
0,0q

˚ Uh
0,1S

h
0,1pV

h
1,0q

˚ ¨ ¨ ¨ Uh
0,m´1S

h
0,m´1pV

h
m´1,0q

˚

Uh
1,0S

h
1,0pV

h
0,1q

˚ Uh
1,1S

h
1,1pV

h
1,1q

˚ Uh
1,m´1S

h
1,m´1pV

h
m´1,1q

˚

...
. . .

Uh
m´1,0S

h
m´1,0pV

h
0,m´1q

˚ Uh
m´1,1S

h
m´1,1pV

h
1,m´1q

˚ Uh
m´1,m´1S

h
m´1,m´1pV

h
m´1,m´1q

˚

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

Uh
0

Uh
1

. . .

Uh
m´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

Mh
0,0 Mh

0,1 ¨ ¨ ¨ Mh
0,m´1

Mh
1,0 Mh

1,1 Mh
1,m´1

...
. . .

Mh
m´1,0 Mh

m´1,1 Mh
m´1,m´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

pV h
0 q
˚

pV h
1 q
˚

. . .

pV h
m´1q

˚

˛

‹

‹

‹

‹

‹

‹

‹

‚

“UhMh
pV h

q
˚,

(4.8)

where

Uh
i “

´

Uh
i,0 Uh

i,1 ¨ ¨ ¨ Uh
i,m´1

¯

P CpN{mqˆmr,

V h
j “

´

V h
j,0 V h

j,1 ¨ ¨ ¨ V h
j,m´1

¯

P CpN{mqˆmr,
(4.9)

and Mh P Cpm2rqˆpm2rq is a weighted permutation matrix. Each submatrix Mh
i,j is

itself an m ˆm block matrix with block size r ˆ r where all blocks are zero except

that the pj, iq block is equal to the diagonal matrix Shi,j. It is obvious that there are

only OpNq nonzero entries in Mh. See Figure 4.1 for an example of a middle level

factorization of a 64ˆ 64 matrix with r “ 1.

94 CHAPTER 4. BUTTERFLY FACTORIZATION

≈

Figure 4.1: The middle level factorization of a 64ˆ64 complementary low-rank matrix
K « U3M3pV 3q˚ assuming r “ 1. Grey blocks indicate nonzero blocks. U3 and V 3

are block-diagonal matrices with 8 blocks. The diagonal blocks of U3 and V 3 are
assembled according to Equation (4.9) as indicated by black rectangles. M3 is a 8ˆ8
block matrix with each block M3

i,j itself an 8 ˆ 8 block matrix containing diagonal
weights matrix on the pj, iq block.

4.3.2 Recursive factorization

We will recursively factorize

U `
« U ``1G` (4.10)

for ` “ h, h` 1, . . . , L´ 1 and

pV `
q
˚
« pH`

q
˚
pV ``1

q
˚ (4.11)

for ` “ h, h ` 1, . . . , L ´ 1. After these recursive factorizations, we can obtain the

following butterfly factorization by substituting these factorizations into (4.8):

K « ULGL´1
¨ ¨ ¨GhMh

pHh
q
˚
¨ ¨ ¨ pHL´1

q
˚
pV L

q
˚. (4.12)

4.3. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 95

4.3.2.1 Recursive factorization of Uh

Each factorization at level ` in (4.10) results from the low-rank property of K`
i,j for

` ě L{2. When ` “ h, recall that

Uh
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

Uh
0

Uh
1

. . .

Uh
m´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

and

Uh
i “

´

Uh
i,0 Uh

i,1 ¨ ¨ ¨ Uh
i,m´1

¯

with each Uh
i,j P CpN{mqˆr. We split Uh

i and each Uh
i,j into halves by row, i.e.,

Uh
i “

¨

˚

˝

Uh,t
i

Uh,b
i

˛

‹

‚

and Uh
i,j “

¨

˚

˝

Uh,t
i,j

Uh,b
i,j

˛

‹

‚

,

where the superscript t denotes the top half and b denotes the bottom half of a matrix.

Then we have

Uh
i “

¨

˚

˝

Uh,t
i,0 Uh,t

i,1 . . . Uh,t
i,m´1

Uh,b
i,0 Uh,b

i,1 . . . Uh,b
i,m´1

˛

‹

‚

. (4.13)

Notice that, for each i “ 0, 1, . . . ,m´ 1 and j “ 0, 1, . . . ,m{2´ 1, the columns of

´

Uh,t
i,2j Uh,t

i,2j`1

¯

and
´

Uh,b
i,2j Uh,b

i,2j`1

¯

(4.14)

96 CHAPTER 4. BUTTERFLY FACTORIZATION

in (4.13) are in the column space of Kh`1
2i,j and Kh`1

2i`1,j, respectively. By the comple-

mentary low-rank property of the matrix K, Kh`1
2i,j and Kh`1

2i`1,j are numerical low-

rank. Hence
´

Uh,t
i,2j Uh,t

i,2j`1

¯

and
´

Uh,b
i,2j Uh,b

i,2j`1

¯

are numerically low-rank matrices

in CpN{2mqˆ2r. Compute their rank-r approximations by the standard truncated SVD,

transform it into the form of (4.5) and denote them as

´

Uh,t
i,2j Uh,t

i,2j`1

¯

« Uh`1
2i,j G

h
2i,j and

´

Uh,b
i,2j Uh,b

i,2j`1

¯

« Uh`1
2i`1,jG

h
2i`1,j (4.15)

for i “ 0, 1, . . . ,m ´ 1 and j “ 0, 1, . . . ,m{2 ´ 1. The matrices in (4.15) can be

assembled into two new sparse matrices, such that

Uh
« Uh`1Gh

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

Uh`1
0

Uh`1
1

. . .

Uh`1
2m´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

Gh
0

Gh
1

. . .

Gh
m´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

where

Uh`1
i “

´

Uh`1
i,0 Uh`1

i,1 ¨ ¨ ¨ Uh`1
i,m{2´1

¯

4.3. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 97

for i “ 0, 1, . . . , 2m´ 1, and

Gh
i “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Gh
2i,0

Gh
2i,1

. . .

Gh
2i,m{2´1

Gh
2i`1,0

Gh
2i`1,1

. . .

Gh
2i`1,m{2´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

for i “ 0, 1, . . . ,m´ 1.

Since there are Op1q nonzero entries in each Gh
i,j and there are OpNq such subma-

trices, there are only OpNq nonzero entries in Gh. See Figure 4.2 top for an example

of the factorization Uh « Uh`1Gh for the left factor Uh with L “ 6, h “ 3 and r “ 1

in Figure 4.1.

Similarly, for any ` between h and L´ 1, we can factorize U ` « U ``1G`, because

the columns in
´

U `,t
i,2j U `,t

i,2j`1

¯

and
´

U `,b
i,2j U `,b

i,2j`1

¯

are in the column space of the

numerically low-rank matrices K``1
2i,j and K``1

2i`1,j, respectively. Computing the rank-r

approximations via the standard truncated SVD and transforming them into the form

of (4.5) give

´

U `,t
i,2j U `,t

i,2j`1

¯

« U ``1
2i,j G

`
2i,j and

´

U `,b
i,2j U `,b

i,2j`1

¯

« U ``1
2i`1,jG

`
2i`1,j (4.16)

98 CHAPTER 4. BUTTERFLY FACTORIZATION

≈

=

≈

Figure 4.2: The recursive factorization of U3 in Figure 4.1. Gray factors are matrices
inheriting the complementary low-rank property. Top: left matrix: U3 with each di-
agonal block partitioned into smaller blocks according to Equation (4.13) as indicated
by black rectangles; middle-left matrix: low-rank approximations of submatrices in
U3 given by Equation (4.15); middle right matrix: U4; right matrix: G3. Bottom: U4

in the first row is further factorized into U4 « U5G4, giving U3 « U5G4G3.

4.3. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 99

for i “ 0, 1, . . . , 2` ´ 1 and j “ 0, 1, . . . , 2L´`´1 ´ 1. After assembling these factoriza-

tions together, we obtain

U `
« U ``1G`

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

U ``1
0

U ``1
1

. . .

U ``1
2``1´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˝

G`
0

G`
1

. . .

G`
2`´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

where

U ``1
i “

´

U ``1
i,0 U ``1

i,1 ¨ ¨ ¨ U ``1
i,2L´`´1´1

¯

for i “ 0, 1, . . . , 2``1 ´ 1, and

G`
i “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

G`
2i,0

G`
2i,1

. . .

G`
2i,2L´`´1´1

G`
2i`1,0

G`
2i`1,1

. . .

G`
2i`1,2L´`´1´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

for i “ 0, 1, . . . , 2` ´ 1.

After L´ h steps of recursive factorizations

U `
« U ``1G`

100 CHAPTER 4. BUTTERFLY FACTORIZATION

for ` “ h, h` 1, . . . , L´ 1, we obtain the recursive factorization of Uh as

Uh
« ULGL´1

¨ ¨ ¨Gh. (4.17)

See Figure 4.2 bottom for an example of a recursive factorization for the left factor

Uh with L “ 6, h “ 3 and r “ 1 in Figure 4.1.

Similar to the analysis of Gh, it is also easy to check that there are only OpNq

nonzero entries in each G` in (4.46). Since there are OpNq diagonal blocks in UL and

each block contains Op1q entries, there is OpNq nonzero entries in UL.

4.3.2.2 Recursive factorization of V h

The recursive factorization of V h is similar to the one of Uh. In each step of the

factorization

pV `
q
˚
« pH`

q
˚
pV ``1

q
˚,

we take advantage of the low-rank property of the row space of KL´`´1
i,2j and KL´`´1

i,2j`1 to

obtain rank-r approximations. Applying the exact same procedure of Section 4.3.2.1

now to V ` leads to the recursive factorization V h « V LHL´1 ¨ ¨ ¨Hh, or equivalently

pV h
q
˚
« pHh

q
˚
¨ ¨ ¨ pHL´1

q
˚
pV L

q
˚, (4.18)

with all factors containing only OpNq nonzero entries. See Figure 4.3 for an example

of a recursive factorization pV hq˚ « pHhq˚ ¨ ¨ ¨ pHL´2q˚pV L´1q˚ for the left factor V h

with L “ 6, h “ 3 and r “ 1 in Figure 4.1.

Given the recursive factorization of Uh and pV hq˚ in (4.46) and (4.18), we reach

4.3. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 101

=

Figure 4.3: The recursive factorization pV 3q˚ « pH3q˚pH4q˚pV 5q˚ of pV 3q˚ in Fig-
ure 4.1

the butterfly factorization

K « ULGL´1
¨ ¨ ¨GhMh

pHh
q
˚
¨ ¨ ¨ pHL´1

q
˚
pV L

q
˚, (4.19)

where all factors are sparse matrices with OpNq nonzero entries. For a given input

vector g P CN , the OpN2q matrix-vector multiplication u “ Kg can be approximated

by a sequence of OplogNq sparse matrix-vector multiplications given by the butterfly

factorization.

4.3.3 Complexity analysis

Following the construction algorithm of a butterfly factorization, the complexity anal-

ysis naturally consists of two parts: the middle level factorization and the recursive

factorization.

The complexity of the middle level factorization depends on which case of As-

sumption 4.3.1 is adopted.

• For the first case, the approximate SVDs are determined by the application

of K and K˚ to Gaussian random matrices in CNˆN1{2pr`pq and the rank-r

approximations of Kh
ij for each pi, jq pair. Assume that each matrix-vector

102 CHAPTER 4. BUTTERFLY FACTORIZATION

multiplication by K or K˚ via the given black-box routines requires OpCKpNqq

operations (which is at least OpNq). Then the dominant cost is due to applying

K and K˚ OpN1{2q times, which yields an overall computational complexity of

OpCKpNqN
1{2q.

• In the second case, the approximate SVDs are computed via random sampling

for each Kh
ij of the OpNq pairs pi, jq. The complexity of performing random

sampling for each such block is OpN1{2q. Hence, the overall computational

complexity is OpN3{2q.

In the recursive factorization, U ` at level ` consists of Op2`q diagonal blocks of

size OpN{2`q ˆ OpN{2`q. In each diagonal block, there are OpN{2`q factorizations

in (4.45). Since the operation complexity of performing one factorization in (4.45) is

OpN{2`q, it takes OpN2{2`q operations to factorize U `. Summing up the operations

at all levels gives the total complexity for recursively factorizing Uh:

L´1
ÿ

`“h

OpN2
{2`q “ OpN3{2

q. (4.20)

Similarly, the operation complexity for recursively compressing V h is also OpN3{2q.

The memory peak of the butterfly factorization occurs in the middle level factor-

ization since we have to store the initial factorization in (4.8). There are OpN3{2q

nonzero entries in Uh and V h, and OpNq in Mh. Hence, the total memory com-

plexity is OpN3{2q. The total operation complexity for constructing the butterfly

factorization is summarized in Table 4.1.

It is worth pointing out that the memory complexity can be reduced toOpN logNq,

when we apply the random sampling method to construct each block in the initial

factorization in (4.8) separately. Instead of factorizing Uh and V h at the end of the

4.3. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 103

Randomized
SVD

Randomized
sampling

Factorization
Complexity

Middle level
factorization

OpCKpNqN
1{2q OpN3{2q

Recursive
factorization

OpN3{2q

Total OpCKpNqN
1{2q OpN3{2q

Memory
Complexity

OpN3{2q OpN logNq

Application
Complexity

OpN logNq

Table 4.1: Computational complexity and memory complexity of the butterfly factor-
ization. CKpNq is the operation complexity of one application of K or K˚. In most
of the cases encountered, CKpNq “ OpN logNq.

middle level factorization, we can factorize the left and right factors Uh
i and V h

i in

(4.8) on the fly to avoid storing all factors in (4.8). For a fixed i, we generate Uh
i

from Kh
ij for all j, and recursively factorize Uh

i . The memory cost is OpNq for storing

Uh
i and OpN1{2 logNq for storing the sparse matrices after its recursive factoriza-

tion. Repeating this process for i “ 1, . . . , N1{2 gives the complete factorization of

Uh. The factorization of V h is conducted similarly. The total memory complexity is

OpN logNq.

The operation and memory complexity for the application of the butterfly factor-

ization are governed by the number of nonzero entries in the factorization: OpN logNq.

4.3.4 Numerical results

This section presents three numerical examples to demonstrate the effectiveness of

the algorithms proposed above. The first example is an FIO in [17] and the second

example is a special function transform in [75]. Both examples provide an explicit

104 CHAPTER 4. BUTTERFLY FACTORIZATION

kernel function that becomes a one-dimensional complementary low-rank matrix af-

ter discretization. This allows us to apply the butterfly factorization construction

algorithm with random sampling. The computational complexity and the memory

cost are OpN3{2q and OpN logNq in this case.

The third example is a composition of two FIOs for which an explicit kernel

function of their composition is not available. Since we can apply either the butterfly

algorithm in [17] or the butterfly factorization to evaluate these FIOs one by one,

a fast algorithm for computing the composition is available. We apply the butterfly

factorization construction algorithm with random matrix-vector multiplication to this

example which requires OpN3{2 logNq operations and OpN3{2q memory cost.

Our implementation is in MATLAB. The numerical results were obtained on a

server computer with a 2.0 GHz CPU. The additive oversampling parameter is p “ 5

and the multiplicative oversampling parameter is q “ 3.

Let tudpxq, x P Xu and tuapxq, x P Xu denote the results given by the direct

matrix-vector multiplication and the butterfly factorization. The accuracy of applying

the butterfly factorization algorithm is estimated by the following relative error

εa “

g

f

f

e

ř

xPS |u
apxq ´ udpxq|2

ř

xPS |u
dpxq|2

, (4.21)

where S is a point set of size 256 randomly sampled from X.

Example 1. This example is to evaluate a one-dimensional FIO of the following

form:

upxq “

ż

R
e2πıΦpx,ξq

pfpξqdξ, (4.22)

4.3. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 105

where pf is the Fourier transform of f , and Φpx, ξq is a phase function given by

Φpx, ξq “ x ¨ ξ ` cpxq|ξ|, cpxq “ p2` sinp2πxqq{8. (4.23)

The discretization of (4.22) is

upxiq “
ÿ

ξj

e2πıΦpxi,ξjq
pfpξjq, i, j “ 1, 2, . . . , N, (4.24)

where txiu and tξju are uniformly distributed points in r0, 1q and r´N{2, N{2q fol-

lowing

xi “ pi´ 1q{N and ξj “ j ´ 1´N{2. (4.25)

(4.24) can be represented in a matrix form as u “ Kg, where ui “ upxiq, Kij “

e2πıΦpxi,ξjq and gj “ pfpξjq. The matrix K satisfies the complementary low-rank prop-

erty as proved in [17, 60]. The explicit kernel function of K allows us to use the

construction algorithm with random sampling. Table 4.2 summarizes the results of

this example for different grid sizes N and truncation ranks r.

Example 2. Next, we provide an example of a special function transform. This

example can be further applied to accelerate the Fourier-Bessel transform that is

important in many real applications. Following the standard notation, we denote the

Hankel function of the first kind of order m by H
p1q
m . When m is an integer, H

p1q
m

has a singularity at the origin and a branch cut along the negative real axis. We are

interested in evaluating the sum of Hankel functions over different orders,

upxiq “
N
ÿ

j“1

H
p1q
j´1pxiqgj, i “ 1, 2, . . . , N, (4.26)

106 CHAPTER 4. BUTTERFLY FACTORIZATION

N, r εa TFactorpminq Tdpsecq Tapsecq Td{Ta

1024,4 2.49e-05 2.92e-01 2.30e-01 3.01e-02 7.65e+00
4096,4 4.69e-05 1.62e+00 2.64e+00 4.16e-02 6.35e+01

16384,4 5.77e-05 1.22e+01 2.28e+01 1.84e-01 1.24e+02
65536,4 6.46e-05 8.10e+01 2.16e+02 1.02e+00 2.12e+02

262144,4 7.13e-05 4.24e+02 3.34e+03 4.75e+00 7.04e+02

1024,6 1.57e-08 1.81e-01 1.84e-01 1.20e-02 1.54e+01
4096,6 3.64e-08 1.55e+00 2.56e+00 6.42e-02 3.98e+01

16384,6 6.40e-08 1.25e+01 2.43e+01 3.01e-01 8.08e+01
65536,6 6.53e-08 9.04e+01 2.04e+02 1.77e+00 1.15e+02

262144,6 6.85e-08 5.45e+02 3.68e+03 8.62e+00 4.27e+02

1024,8 5.48e-12 1.83e-01 1.78e-01 1.63e-02 1.09e+01
4096,8 1.05e-11 1.98e+00 2.71e+00 8.72e-02 3.11e+01

16384,8 2.09e-11 1.41e+01 3.34e+01 5.28e-01 6.33e+01
65536,8 2.62e-11 1.17e+02 2.10e+02 2.71e+00 7.75e+01

262144,8 4.13e-11 6.50e+02 3.67e+03 1.52e+01 2.42e+02

Table 4.2: Numerical results for the FIO given in (4.24). N is the size of the matrix;
r is the fixed rank in the low-rank approximations; TFactor is the factorization time of
the butterfly factorization; Td is the running time of the direct evaluation; Ta is the
application time of the butterfly factorization; Td{Ta is the speedup factor.

4.3. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 107

which is analogous to expansion in orthogonal polynomials. The points xi are defined

via the formula,

xi “ N `
2π

3
pi´ 1q (4.27)

which are bounded away from zero. It is demonstrated in [75] that (4.26) can be

represented via u “ Kg where K satisfies the complementary low-rank property,

ui “ upxiq and Kij “ H
p1q
j´1pxiq. The entries of matrix K can be calculated efficiently

and the construction algorithm with random sampling is applied to accelerate the

evaluation of the sum (4.26). Table 4.3 summarizes the results of this example for

different grid sizes N and truncation ranks r.

N, r εa TFactorpminq Tdpsecq Tapsecq Td{Ta

1024,4 2.35e-06 8.78e-01 8.30e-01 1.06e-02 7.86e+01
4096,4 5.66e-06 5.02e+00 5.30e+00 2.83e-02 1.87e+02

16384,4 6.86e-06 3.04e+01 5.51e+01 1.16e-01 4.76e+02
65536,4 7.04e-06 2.01e+02 7.59e+02 6.38e-01 1.19e+03

1024,6 2.02e-08 4.31e-01 7.99e-01 9.69e-03 8.25e+01
4096,6 4.47e-08 6.61e+00 5.41e+00 4.52e-02 1.20e+02

16384,6 5.95e-08 4.19e+01 5.62e+01 1.61e-01 3.48e+02
65536,6 7.86e-08 2.76e+02 7.60e+02 1.01e+00 7.49e+02

Table 4.3: Numerical results with the matrix given by (4.26).

From Table 4.2 and 4.3, we note that the accuracy of the butterfly factorization

is well controlled by the max rank r. For a fixed rank r, the accuracy is almost

independent of N . In practical applications, one can set the desired ε ahead and

increase the truncation rank r until the relative error reaches ε.

The tables for Example 1 and Example 2 also provide numerical evidence for the

asymptotic complexity of the proposed algorithms. The construction algorithm based

on random sampling is of computational complexity OpN3{2q. When we quadruple

108 CHAPTER 4. BUTTERFLY FACTORIZATION

the problem size, the running time of the construction sextuples and is better than

we expect. The reason is that in the random sampling method, the computation

of a middle matrix requires pseudo-inverses of r ˆ r matrices whose complexity is

Opr3q with a large prefactor. Hence, when N is not large, the running time will be

dominated by the Opr3Nq computation of middle matrices. The numbers also show

that the application complexity of the butterfly factorization is OpN logNq with a

prefactor much smaller than the butterfly algorithm with Chebyshev interpolation

[17]. In example 1, when the relative error is ε « 10´5, the butterfly factorization

truncates the low-rank submatrices with rank 4 whereas the butterfly algorithm with

Chebyshev interpolation uses 9 Chebyshev grid points. The speedup factors are 200

on average.

Example 3. In this last example, we consider a composition of two FIOs, which is

the discretization of the following operator

upxq “

ż

R
e2πıΦ2px,ηq

ż

R
e´2πıyη

ż

R
e2πıΦ1py,ξq

pfpξqdξdydη. (4.28)

For simplicity, we consider the same phase function Φ1 “ Φ2 “ Φ as given by (4.23).

By the discussion of Example 1 for one FIO, we know the discrete analog of the

composition (4.28) can be represented as

u “ KFKFf “: KFKg, with g “ Ff,

where F is the standard Fourier transform in matrix form, K is the same matrix as in

Example 1, ui “ upxiq, and gj “ pfpξjq. Under mild assumptions as discussed in [52],

the composition of two FIOs is an FIO. Hence, the new kernel matrix K̃ “ KFK

4.3. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 109

again satisfies the complementary low-rank property, though typically with slightly

increased ranks.

Notice that it is not reasonable to compute the matrix K̃ directly. However, we

have the fast Fourier transform (FFT) to apply F and the butterfly factorization that

we have built for K in Example 1 to apply K. Therefore, the construction algorithm

with random matrix-vector multiplication is applied to factorize K̃.

Since the direct evaluation of each ui takes OpN2q operations, the exact solution

tudi uiPS for a selected set S is infeasible for large N . We apply the butterfly factoriza-

tion of K and the FFT to evaluate tuiuiPS as an approximation to the exact solution

tudi uiPS. These approximations are compared to the results tuai uiPS that are given by

applying the butterfly factorization of K̃. Table 4.4 summarizes the results of this

example for different grid sizes N and truncation ranks r.

N, r εa TFactorpminq Tdpsecq Tapsecq Td{Ta

1024,4 1.40e-02 3.26e-01 3.64e-01 4.74e-03 7.69e+01
4096,4 1.96e-02 4.20e+00 6.59e+00 2.52e-02 2.62e+02

16384,4 2.34e-02 4.65e+01 3.75e+01 1.15e-01 3.25e+02
65536,4 2.18e-02 4.33e+02 3.73e+02 6.79e-01 5.49e+02

1024,8 6.62e-05 3.65e-01 3.64e-01 8.25e-03 4.42e+01
4096,8 8.67e-05 4.94e+00 6.59e+00 5.99e-02 1.10e+02

16384,8 1.43e-04 6.23e+01 3.75e+01 3.47e-01 1.08e+02
65536,8 1.51e-04 6.91e+02 3.73e+02 1.76e+00 2.12e+02

1024,12 1.64e-08 4.79e-01 3.64e-01 1.48e-02 2.46e+01
4096,12 1.05e-07 6.35e+00 6.59e+00 1.12e-01 5.88e+01

16384,12 2.55e-07 7.58e+01 3.75e+01 7.64e-01 4.91e+01
65536,12 2.69e-07 7.63e+02 3.73e+02 4.39e+00 8.49e+01

Table 4.4: Numerical results for the composition of two FIOs.

Table 4.4 shows the numerical results of the butterfly factorization of K̃. The

accuracy improves as we increase the truncation rank r. Comparing Table 4.4 with

110 CHAPTER 4. BUTTERFLY FACTORIZATION

Table 4.2, we notice that, for a fixed accuracy, the rank used in the butterfly factor-

ization of the composition of FIOs should be larger than the rank used in a single

FIO butterfly factorization. This is expected since the composition is in general more

complicated than the individual FIOs. TFactor grows on average by a factor of ten

when we quadruple the problem size. This agrees with the estimated OpN3{2 logNq

computational complexity for constructing the butterfly factorization. The column Ta

shows that the empirical application time of our factorization is close to the estimated

complexity OpN logNq.

4.4 Multidimensional butterfly factorization

4.4.1 Two-dimensional butterfly factorization

This section presents the two-dimensional butterfly factorization for a kernel matrix

K “ pKpx, ξqqxPX,ξPΩ that satisfies the complementary low-rank property in X ˆ Ω

with X and Ω given in (3.2) and (3.3). One particular example to keep in mind is the

Fourier transform. The Fourier operators, as shown in [75], satisfy the complementary

low-rank property throughout the domain in any dimension. Therefore, the two-

dimensional butterfly factorization can be applied to Fourier transform. Once the

factorization is constructed, the application of the Fourier transform is almost linear

scaling and fully scalable in any dimension.

4.4.1.1 Notations and overall structure

We adopt the notation of the one-dimensional butterfly factorization introduced in

Section 4.3 and adjust them to the two-dimensional case of this chapter.

Recall that n is the number of grid points on each dimension and N “ n2 is

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 111

the total number of points. Suppose that TX and TΩ are complete quadtrees with

L “ log n levels and, without loss of generality, L is an even integer. For a fixed

level ` between 0 and L, the quadtree TX has 4` nodes at level `. By defining

I` “ t0, 1, . . . , 4` ´ 1u, we denote these nodes by A`i with i P I`. These 4` nodes

at level ` are further ordered according to a Z-order curve (or Morton order) as

illustrated in Figure 4.4. Based on this Z-ordering, the node A`i at level ` has four

child nodes denoted by A``1
4i`t with t “ 0, . . . , 3. The nodes plotted in Figure 4.4 for

` “ 1 (middle) and ` “ 2 (right) illustrate the relationship between the parent node

and its child nodes. Similarly, in the quadtree TΩ, the nodes at the L ´ ` the are

denoted as BL´`
j for j P IL´`.

For any level ` between 0 and L, the kernel matrix K can be partitioned into OpNq

submatrices KA`i ,B
L´`
j

:“ pKpx, ξqqxPA`i ,ξPB
L´`
j

for i P I` and j P IL´`. For simplicity,

we shall denote KA`i ,B
L´`
j

as K`
i,j, where the superscript ` denotes the level in the

quadtree TX . Because of the complementary low-rank property, every submatrix K`
i,j

is numerically low-rank with the rank bounded by a uniform constant r independent

of N .

The two-dimensional butterfly factorization consists of two stages. The first stage

computes the factorizations

Kh
i,j « Uh

i,jS
h
i,j

`

V h
j,i

˘˚

for all i, j P Ih at the middle level h “ L{2, following the form (4.3). These factoriza-

tions can then be assembled into three sparse matrices Uh, Mh, and V h to give rise

to a factorization for K:

K « UhMh
`

V h
˘˚
. (4.29)

112 CHAPTER 4. BUTTERFLY FACTORIZATION

A0
0

x2

x1

A1
2

A1
0

A1
3

A1
1

x2

x1

A2
0 A2

1

A2
2 A2

3

A2
4 A2

5

A2
6 A2

7

A2
8 A2

9

A2
10 A2

11

A2
12 A2

13

A2
14 A2

15

x2

x1

Figure 4.4: An illustration of Z-order curve cross levels. The superscripts indicate the
different levels while the subscripts indicate the index in the Z-ordering. The light
gray lines show the ordering among the subdomains on the same level. Left: The
root at level 0. Middle: At level 1, the domain A0

0 is divided into 2 ˆ 2 subdomains
A1
i with i P I1 “ t0, 1, 2, 3u. These 4 subdomains are ordered according to the Z-

ordering. Right: At level 2, the domain A0
0 is divided into 4ˆ 4 subdomains A2

i with
i P I2 “ t0, 1, . . . , 15u. These 16 subdomains are ordered similarly.

This stage is referred to as the middle level factorization and is described in Section

4.4.1.2. In the second stage, we recursively factorize the left and right factors Uh and

V h to obtain

Uh
« ULGL´1

¨ ¨ ¨Gh and
`

V h
˘˚
«
`

Hh
˘˚
¨ ¨ ¨

`

HL´1
˘˚ `

V L
˘˚
,

where the matrices on the right hand side in each formula are sparse matrices with

OpNq nonzero entries. Once they are ready, we assemble all factors together to

produce a data-sparse approximate factorization for K:

K « ULGL´1
¨ ¨ ¨GhMh

`

Hh
˘˚
¨ ¨ ¨

`

HL´1
˘˚ `

V L
˘˚
, (4.30)

This stage is referred to as the recursive factorization and is discussed in Section

4.4.1.3.

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 113

4.4.1.2 Middle level factorization

We consider the construction of the multidimensional butterfly factorization for two

cases in Assumption 4.3.1, where K is now the kernel matrix for two-dimensional

problems.

In Case (i), we construct an approximate rank-r SVD of each Kh
i,j P Rnˆn with

i, j P Ih using the SVD via random matrix-vector multiplication (Section 4.2.1). This

requires applying each Kh
i,j to a Gaussian random matrix Cj P Cnˆpr`kq and its adjoint

to a Gaussian random matrix Ri P Cpr`kqˆn. Here r is the desired numerical rank and

k is the oversampling parameter. If a black box routine for applying the matrix K

and its adjoint is available, this can be done in an efficient way as follows. For each

j P Ih, one constructs a zero-padded random matrix CP
j P CNˆpr`kq by padding zero

to Cj. From the relationship

KCP
j “ K

¨

˚

˚

˚

˝

0

Cj

0

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

Kh
0,jCj
...

Kh
4h´1,j

Cj

˛

‹

‹

‹

‚

, (4.31)

it is clear that applying K to the matrix CP
j produces Kh

i,jCj for all i P Ih. Similarly,

we construct zero-padded random matrices RP
i P CNˆpr`kq by padding zero to Ri and

compute

K˚RP
i “ K˚

¨

˚

˚

˚

˝

0

Ri

0

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

`

Kh
i,0

˘˚
Ri

...
´

Kh
i,4h´1

¯˚

Ri

˛

‹

‹

‹

‹

‚

(4.32)

by using the black-box routine for applying the adjoint of K. Finally, the approxi-

mated rank-r SVD of Kh
i,j for each pair of i P Ih and j P Ih is computed from Kh

i,jCj

114 CHAPTER 4. BUTTERFLY FACTORIZATION

and
`

Kh
i,j

˘˚
Ri.

In Case (ii), since an arbitrary entry of K can be evaluated in Op1q operations,

the approximate rank-r SVD of Kh
i,j is computed using the SVD via random sampling

(Section 4.2.2).

In both cases, once the approximate rank-r SVD is ready, we transform it into

the form of (4.3):

Kh
i,j « Uh

i,jS
h
i,j

`

V h
j,i

˘˚
. (4.33)

Here the columns of the left and right factors Uh
i,j and V h

j,i are scaled by the singular

values of Kh
i,j such that Uh

i,j and V h
j,i keep track of the importance of the column and

row bases for further factorizations.

≈

Figure 4.5: The middle level factorization of a complementary low-rank matrix K «

U2M2pV 2q˚ where N “ n2 “ 42 and r “ 1. Grey blocks indicate nonzero blocks.
U2 and V 2 are block-diagonal matrices with 4 blocks. The diagonal blocks of U2

and V 2 are assembled according to Equation (4.35) and (4.36) as indicated by gray
rectangles. M2 is a 4ˆ4 block matrix with each block M2

i,j itself being an 4ˆ4 block
matrix containing diagonal weight matrix on the pj, iq block.

After computing the rank-r factorization in (4.33) for all i and j in Ih, we assemble

all left factors Uh
i,j into a matrix Uh, all middle factors into a matrix Mh, and all right

factors into a matrix V h so that

K « UhMh
pV h

q
˚. (4.34)

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 115

Here Uh is a block diagonal matrix of size N ˆ rN with n diagonal blocks Uh
i of size

nˆ rn:

Uh
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

Uh
0

Uh
1

. . .

Uh
4h´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

where each diagonal block Uh
i consists of the left factors Uh

i,j for all j as follows:

Uh
i “

´

Uh
i,0 Uh

i,1 ¨ ¨ ¨ Uh
i,4h´1

¯

P Cnˆrn. (4.35)

Similarly, V h is a block diagonal matrix of size N ˆ rN with n diagonal blocks V h
j of

size nˆ rn, where each diagonal block V h
j consists of the right factors V h

j,i for all i as

follows:

V h
j “

´

V h
j,0 V h

j,1 ¨ ¨ ¨ V h
j,4h´1

¯

P Cnˆrn. (4.36)

The middle matrix Mh P CrNˆrN is an n ˆ n block matrix. The pi, jq-th block

Mh
i,j P Crnˆrn is itself an n ˆ n block matrix. The only nonzero block of Mh

i,j is the

pj, iq-th block, which is equal to the r ˆ r matrix Shi,j, and the other blocks of Mh
i,j

are zero. We refer to Figure 4.5 for a simple example of the middle level factorization

when N “ 42.

4.4.1.3 Recursive factorization

In this section, we shall discuss how to recursively factorize

U `
« U ``1G` (4.37)

116 CHAPTER 4. BUTTERFLY FACTORIZATION

and

pV `
q
˚
« pH`

q
˚
pV ``1

q
˚ (4.38)

for ` “ h, h` 1, . . . , L´ 1. After these recursive factorizations, we can construct the

two-dimensional butterfly factorization

K « ULGL´1
¨ ¨ ¨GhMh

`

Hh
˘˚
¨ ¨ ¨

`

HL´1
˘˚ `

V L
˘˚

(4.39)

by substituting these recursive factorizations into (4.34).

Let us first consider the recursive factorization of Uh.

In the middle level factorization, we utilized the low-rank property of Kh
i,j, the

kernel matrix restricted in the domain Ahi ˆB
h
j P TX ˆTΩ, to obtain Uh

i,j for i, j P Ih.
We shall now use the complementary low-rank property at level ` “ h ` 1, i.e., the

matrix Kh`1
i,j restricted in Ah`1

i ˆ Bh´1
j P TX ˆ TΩ is numerical low-rank for i P Ih`1

and j P Ih´1. These factorizations of the column bases from level h generate the

column bases at level h ` 1 through the following four steps: splitting, merging,

truncating, and assembling.

Splitting. In the middle level factorization, we have constructed

Uh
“

¨

˚

˚

˚

˚

˚

˚

˚

˝

Uh
0

Uh
1

. . .

Uh
4h´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

with Uh
i “

´

Uh
i,0 Uh

i,1 ¨ ¨ ¨ Uh
i,4h´1

¯

P Cnˆrn,

where each Uh
i,j P Cnˆr. Each node Ahi in the quadtree TX on the level h has four

child nodes on the level h`1, denoted by tAh`1
4i`tut“0,1,2,3. According to this structure,

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 117

one can split Uh
i,j into four parts in the row space,

Uh
i,j “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Uh,0
i,j

Uh,1
i,j

Uh,2
i,j

Uh,3
i,j

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (4.40)

where Uh,t
i,j approximately spans the column space of the submatrix of K restricted

to Ah`1
4i`t ˆ Bh

j for each t “ 0, . . . , 3. Combining this with the definition of Uh
i gives

rise to

Uh
i “

´

Uh
i,0 Uh

i,1 ¨ ¨ ¨ Uh
i,4h´1

¯

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Uh,0
i,0 Uh,0

i,1 . . . Uh,0
i,4h´1

Uh,1
i,0 Uh,1

i,1 . . . Uh,1
i,4h´1

Uh,2
i,0 Uh,2

i,1 . . . Uh,2
i,4h´1

Uh,3
i,0 Uh,3

i,1 . . . Uh,3
i,4h´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Uh,0
i

Uh,1
i

Uh,2
i

Uh,3
i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (4.41)

where Uh,t
i approximately spans the column space of the matrix K restricted to Ah`1

4i`tˆ

Ω.

Merging. The merging step merges adjacent matrices Uh,t
i,j in the column space to

obtain low-rank matrices. For any i P Ih and j P Ih´1, the merged matrix

´

Uh,t
i,4j`0 Uh,t

i,4j`1 Uh,t
i,4j`2 Uh,t

i,4j`3

¯

P Cn{4ˆ4r (4.42)

approximately spans the column space of Kh`1
4i`t,j corresponding to the domain Ah`1

4i`tˆ

Bh´1
j . By the complementary low-rank property of the matrix K, we know Kh`1

4i`t,j

118 CHAPTER 4. BUTTERFLY FACTORIZATION

is numerically low-rank. Hence, the matrix in (4.42) is also a numerically low-rank

matrix. This is the merging step equivalent to moving from level h to level h ´ 1 in

TΩ.

Truncating. The third step computes its rank-r approximation using the standard

truncated SVD and putting it to the form of (4.4). For each i P Ih and j P Ih´1, the

factorization

´

Uh,t
i,4j`0 Uh,t

i,4j`1 Uh,t
i,4j`2 Uh,t

i,4j`3

¯

« Uh`1
4i`t,jG

h
4i`t,j, (4.43)

defines Uh`1
4i`t,j P Cn{4ˆr and Gh

4i`t,j P Crˆ4r.

Assembling In the final step, we construct the factorization Uh « Uh`1Gh using

(4.43). Since Ih`1 is the same as t4i ` tuiPIh,t“0,1,2,3, one can arrange (4.43) for all i

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 119

and j into a single formula as follows:

Uh
« Uh`1Gh

“
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Uh`1
0

. . .

Uh`1
3

Uh`1
4

. . .

Uh`1
7

. . .

Uh`1
4h`1´4

. . .

Uh`1
4h`1´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Gh
0

...

Gh
3

Gh
4

...

Gh
7

. . .

Gh
4h`1´4

...

Gh
4h`1´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where the blocks are given by

Uh`1
i “

´

Uh`1
i,0 Uh`1

i,1 ¨ ¨ ¨ Uh`1
i,4h´1´1

¯

and

Gh
i “

¨

˚

˚

˚

˚

˚

˚

˚

˝

Gh
i,0

Gh
i,1

. . .

Gh
i,4h´1´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

for i P Ih`1. Figure 4.6 shows a toy example of the recursive factorization of Uh when

N “ 42, h “ 2 and r “ 1. Since there are Op1q nonzero entries in each Gh
i,j and

Op4h`1 ¨ 4h´1q “ OpNq such matrices, there are only OpNq nonzero entries in Gh.

120 CHAPTER 4. BUTTERFLY FACTORIZATION

≈

=

Figure 4.6: The recursive factorization of U2 in Figure 4.5. Left matrix: U2 with
each diagonal block partitioned into smaller blocks according to Equation (4.40) as
indicated by black rectangles; Middle-left matrix: low-rank approximations of sub-
matrices in U2 given by Equation (4.43); Middle right matrix: U3; Right matrix:
G2.

In a similar way, we can now factorize U ` « U ``1G` for h ă ` ď L´ 1. As before,

the key point is that the columns of

´

U `,t
i,4j`0 U `,t

i,4j`1 U `,t
i,4j`2 U `,t

i,4j`3

¯

(4.44)

approximately span the column space of K``1
4i`t,j, which is of rank r numerically due

to the complementary low-rank property. Computing its rank-r approximation via

the standard truncated SVD results in a form of (4.4)

´

U `,t
i,4j`0 U `,t

i,4j`1 U `,t
i,4j`2 U `,t

i,4j`3

¯

« U ``1
4i`t,jG

`
4i`t,j (4.45)

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 121

for i P I` and j P IL´`´1. After assembling these factorizations together, we obtain

U `
« U ``1G`

“
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

U ``1
0

. . .

U ``1
3

U ``1
4

. . .

U ``1
7

. . .

U ``1
4``1´4

. . .

U ``1
4``1´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

G`
0

...

G`
3

G`
4

...

G`
7

. . .

G`
4``1´4

...

G`
4``1´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where

U ``1
i “

´

U ``1
i,0 U ``1

i,1 ¨ ¨ ¨ U ``1
i,4L´`´1´1

¯

and

G`
i “

¨

˚

˚

˚

˚

˚

˚

˚

˝

G`
i,0

G`
i,1

. . .

G`
i,4L´`´1´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

for i P I``1.

After the L´h step of recursive factorizations U ` « U ``1G` for ` “ h, h`1, . . . , L´

1, the recursive factorization of Uh takes the following form:

Uh
« ULGL´1

¨ ¨ ¨Gh. (4.46)

122 CHAPTER 4. BUTTERFLY FACTORIZATION

Similarly to the analysis of Gh, it is also easy to check that there are only OpNq

nonzero entries in each G` in (4.46). As to the first factor UL, it has OpNq nonzero

entries since there are OpNq diagonal blocks in UL and each block contains Op1q

entries.

Now we analogically conduct the recursive factorization of V h.

The recursive factorization of V ` is similar to that of U ` for ` “ h, h`1, . . . , L´1.

At each level `, we benefit from the fact that

´

V `,t
j,4i`0 V `,t

j,4i`1 V `,t
j,4i`2 V `,t

j,4i`3

¯

approximately spans the row space of KL´`´1
i,4j`t and hence is numerically low-rank for

j P IL´` and i P I`´1. Applying the same procedure to V h leads to

V h
« V LHL´1

¨ ¨ ¨Hh. (4.47)

4.4.1.4 Complexity analysis

By combining the results of the middle level factorization in (4.34) and the recursive

factorizations in (4.46) and (4.47), we obtain the final butterfly factorization

K « ULGL´1
¨ ¨ ¨GhMh

`

Hh
˘˚
¨ ¨ ¨

`

HL´1
˘˚ `

V L
˘˚
, (4.48)

each factor of which contains OpNq nonzero entries. We refer to Figure 4.7 for an

illustration of the butterfly factorization of K when N “ 162.

The complexity of constructing the butterfly factorization comes from two parts:

the middle level factorization and the recursive factorization. For the middle level

factorization, the construction cost is different depending on which of the two cases

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 123

≈

≈

≈

Figure 4.7: A full butterfly factorization for a two-dimensional problem of size 162

and fixed rank r “ 1. The above figure visualizes the matrices in K « U3M3pV 3q˚ «

U4G3M3pH3q˚pV 4q˚ « U5G4G3M3pH3q˚pH4q˚pV 5q˚.

124 CHAPTER 4. BUTTERFLY FACTORIZATION

mentioned in Assumption 4.3.1 is under consideration, since they use different ap-

proaches in constructing rank-r SVDs at the middle level.

• In Case (i), the dominant cost is to apply K and K˚ to N1{2 Gaussian random

matrices of size N ˆ Op1q. Assuming that the given black-box routine for

applying K and K˚ to a vector takes OpCKpNqq operations, the total operation

complexity is OpCKpNqN
1{2q.

• In Case (ii), we apply the SVD procedure with random sampling to N subma-

trices of size N1{2ˆN1{2. Since the operation complexity for each submatrix is

OpN1{2q, the overall complexity is OpN3{2q.

In the recursive factorization stage, most of the work comes from factorizing Uh

and V h. There are OplogNq stages appeared in the factorization of Uh. At the `

stage, the matrix U ` to be factorized consists of 4` diagonal blocks. There are OpNq

factorizations and each factorization takes OpN{4`q operations. Hence, the operation

complexity to factorize U ` is OpN2{4`q. Summing up all the operations in each step

yields the overall operation complexity for recursively factorizing Uh:

L´1
ÿ

`“h

OpN2
{4`q “ OpN3{2

q. (4.49)

The peak of the memory usage of the butterfly factorization is due to the middle

level factorization where we need to store the results of OpNq factorizations of size

OpN1{2q. Hence, the memory complexity for the two-dimensional butterfly factor-

ization is OpN3{2q. For Case (ii), one can actually do better by following the same

argument in [59]. One can interleave the order of generation and recursive factoriza-

tion of Uh
i,j and V h

j,i. By factorizing Uh
i,j and V h

j,i individually instead of formulating

(4.34), the memory complexity in Case (ii) can be reduced to OpN logNq.

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 125

The cost of applying the butterfly factorization is equal to the number of nonzero

entries in the final factorization, which is OpN logNq. Table 4.5 summarizes the

complexity analysis for the two-dimensional butterfly factorization. Comparing Ta-

ble 4.1 and Table 4.5, we find that the complexity for multidimensional butterfly

factorization is actually the same as the one-dimensional butterfly factorization.

SVD via rand. matvec SVD via rand. sampling

Factorization
Complexity

Middle level
factorization

OpCKpNqN
1{2q OpN3{2q

Recursive
factorization

OpN3{2q

Total OpCKpNqN
1{2q OpN3{2q

Memory
Complexity

OpN3{2q OpN logNq

Application
Complexity

OpN logNq

Table 4.5: The time and memory complexity of the two-dimensional butterfly fac-
torization. Here CKpNq is the complexity of applying the matrices K and K˚ to a
vector. For most butterfly algorithms, CKpNq “ OpN logNq.

4.4.1.5 Extensions

We have introduced the two-dimensional butterfly factorization for a complementary

low-rank kernel matrix K in the entire domain X ˆ Ω. Although we have assumed

the uniform grid in (3.2) and (3.3), the butterfly factorization extends naturally to

more general settings.

In the case with non-uniform point sets X or Ω, one can still construct a butterfly

factorization for K following the same procedure. More specifically, we still construct

two trees TX and TΩ adaptively via hierarchically partitioning the square domains

covering X and Ω. For non-uniform point sets X and Ω, the numbers of points in

126 CHAPTER 4. BUTTERFLY FACTORIZATION

A`i and BL´`
j are different. If a node does not contain any point inside it, it is simply

discarded from the quadtree.

The complexity analysis summarized in Table 4.5 remains valid in the case of

non-uniform point sets X and Ω. On each level ` “ h, . . . , L of the butterfly factor-

ization, although the sizes of low-rank submatrices are different, the total number of

submatrices and the numerical rank remain the same. Hence, the total operation and

memory complexity remains the same as summarized in Table 4.5.

4.4.2 Polar butterfly factorization

In the previous section, we have introduced a two-dimensional butterfly factoriza-

tion for a complementary low-rank kernel matrix K in the joint domain X ˆ Ω. In

this section, we will introduce a polar butterfly factorization to deal with the kernel

function Kpx, ξq “ e2πıΦpx,ξq. Such a kernel matrix has a singularity at ξ “ 0 and

the approach taken here follows the polar butterfly algorithm proposed in [17] and

reviewed in Section 3.2. Although we have shown in Section 3.5 that the multiscale

butterfly algorithm has smaller pre-factor than the polar butterfly algorithm, the

polar butterfly algorithm is still widely used when the points in Ω is on the polar

grid [53] and its application should be accelerated as well.

4.4.2.1 Factorization algorithm

Combining the polar butterfly algorithm with the butterfly factorization outlined in

Section 4.4.1 gives rise to the following polar butterfly factorization (PBF).

1. Preliminary. Take the polar transformation of each point in Ω and reformulate

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 127

the problem

upxq “
ÿ

ξPΩ

e2πıΦpx,ξqgpξq, x P X, (4.50)

into

upxq “
ÿ

pPP

e2πınΨpx,pqgppq, x P X. (4.51)

2. Factorization. Apply the two-dimensional butterfly factorization to the kernel

e2πınΨpx,pq defined on a non-uniform point set in X ˆ P . The corresponding

kernel matrix is approximated as

K « ULGL´1
¨ ¨ ¨GhMh

`

Hh
˘˚
¨ ¨ ¨

`

HL´1
˘˚ `

V L
˘˚
. (4.52)

Since the polar butterfly factorization essentially applies the original butterfly

factorization to non-uniform point sets X and P , it has the same complexity as

summarized in Table 4.5. Depending on the SVD procedure employed in the middle

level factorization, we refer to it either as PBF-m (when SVD via random matrix-

vector multiplication is used) or as PBF-s (when SVD via random sampling is used).

4.4.2.2 Numerical results

This section presents two numerical examples to demonstrate the efficiency of the

polar butterfly factorization. The numerical results were obtained in MATLAB on a

server with 2.40 GHz CPU and 1.5 TB of memory.

In this section, we denote by tuppxquxPX the results obtained via the PBF. The

relative error of the PBF is estimated as follows, by comparing uppxq with the exact

128 CHAPTER 4. BUTTERFLY FACTORIZATION

values upxq.

ep “

g

f

f

e

ř

xPS |u
ppxq ´ upxq|2

ř

xPS |upxq|
2

, (4.53)

where S is a set of 256 randomly sampled points from X.

Example 1. This example is a two-dimensional generalized Radon transform that

is an FIO defined as follows:

upxq “
ÿ

ξPΩ

e2πıΦpx,ξqgpξq, x P X, (4.54)

with the phase function given by

Φpx, ξq “x ¨ ξ `
b

c2
1pxqξ

2
1 ` c

2
2pxqξ

2
2 ,

c1pxq “p2` sinp2πx1q sinp2πx2qq{16,

c2pxq “p2` cosp2πx1q cosp2πx2qq{16,

(4.55)

where X and Ω are defined in (3.2) and (3.3). The computation in (4.54) approx-

imately integrates over spatially varying ellipses, for which c1pxq and c2pxq are the

axis lengths of the ellipse centered at the point x P X. The corresponding matrix

form of (4.54) is simply

u “ Kg, K “ pe2πıΦpx,ξq
qxPX,ξPΩ. (4.56)

As e2πıΦpx,ξq is known explicitly, we are able to use the PBF-s (i.e., the one with

random sampling in the middle level factorization) to approximate the kernel matrix

K given by e2πıΦpx,ξq. After the construction of the butterfly factorization, the sum-

mation in (4.54) can be evaluated efficiently by applying these sparse factors to gpξq.

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 129

Table 4.6 summarizes the results of this example.

n, r εp Tf,ppminq Tppsecq Speedup

64,6 2.46e-02 6.51e-01 2.37e-02 1.54e+02
128,6 7.55e-03 9.84e+00 2.30e-01 1.67e+02
256,6 5.10e-02 2.73e+01 6.23e-01 7.55e+02
512,6 1.46e-02 4.00e+02 7.88e+00 4.15e+02

64,14 7.93e-04 7.34e-01 5.98e-02 8.72e+01
128,14 7.28e-04 1.17e+01 7.15e-01 4.28e+01
256,14 2.15e-03 3.93e+01 1.46e+00 2.86e+02
512,14 1.25e-03 5.63e+02 1.05e+01 3.35e+02

64,22 6.96e-05 7.40e-01 8.24e-02 4.51e+01
128,22 7.23e-05 1.16e+01 1.04e+00 3.69e+01
256,22 2.44e-04 5.14e+01 5.94e+00 7.74e+01

Table 4.6: Numerical results provided by the PBF with random sampling algorithm
for the FIO in (4.54). n is the number of grid points in each dimension; N “ n2 is the
size of the kernel matrix; r is the max rank used in the low-rank approximation; Tf,p
is the factorization time of the PBF; Td is the running time of the direct evaluation;
Tp is the application time of the PBF. The last column shows the speedup factor
compared to the direct evaluation.

Example 2. This example evaluates the composition of two FIOs with the same

phase function Φpx, ξq. This is given explicitly by

upxq “
ÿ

ηPΩ

e2πıΦpx,ηq
ÿ

yPX

e´2πıy¨η
ÿ

ξPΩ

e2πıΦpy,ξqgpξq, x P X, (4.57)

where the phase function is given in (4.55). The corresponding matrix representation

is

u “ KFKg, (4.58)

where K is the matrix given in (4.56) and F is the matrix representation of the

discrete Fourier transform. Under relatively mild assumptions (see [52] for details),

130 CHAPTER 4. BUTTERFLY FACTORIZATION

the composition of two FIOs is again an FIO. Hence, the kernel matrix

rK :“ KFK (4.59)

of the product can be approximated by the butterfly factorization. Notice that the

kernel function of rK defined by (4.59) is not given explicitly. However, (4.59) provides

fast algorithms for applying rK and its adjoint through the fast algorithms for K

and F . For example, the butterfly factorization of Example 1 enables the efficient

application of K and K˚ in OpN logNq operations. Applying of F and F ˚ can be

done by the fast Fourier transform in OpN logNq operations. Therefore, we can apply

the PBF-m (i.e., the one with random matrix-vector multiplication) to factorize the

kernel rK “ KFK. Table 4.7 summarizes the numerical results of this example, the

composing of two FIOs.

n, r εp Tf,ppminq Tppsecq Speedup

64,12 3.84e-02 6.22e+00 2.18e-02 3.34e+02
128,12 1.31e-02 3.86e+02 1.80e-01 4.25e+02

64,20 2.24e-03 8.58e+00 3.04e-02 2.39e+02
128,20 2.23e-03 3.68e+02 3.60e-01 2.13e+02

Table 4.7: Numerical results provided by the PBF with random SVD algorithm for
the composition of FIOs given in (4.58).

Discussion. The numerical results in Tables 4.6 and 4.7 support the asymptotic

complexity analysis. When we fix r and let n grow, the actually running time fluctu-

ates around the asymptotic scaling since the implementation of the algorithms differ

slightly depending on whether L is odd or even. However, the overall trend matches

well with the OpN3{2q construction cost and the OpN logNq application cost. For

a fixed n, one can improve the accuracy by increasing the truncation rank r. From

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 131

the tables, one observes that the relative error decreases by a factor of 10 when we

increase the rank r by 8 every time. In the second example, since the composition

of two FIOs typically has higher ranks compared to a single FIO, the numerical rank

r used for the composition is larger than that for a single FIO in order to maintain

comparable accuracy.

4.4.3 Multiscale butterfly factorization

In this section, we discuss yet another approach for constructing butterfly factoriza-

tion for the kernel Kpx, ξq “ e2πıΦpx,ξq with singularity at ξ “ 0. This is based on the

multiscale butterfly algorithm introduced Section 3.4.

4.4.3.1 Factorization algorithm

Combining the multiscale butterfly algorithm with the butterfly factorization outlined

in Section 4.4.1 gives rise to the following multiscale butterfly factorization (MBF).

1. Preliminary. Decompose domain Ω into subdomains as in (??). Reformulate

the problem into a multiscale summation according to (??):

K “ KCRC `

log2 n´s
ÿ

t“0

KtRt. (4.60)

Here KC and Kt are kernel matrices corresponding to X ˆΩC and X ˆΩt. RC

and Rt are the restriction operators to the domains ΩC and Ωt respectively.

2. Factorization. Recall that L “ log2 n. For each t “ 0, 1, . . . , L´s, apply the two-

dimensional butterfly factorization on Kpx, ξq “ e2πıΦpx,ξq restricted in X ˆ Ωt.

Let rΩt be the smallest square that contains Ωt. Define Lt “ 2tpL´ tq{2u, where

132 CHAPTER 4. BUTTERFLY FACTORIZATION

t¨u is the largest integer less than or equal to a given number. We construct two

quadtrees TX and T
rΩt

of depth Lj with X and rΩt being the roots, respectively.

Applying the two-dimensional butterfly factorization using the quadtrees TX

and T
rΩt

gives the t-th butterfly factorization:

Kt « ULt
t G

Lt´1
t ¨ ¨ ¨G

Lt
2
t M

Lt
2
t

ˆ

H
Lt
2
t

˙˚

¨ ¨ ¨
`

HLt´1
t

˘˚ `

V Lt
t

˘˚
.

Note that 1{4 of the tree T
rΩt

is empty and we can simply ignore the computation

for these parts. This is a special case of non-uniform point sets. Once we have

computed all butterfly factorizations, the multiscale summation in (4.60) is

approximated by

K « KCRC `

L´s
ÿ

t“0

ULt
t G

Lt´1
t ¨ ¨ ¨M

Lt
2
t ¨ ¨ ¨

`

HLt´1
t

˘˚ `

V Lt
t

˘˚
Rt. (4.61)

The idea of the hierarchical decomposition of Ω not only avoids the singularity of

Kpx, ξq at ξ “ 0, but also maintains the efficiency of the butterfly factorization. The

butterfly factorization for the kernel matrix restricted in X ˆ Ωt is a special case of

non-uniform butterfly factorization in which the center of Ωt contains no point. Since

the number of points in Ωt is decreasing exponentially in t, the operation and memory

complexity of the multiscale butterfly factorization is dominated by the butterfly

factorization of Kt for t “ 0, which is bounded by the complexity summarized in Table

4.5. Depending on the SVD procedure in the middle level factorization, we refer this

factorization either as MBF-m (when SVD via random matrix-vector multiplication

is used) or as MBF-s (when SVD via random sampling is used).

4.4. MULTIDIMENSIONAL BUTTERFLY FACTORIZATION 133

4.4.3.2 Numerical results

This section presents two numerical examples to demonstrate the efficiency of the

MBF as well. The numerical results are obtained in the same environment as the one

used in Section 4.4.2.2. Here we denote by tumpxq, x P Xu the results obtained via

the MBF. The relative error is estimated by

em “

g

f

f

e

ř

xPS |u
mpxq ´ upxq|2

ř

xPS |upxq|
2

, (4.62)

where S is a set of 256 randomly sampled from X. In the multiscale decomposition

of Ω, we recursively divide Ω until the center part is of size 16 by 16.

Example 1. We revisit the first example in Section 4.4.2.2 to illustrate the perfor-

mance of the MBF,

upxq “
ÿ

ξPΩ

e2πıΦpx,ξqgpξq, x P X, (4.63)

with a kernel Φpx, ξq given by

Φpx, ξq “x ¨ ξ `
b

c2
1pxqξ

2
1 ` c

2
2pxqξ

2
2 ,

c1pxq “p2` sinp2πx1q sinp2πx2qq{16,

c2pxq “p2` cosp2πx1q cosp2πx2qq{16,

(4.64)

where X and Ω are defined in (3.2) and (3.3). Table 4.8 summarizes the results of

this example obtained by applying the MBF-s.

Example 2. Here we revisit the second example in Section 4.4.2.2 to illustrate the

performance of the MBF. Recall that the matrix representation of a composition of

134 CHAPTER 4. BUTTERFLY FACTORIZATION

n, r εm Tf,mpminq Tmpsecq Speedup

64,12 1.58e-02 4.48e-01 4.09e-02 1.13e+02
128,12 1.47e-02 5.64e+00 1.93e-01 2.02e+02
256,12 2.13e-02 2.16e+01 5.51e-01 9.26e+02
512,12 1.97e-02 2.97e+02 5.07e+00 6.45e+02

64,20 5.51e-03 4.74e-01 6.11e-02 6.17e+01
128,20 4.27e-03 5.95e+00 5.01e-01 7.63e+01
256,20 1.68e-03 3.03e+01 2.51e+00 1.79e+02
512,20 2.02e-03 4.57e+02 1.14e+01 2.98e+02

64,28 7.42e-05 7.18e-01 3.92e-02 6.23e+01
128,28 8.46e-05 1.23e+01 5.42e-01 7.43e+01
256,28 5.63e-04 6.73e+01 3.23e+00 1.43e+02
512,28 4.18e-04 7.20e+02 1.66e+01 2.14e+02

Table 4.8: Numerical results provided by the MBF with the random sampling algo-
rithm for the FIO given in (4.63). n is the number of grid points in each dimension;
N “ n2 is the size of the kernel matrix; r is the max rank used in low-rank approxi-
mation; Tf,m is the factorization time of the MBF; Td is the running time of the direct
evaluation; Tm is the application time of the MBF; Td{Tm is the speedup factor.

two FIOs is

u “ rKg “ KFKg, (4.65)

and that there are fast algorithms to apply K, F and their adjoints. Hence, we can

apply the MBF-m (i.e., with the random matrix-vector multiplication) to factorize rK

into the form of (4.61). Table 4.9 summarizes the results.

n, r εm Tf,mpminq Tmpsecq Speedup

64,16 1.86e-02 4.05e+00 1.95e-02 4.23e+02
128,16 1.76e-02 1.27e+02 1.86e-01 4.17e+02

64,24 4.43e-03 5.37e+00 2.52e-02 3.27e+02
128,24 3.02e-03 1.79e+02 2.29e-01 3.40e+02

Table 4.9: MBF numerical results for the composition of FIOs given in (4.65).

4.5. REMARKS ON PARALLELIZATION 135

Discussion. The results in Tables 4.8 and 4.9 agree with the OpN3{2 logNq

complexity analysis of the construction algorithm. As we double the problem size

n, the factorization time increases by a factor 9 on average. The actual application

time in these numerical examples matches the theoretical operation complexity of

OpN logNq. In Table 4.8, the relative error decreases by a factor of 10 when the

increment of the rank r is 6. In Table 4.9, the relative error decreases by a factor of

6 when the increment of the rank r is 8.

4.5 Remarks on parallelization

Similar to the parallelization of the multiscale butterfly algorithm in Section 3.6, the

butterfly factorizations can also be parallelized efficiently. Assume that the problem is

of size N and P processes are given, where P ď N . In one dimension, the middle level

factorization, recursive factorization, and application of the butterfly factorization can

all be fully parallelized.

Assume two cases in the middle level factorization are parallelized.

(i) Only black-box routines for computingKg andK˚g on P processes inOpN
P

logNq

operations are given;

(ii) Only a black-box routine for evaluating any entry of the matrix K on any process

in Op1q operations is given.

In the first case, the middle level factorization consists two steps: applying K and

K˚ to random vectors and constructing SVD within each block. The parallelization

of the first step is done through the parallel black-box routines with an average cost

OpN1{2 logNq per-block. Since P ď N , each block on the middle level is assigned to

136 CHAPTER 4. BUTTERFLY FACTORIZATION

a single process. The following rank-r approximate SVD can be constructed locally,

which cost OpN1{2q operations and no communication in each block. The total cost

for the middle level factorization in this case is OpN1{2 logNq per-block. The second

case is even simpler. Every single SVD via random sampling is inside the block and

calculated on a single process without communication. The complexity is OpN1{2q

per-block.

The parallelization of the recursive factorization of Uh can be done as follows.

At the beginning of the recursive factorization, all N blocks U `
i,2j, U

`
i,2j`1 for i “

0, 1, . . . , 2`´1 and j “ 0, 1, . . . , 2L´`´1´1 are individually owned by single processes.

Splitting them into top and bottom half, and merging two contiguous halves require

an intra-block communication. The process that owns the block sends half of its

matrix to the owner of a neighbor block. At the same time, it receives half of another

matrix from the owner of that neighbor block. These one-to-one communications cost

Opβ2` ` αq per-block, where α is the latency and β is the inverse bandwidth. Any

other computation is calculated within the block. The recursive factorization of V h

can be parallelized in the same manner.

Summing up the operations and communications for middle level factorization

and recursive factorization at all levels gives the total complexity per-process,

Op
N3{2

P
logNq `

L´1
ÿ

`“h

ˆ

Op
N2

2`P
` β

N2`

P
` α

N

P
q

˙

“Op
N3{2

P
logN ` β

N3{2

P
` α

N

P
logNq,

(4.66)

where N{P is the number of blocks owned by a process.

Since the butterfly factorization can be viewed as a compressed algebraic represen-

tation of the butterfly algorithm, the parallelization of the application of the butterfly

4.6. CONCLUSION 137

factorization exactly follows the parallel butterfly algorithm [76].

In a similar way, the multidimensional butterfly factorization, the polar butterfly

factorization, and the multiscale butterfly factorization can be parallelized following

the discussions in Section 3.6 and [76].

4.6 Conclusion

This chapter first introduces a butterfly factorization in one dimension as a data-

sparse approximation of complementary low-rank matrices. More precisely, it repre-

sents such an N ˆ N dense matrix as a product of OplogNq sparse matrices. The

factorization can be built efficiently if either a fast algorithm for applying the matrix

and its adjoint is available or an explicit expression for the entries of the matrix is

given. The butterfly factorization gives rise to highly efficient matrix-vector multipli-

cations with OpN logNq operation and memory complexity. The butterfly factoriza-

tion is also useful when an existing butterfly algorithm is repeatedly applied, because

the application of the butterfly factorization is significantly faster than pre-existing

butterfly algorithms.

We also have introduced three multidimensional butterfly factorization as data-

sparse representations of a class of kernel matrices coming from multidimensional

integral transforms. When the integral kernel Kpx, ξq satisfies the complementary

low-rank property in the entire domain, the butterfly factorization introduced in

Section 4.4.1 represents an N ˆ N kernel matrix as a product of OplogNq sparse

matrices. In the FIO case for which the kernel Kpx, ξq is singular at ξ “ 0, we

propose two extensions: (1) the polar butterfly factorization that incorporates a polar

coordinate transformation to remove the singularity and (2) the multiscale butterfly

138 CHAPTER 4. BUTTERFLY FACTORIZATION

factorization that relies on a hierarchical partitioning in the Ω domain. For both

extensions, the resulting butterfly factorization takes OpN logNq storage space and

OpN logNq steps for computing a single matrix-vector multiplication as before.

The butterfly factorization for higher dimensions (d ą 2) can be constructed in a

similar way. For the polar butterfly factorization, one simply applies a d-dimensional

spherical transformation to the frequency domain Ω. For the multiscale butterfly

factorization, one can again decompose the frequency domain as a union of dyadic

shells centered round the singularity at ξ “ 0.

Bibliography

[1] S. Ambikasaran and E. Darve. An OpN logNq fast direct solver for partial

hierarchically semi-separable matrices: with application to radial basis function

interpolation. SIAM J. Sci. Comput., 57(3):477–501, 2013.

[2] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and

C. Weisbecker. Improving multifrontal methods by means of block low-rank

representations. SIAM J. Sci. Comput., 37(3):A1451–A1474, 2015.

[3] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel dis-

tributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech.

Eng., 184(24):501–520, 2000.

[4] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. A fully asynchronous

multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal.

Appl., 23(1):15–41, jan 2001.

[5] C. Anderson and M. D. Dahleh. Rapid computation of the discrete Fourier

transform. SIAM J. Sci. Comput., 17(4):913–919, jul 1996.

[6] F. Andersson, M. V. de Hoop, and H. Wendt. Multiscale discrete approximation

of Fourier integral operators. Multiscale Model. Simul., 10(1):111–145, jan 2012.

139

140 BIBLIOGRAPHY

[7] A. Averbuch, E. Braverman, R. Coifman, M. Israeli, and A. Sidi. Efficient

computation of oscillatory integrals via adaptive multiscale local Fourier bases.

Appl. Comput. Harmon. Anal., 9(1):19–53, jul 2000.

[8] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication

in numerical linear algebra. SIAM J. Matrix Anal. Appl., 32(3):866–901, 2011.

[9] G. Bao and W. W. Symes. Computation of pseudo-differential operators. SIAM

J. Sci. Comput., 17(2):416–429, mar 1996.

[10] M. Bebendorf. Efficient inversion of the Galerkin matrix of general second-order

elliptic operators with nonsmooth coefficients. Math. Comput., 74(251):1179–

1199, 2005.

[11] M. Bebendorf and W. Hackbusch. Existence of H-matrix approximants to the

inverse FE-matrix of elliptic operators with L8-coefficients. Numer. Math.,

95(1):1–28, 2003.

[12] S. Börm. Approximation of solution operators of elliptic partial differential equa-

tions by H- and H2-matrices. Numer. Math., 115(2):165–193, 2010.

[13] B. Bradie, R. Coifman, and A. Grossmann. Fast numerical computations of

oscillatory integrals related to acoustic scattering, I. Appl. Comput. Harmon.

Anal., 1(1):94–99, dec 1993.

[14] W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Society

for Industrial and Applied Mathematics, Philadelphia, 2nd edition, 2000.

[15] E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying. Fast discrete curvelet

transforms. Multiscale Model. Simul., 5(3):861–899, jan 2006.

BIBLIOGRAPHY 141

[16] E. J. Candès, L. Demanet, and L. Ying. Fast computation of Fourier integral

operators. SIAM J. Sci. Comput., 29(6):2464–2493, jan 2007.

[17] E. J. Candès, L. Demanet, and L. Ying. A fast butterfly algorithm for the

computation of Fourier integral operators. Multiscale Model. Simul., 7(4):1727–

1750, jan 2009.

[18] E. J. Candès and D. L. Donoho. New tight frames of curvelets and optimal

representations of objects with piecewise C2 singularities. Commun. Pure Appl.

Math., 57(2):219–266, feb 2004.

[19] E. J. Candès and D. L. Donoho. Continuous curvelet transform I. resolution of

the wavefront set. Appl. Comput. Harmon. Anal., 19(2):162–197, sep 2005.

[20] E. J. Candès and D. L. Donoho. Continuous curvelet transform II. discretization

and frames. Appl. Comput. Harmon. Anal., 19(2):198–222, sep 2005.

[21] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and

D. White. Some fast algorithms for sequentially semiseparable representations.

SIAM J. Matrix Anal. Appl., 27(2):341–364, 2005.

[22] S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam. On the numerical

rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEs.

SIAM J. Matrix Anal. Appl., 31(5):2261–2290, 2010.

[23] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin. On the compression

of low rank matrices. SIAM J. Sci. Comput., 26(4):1389–1404, 2005.

[24] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, and U. M. Yang. A survey of

parallelization techniques for multigrid solvers. In Parallel Process. Sci. Comput.,

142 BIBLIOGRAPHY

chapter 10, pages 179–201. Society for Industrial and Applied Mathematics, jan

2006.

[25] E. Cordero, F. Nicola, and L. Rodino. Sparsity of Gabor representation of

Schrödinger propagators. Appl. Comput. Harmon. Anal., 26(3):357–370, may

2009.

[26] T. A. Davis. Direct methods for sparse linear systems, volume 2 of Fundamentals

of Algorithms. Society for Industrial and Applied Mathematics, 2006.

[27] M. V. de Hoop, G. Uhlmann, A. Vasy, and H. Wendt. Multiscale discrete approx-

imations of Fourier integral operators associated with canonical transformations

and caustics. Multiscale Model. Simul., 11(2):566–585, jan 2013.

[28] L. Demanet and L. Ying. Wave atoms and sparsity of oscillatory patterns. Appl.

Comput. Harmon. Anal., 23(3):368–387, nov 2007.

[29] L. Demanet and L. Ying. Scattering in flatland: efficient representations via

wave atoms. Found. Comput. Math., 10(5):569–613, oct 2010.

[30] L. Demanet and L. Ying. Discrete symbol calculus. SIAM Rev., 53(1):71–104,

jan 2011.

[31] L. Demanet and L. Ying. Fast wave computation via Fourier integral operators.

Math. Comput., 81(279):1455–1486, sep 2012.

[32] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A

supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl.,

20(3):720–755, 1999.

BIBLIOGRAPHY 143

[33] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric

linear equations. ACM Trans. Math. Softw., 9(3):302–325, sep 1983.

[34] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM

J. Sci. Comput., 14(6):1368–1393, nov 1993.

[35] M. S. Elias. Harmonic analysis: real-variable methods, orthogonality, and oscil-

latory integrals. 43. Princeton University Press, Princeton, 1993.

[36] B. Engquist and L. Ying. A fast directional algorithm for high frequency acoustic

scattering in two dimensions. Commun. Math. Sci., 7(2):327–345, 2009.

[37] R. D. Falgout and J. E. Jones. Multigrid on massively parallel architectures. In

Multigrid Methods VI, pages 101–107. Springer, Berlin, 2000.

[38] A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer.

Anal., 10(2):345–363, 1973.

[39] A. Gillman and P.-G. Martinsson. A direct solver with OpNq complexity for

variable coefficient elliptic PDEs discretized via a high-order composite spectral

collocation method. SIAM J. Sci. Comput., 36(4):A2023–A2046, jan 2014.

[40] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins

University Press, 4th edition, 2013.

[41] L. Greengard and J.-Y. Lee. Accelerating the nonuniform fast Fourier transform.

SIAM Rev., 46(3):443–454, jan 2004.

[42] L. Grigori, J. W. Demmel, and X. S. Li. Parallel symbolic factorization for sparse

LU with static pivoting. SIAM J. Sci. Comput., 29(3):1289–1314, jan 2007.

144 BIBLIOGRAPHY

[43] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. I. Introduction

to H-matrices. Computing, 62(2):89–108, 1999.

[44] W. Hackbusch and S. Börm. Data-sparse approximation by adaptive H2-

matrices. Computing, 69(1):1–35, 2002.

[45] W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic. Part II.

Application to multi-dimensional problems. Computing, 64(1):21–47, 2000.

[46] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness:

probabilistic algorithms for constructing approximate matrix decompositions.

SIAM Rev., 53(2):217–288, jan 2011.

[47] S. Hao and P.-G. Martinsson. A direct solver for elliptic PDEs in three dimensions

based on hierarchical merging of Poincaré-Steklov operators. J. Comput. Appl.

Math., 308:419–434, 2016.

[48] M. T. Heath. Parallel direct methods for sparse linear systems. In Parallel

Numer. algorithms, volume 4 of ICASE/LaRC Interdiscip. Ser. Sci. Eng., pages

55–90. Kluwer Academic Publishers, 1997.

[49] K. L. Ho and L. Greengard. A fast semidirect least squares algorithm for hierar-

chically block separable matrices. SIAM J. Matrix Anal. Appl., 35(2):725–748,

jan 2014.

[50] K. L. Ho and L. Ying. Hierarchical interpolative factorization for elliptic op-

erators: differential equations. Commun. Pure Appl. Math., 69(8):1415–1451,

2016.

BIBLIOGRAPHY 145

[51] K. L. Ho and L. Ying. Hierarchical interpolative factorization for elliptic op-

erators: integral equations. Commun. Pure Appl. Math., 69(7):1314–1353, jul

2016.

[52] L. Hörmander. Fourier integral operators. I. Acta Math., 127(0):79–183, 1971.

[53] J. Hu, S. Fomel, L. Demanet, and L. Ying. A fast butterfly algorithm for gener-

alized Radon transforms. Geophysics, 78(4):U41–U51, 2013.

[54] D. Huybrechs and S. Vandewalle. A two-dimensional wavelet-packet transform

for matrix compression of integral equations with highly oscillatory kernel. J.

Comput. Appl. Math., 197(1):218–232, 2006.

[55] M. Izadi. Parallel H-matrix arithmetic on distributed-memory systems. Comput.

Vis. Sci., 15(2):87–97, apr 2012.

[56] R. E. Kleinman and G. F. Roach. Boundary integral equations for the three-

dimensional Helmholtz equation. SIAM Rev., 16(2):214–236, apr 1974.

[57] R. Kriemann. H-LU factorization on many-core systems. Comput. Vis. Sci.,

16(3):105–117, jun 2013.

[58] Y. Li and H. Yang. Interpolative butterfly factorization. SIAM J. Sci. Comput.,

39(2):A503–A531, 2017.

[59] Y. Li, H. Yang, E. R. Martin, K. L. Ho, and L. Ying. Butterfly factorization.

Multiscale Model. Simul., 13(2):714–732, jan 2015.

[60] Y. Li, H. Yang, and L. Ying. A multiscale butterfly algorithm for multidimen-

sional Fourier integral operators. Multiscale Model. Simul., 13(2):1–18, jan 2015.

146 BIBLIOGRAPHY

[61] Y. Li, H. Yang, and L. Ying. Multidimensional butterfly factorization. Applied

and Computational Harmonic Analysis, 2017.

[62] Y. Li and L. Ying. Distributed-memory hierarchical interpolative factorization.

Technical report, 2016.

[63] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert. Randomized

algorithms for the low-rank approximation of matrices. Proc. Natl. Acad. Sci.

U. S. A., 104(51):20167–72, dec 2007.

[64] L. Lin, J. Lu, and L. Ying. Fast construction of hierarchical matrix representation

from matrix-vector multiplication. J. Comput. Phys., 230(10):4071–4087, 2011.

[65] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM J.

Matrix Anal. Appl., 11(1):134–172, 1990.

[66] J. W. H. Liu. The multifrontal method for sparse matrix solution: theory and

practice. SIAM Rev., 34(1):82–109, mar 1992.

[67] X. Liu, J. Xia, and M. V. de Hoop. Parallel randomized and matrix-free direct

solvers for large structured dense linear systems. SIAM J. Sci. Comput., 38(5):1–

32, jan 2016.

[68] M. W. Mahoney and P. Drineas. CUR matrix decompositions for improved data

analysis. Proc. Natl. Acad. Sci. U. S. A., 106(3):697–702, jan 2009.

[69] P.-G. Martinsson. A fast direct solver for a class of elliptic partial differential

equations. SIAM J. Sci. Comput., 38(3):316–330, 2009.

BIBLIOGRAPHY 147

[70] P.-G. Martinsson. A fast randomized algorithm for computing a hierarchi-

cally semiseparable representation of a matrix. SIAM J. Matrix Anal. Appl.,

32(4):1251–1274, oct 2011.

[71] P.-G. Martinsson. Blocked rank-revealing QR factorizations: How randomized

sampling can be used to avoid single-vector pivoting. Technical report, may 2015.

[72] E. Michielssen and A. Boag. A multilevel matrix decomposition algorithm for

analyzing scattering from large structures. IEEE Trans. Antennas Propag.,

44(8):1086–1093, 1996.

[73] V. Minden, A. Damle, K. L. Ho, and L. Ying. A technique for updating hi-

erarchical skeletonization-based factorizations of integral operators. Multiscale

Model. Simul., 14(1):42–64, jan 2016.

[74] M. O’Neil. A new class of analysis-based fast transforms. PhD thesis, Yale

University, New Haven, 2008.

[75] M. O’Neil, F. Woolfe, and V. Rokhlin. An algorithm for the rapid evaluation

of special function transforms. Appl. Comput. Harmon. Anal., 28(2):203–226,

2010.

[76] J. Poulson, L. Demanet, N. Maxwell, and L. Ying. A parallel butterfly algorithm.

SIAM J. Sci. Comput., 36(1):C49–C65, feb 2014.

[77] J. Poulson, B. Engquist, S. Li, and L. Ying. A parallel sweeping preconditioner

for heterogeneous 3D Helmholtz equations. SIAM J. Sci. Comput., 35(3):C194–

C212, 2013.

148 BIBLIOGRAPHY

[78] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A. Romero.

Elemental: A new framework for distributed memory dense matrix computa-

tions. ACM Trans. Math. Softw., 39(2):13:1–13:24, feb 2013.

[79] Y. Saad. Parallel iterative methods for sparse linear systems. In Stud. Comput.

Math., volume 8, pages 423–440. 2001.

[80] Y. Saad. Iterative methods for sparse linear systems, volume 8 of Stud. Comput.

Math. Society for Industrial and Applied Mathematics, second edition, 2003.

[81] P. G. Schmitz and L. Ying. A fast direct solver for elliptic problems on general

meshes in 2D. J. Comput. Phys., 231(4):1314–1338, 2012.

[82] P. G. Schmitz and L. Ying. A fast nested dissection solver for Cartesian 3D

elliptic problems using hierarchical matrices. J. Comput. Phys., 258:227–245,

2014.

[83] D. S. Scott. Efficient all-to-all communication patterns in hypercube and mesh

topologies. In Sixth Distrib. Mem. Comput. Conf., pages 398–403. IEEE, 1991.

[84] D. S. Seljebotn. Wavemoth-fast spherical harmonic transforms by butterfly ma-

trix compression. Astrophys. J. Suppl. Ser., 199(1):5, mar 2012.

[85] D. O. Trad, T. J. Ulrych, and M. D. Sacchi. Accurate interpolation with high-

resolution time-variant Radon transforms. GEOPHYSICS, 67(2):644–656, mar

2002.

[86] M. Tygert. Fast algorithms for spherical harmonic expansions, III. J. Comput.

Phys., 229(18):6181–6192, 2010.

BIBLIOGRAPHY 149

[87] R. Wang, Y. Li, M. W. Mahoney, and E. Darve. Structured block basis factor-

ization for scalable kernel matrix evaluation. Technical report, 2015.

[88] S. Wang, X. S. Li, F.-H. Rouet, J. Xia, and M. V. de Hoop. A parallel geometric

multifrontal solver using hierarchically semiseparable structure. ACM Trans.

Math. Softw., 42(3):21:1–21:21, may 2016.

[89] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert. A fast randomized algorithm

for the approximation of matrices. Appl. Comput. Harmon. Anal., 25(3):335–366,

nov 2008.

[90] J. Xia. Efficient structured multifrontal factorization for general large sparse

matrices. SIAM J. Sci. Comput., 35(2):A832–A860, 2013.

[91] J. Xia. Randomized sparse direct solvers. SIAM J. Matrix Anal. Appl.,

34(1):197–227, 2013.

[92] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Superfast multifrontal method

for large structured linear systems of equations. SIAM J. Matrix Anal. Appl.,

31(3):1382–1411, 2009.

[93] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. Fast algorithms for hierarchically

semiseparable matrices. Numer. Linear Algebr. with Appl., 17(6):953–976, dec

2010.

[94] Z. Xin, J. Xia, M. V. de Hoop, S. Cauley, and V. Balakrishnan. A distributed-

memory randomized structured multifrontal method for sparse direct solutions.

Technical Report 17, 2014.

150 BIBLIOGRAPHY

[95] H. Yang and L. Ying. A fast algorithm for multilinear operators. Appl. Comput.

Harmon. Anal., 33(1):148–158, jul 2012.

[96] B. Yazici, L. Wangy, and K. Duman. Synthetic aperture inversion with sparsity

constraints. In 2011 Int. Conf. Electromagn. Adv. Appl., pages 1404–1407. IEEE,

sep 2011.

[97] L. Ying. Sparse Fourier transform via butterfly algorithm. SIAM J. Sci. Comput.,

31(3):1678–1694, jan 2009.

[98] L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole

algorithm in two and three dimensions. J. Comput. Phys., 196(2):591–626, 2004.

	Preface
	Acknowledgement
	Introduction
	Elliptic PDEs and hierarchical interpolative factorization
	Background
	Related work
	Contribution
	Organization

	Preliminaries
	Notations
	Sparse elimination
	Skeletonization
	Sequential hierarchical interpolative factorization

	Distributed-memory hierarchical interpolative factorization
	Process tree
	Distributed-memory method
	Complexity analysis
	Memory complexity
	Computation complexity
	Communication complexity

	Numerical results
	Conclusion

	Oscillatory integral operator and butterfly algorithm
	Background
	Related work
	Organization

	Low-rank approximations and butterfly algorithms
	Complementary low-rank property
	Butterfly algorithm
	Polar low-rank approximations and polar butterfly algorithm

	Multiscale low-rank approximations
	Multiscale butterfly algorithm
	Single-scale butterfly algorithm
	Complexity analysis

	Numerical results
	Conclusion and remarks on parallelization

	Butterfly factorization
	Introduction
	Organization

	Preliminaries
	SVD via random matrix-vector multiplication
	SVD via random sampling

	One-dimensional butterfly factorization
	Middle level factorization
	Recursive factorization
	Recursive factorization of Uh
	Recursive factorization of Vh

	Complexity analysis
	Numerical results

	Multidimensional butterfly factorization
	Two-dimensional butterfly factorization
	Notations and overall structure
	Middle level factorization
	Recursive factorization
	Complexity analysis
	Extensions

	Polar butterfly factorization
	Factorization algorithm
	Numerical results

	Multiscale butterfly factorization
	Factorization algorithm
	Numerical results

	Remarks on parallelization
	Conclusion

	Bibliography

