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ABSTRACT: Full configuration interaction (FCI) calculations have historically
faced significant challenges in dealing with periodic systems. The plane-wave basis
sets are valued for their efficiency and broad applicability in various
computational physics and chemistry simulations. Because of their natural
periodicity, the plane-wave basis sets offer a potential solution to this problem.
Moreover, FCI can address the limitations of widely used methods, such as
density functional theory (DFT) with plane-wave basis sets, in accurately
describing strongly correlated systems. However, the large basis set nature of the
plane-wave makes them unsuitable for direct application in FCI calculations. To
address this challenge, we propose an improved algorithm based on the
correlation-optimized virtual orbital (COVOS) framework. By incorporating
rotational matrices to enhance the active space dimension and optimizing orbitals
through iterative coupled processes, we successfully compress the extensive plane-
wave basis set into a manageable number of virtual orbitals suitable for FCI calculations while retaining most of the original basis set
characteristics. We apply this method to supercell calculations and potential energy curves of periodic metallic systems. To further
validate our approach, we test it on nonperiodic small molecular systems and compare the results with those obtained from DFT,
second-order Møller−Plesset perturbation theory (MP2), random phase approximation (RPA), FCI calculations using the 6−31G
or cc-pVDZ basis sets, and the original COVOS algorithm. The improved COVOS framework demonstrates significant advantages
in convergence and correlation description over the original method. Furthermore, we observe metal divergence issues in MP2
calculations for certain metallic systems and note that RPA may overestimate the correlation energy of such systems. These findings
underscore the importance of achieving FCI calculations with plane-wave basis sets.

1. INTRODUCTION
In quantum chemistry, the FCI theory is recognized as the most
rigorous and precise approach.1 FCI constructs and solves the
Schrödinger equation for the entire electronic configuration
space within a given basis, fully capturing electron correlation
effects. Consequently, it is regarded as the “exact solution” in
computational chemistry.2 Traditional FCI methods are
primarily based on atomic orbital expansions using Gaussian
or atomic natural basis sets, which are highly localized in
molecular systems. However, these basis sets suffer from
significant basis set errors in periodic systems and struggle to
describe electron delocalization and long-range correlations.3

The plane-wave method, which is based on periodic basis sets
and incorporating algorithms such as fast Fourier transform
(FFT),4 naturally addresses boundary condition problems in
periodic systems while avoiding the biases introduced by the
choice of basis sets in traditional atomic orbital approaches.5

This method is particularly well-suited for simulating crystalline
and surface systems in condensed matter physics and materials
science, and it has become a critical component of electronic
structure methods such as DFT.6,7 The development of plane-
wave condensed matter calculations has brought about revolu-
tionary changes to the fields of chemistry and materials science.

Its precision and efficiency have enabled the simulation of
complex chemical systems.
Compared to traditional basis sets in the FCI method, plane-

wave basis sets offer several distinct advantages:
1 Controllable basis set error: the plane-wave basis set,
systematically expanded through wavevector truncation,8

ensures strict convergence and avoids nonphysical errors
introduced by basis set selection.

2 Compatibility with periodic systems: plane-wave basis
sets are highly compatible with periodic boundary
conditions (PBC),9 making them ideal in describing the
electronic structure of crystals and surfaces.

3 Uniformity and delocalization: plane-wave basis sets are
uniformly distributed in space and effectively describe
electron delocalization, which is particularly crucial for

Received: April 14, 2025
Revised: June 6, 2025
Accepted: June 6, 2025

Articlepubs.acs.org/JCTC

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.jctc.5c00586
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

FU
D

A
N

 U
N

IV
 o

n 
Ju

ly
 4

, 2
02

5 
at

 0
3:

48
:3

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mingyu+Qiu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhenlin+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhiyuan+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yexuan+Lin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yingzhou+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jinlong+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wei+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.5c00586&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00586?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00586?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00586?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00586?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00586?fig=tgr1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.5c00586?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf


studying metallic systems and periodic strongly correlated
materials where electron localization and long-range
interactions coexist.10 For systems with highly localized
orbitals, such as transition metal oxides or actinides, plane
waves are also supplemented with techniques such as
hybrid functionals to capture strong correlation effects.

Despite these advantages, research on many-body correlation
theories within the plane-wave framework has focusedmainly on
approximate methods, such as low-order many-body perturba-
tion theory (MPn), RPA,11 coupled cluster theory (CC), and
the widely used DFT. However, the application of MPn and CC
methods within the plane-wave framework remains limited.
Both MP212−14 and CC15−17 methods often rely on trans-
forming Gaussian basis sets into grid-based representations
resembling plane-wave approaches,18 rather than utilizing native
plane-wave implementations. While these methods are
computationally efficient, they often face challenges in handling
strongly correlated systems and high-precision computations,
failing to achieve the systematically accurate results provided by
FCI.
Thus, developing FCI algorithms within the plane-wave

framework represents both a technical innovation and a
computational breakthrough. This integration can fully leverage
the strengths of the plane-wave method, address the limitations
of traditional FCI in periodic systems, and provide novel tools
for studying strongly correlated periodic systems. Specifically,
this approach aims to address the following key scientific
questions:

1 Achieving high-precision descriptions of electron corre-
lation effects in periodic systems. Furthermore, FCI will
serve as a benchmark19 for assessing the accuracy of other
approximate methods, such as perturbative algorithms.

2 Systematically investigating quantum phenomena in
strongly correlated systems,20 including the spin dynam-
ics and exchange interactions in magnetic materials, as
well as the pairing mechanisms explored within the plane-
wave FCI framework and unconventional superconduc-
tivity in correlated electron systems such as high-
temperature superconductors21 and heavy Fermion
compounds.

However, a significant challenge in performing FCI
calculations with plane-wave basis sets lies in the over-
whelmingly large number of basis functions.22 For the
computationally expensive FCI method, the excessive basis
size becomes a critical bottleneck.23,24 To address this, it is
necessary to select a small number of orbitals with dominant
contributions from the extensive basis set. Several approaches
have been proposed to tackle this issue, with the following
strategies. Considering that there are currently few optimization
methods for FCI calculations based on plane-wave basis sets,
this presentation also introduces some methods for other basis
sets for reference.

1 Basis set compression techniques: basis set reduction
strategies generally fall into two complementary ap-
proaches: projection operator methods optimize the
plane-wave basis through subspace construction, where
techniques like subspace diagonalization25 iteratively
refine Hamiltonian subspaces to capture essential system
features while maintaining computational tractability.
Mathematical compression techniques address basis
redundancy through algebraic decomposition, exempli-
fied by Cholesky factorization of overlap matrices and

tensor hypercontraction (THC),26,27 which, respectively,
achieve dimensionality reduction via matrix factorization
and low-rank tensor representations of electron integrals.

2 Multiresolution analysis: while plane-wave basis sets offer
uniform spatial resolution, multiresolution methods
employ hierarchical basis functions or dynamic grid
refinement to resolve localized features. The multiwavelet
approach utilizes wavelet bases to selectively capture
regions with sharp electron density gradients, whereas
adaptive mesh refinement (AMR) dynamically adjusts
grid resolution based on local system properties.28 These
methods sacrifice the inherent periodicity of plane waves
for enhanced efficiency in modeling molecular systems
with strong electronic singularities, thereby constituting a
complementary strategy to plane-wave approaches in
multiscale simulations.

3 Truncation methods: these approaches systematically
discard less significant orbitals or basis functions based on
their contribution to the overall system. For example,
Natural Orbital Truncation29 removes orbitals with low
occupation numbers, and Canonical Virtual Space
Truncation30 limits the virtual orbital space to simplify
excited-state calculations.

While conventional truncation schemes focus on static orbital
selection criteria, recent advances emphasize correlation-driven
optimization of the virtual space. The COVOS31,32 algorithm is
an approach for generating optimized virtual orbital basis sets in
plane-wave systems. Unlike other plane-wave-based optimiza-
tion methods, which focus on fitting single-electron eigenvalue
spectra or band structures,33,34 COVOS optimizes small
selective configuration interaction (CI) problems to construct
virtual orbitals.
This work improves upon the COVOS algorithm from an

algorithmic perspective and extends its applicability to larger
computational systems, including supercell expansion and
dissociation energy calculations. The goal is to bridge the
current gap between the plane-wave basis set and accurate
many-body theories in condensed matter calculations, advanc-
ing the application of FCI algorithms within plane-wave
frameworks and providing theoretical support and computa-
tional tools for addressing complex periodic and strongly
correlated systems.
In Section 2, we provide an overview of the COVOS

algorithm and describe the improvements made; we introduced
a rotation matrix to project the occupied orbitals into an active
space of specific size, and based on this, we performed coupled
iterations for the virtual orbitals and the rotation matrix. Section
3 presents the computation and results; the results show that the
virtual orbitals obtained by the improved COVOS algorithm are
significantly better than those from the original COVOS, and the
algorithm has achieved the expected effects in various tests.
Additionally, comparisons with other algorithms have demon-
strated the benchmark role of FCI. Section 4 summarizes the
findings and discusses prospects for future work.

2. PRELIMINARIES
We set N to represent the number of basis orbitals occupied by
the ground state, corresponding to the total number of electrons
in the system, andNvir represents the size of themaximum virtual
orbital space set; we can adjustNvir based on the desired number
of active orbitals for the final FCI calculation. Then we set ψ to
represent the spatial orbital basis, and ψi (i ≤ N) to represent the
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occupied orbital, and ψvi (i ≤ Nvir) to represent virtual orbital;
for ψvi that has not yet been optimized, we refer to it as iv . The
general workflow of the original COVOS algorithm is as follows:

1 n = 1 is set.
2 The initial parameters nv for the n-th virtual orbital ψvn

are chosen. The occupied orbitals ψi and the initial guess
for the virtual orbitals nv can be derived from any self-
consistent field orbitals. In this work, we specifically use
the Kohn−Sham orbitals generated by KSSOLV.35,36

3 The virtual orbital nv is interacted with the N occupied
orbitals ψ1, ψ2, ..., ψN. Considering that involving all
occupied orbitals in the virtual orbital optimization
process can make gradient descent computationally
expensive, we will select the outermost orbital ψN as the
active orbital, along with the virtual orbital in the
unoccupied states, to form a CI matrix as a smaller active
space.

4 nv is optimized using the gradient descent method to
minimize the ground state energy obtained from the
diagonalization of the CI matrix in step 3, ensuring that
the orbital remains orthogonal to all occupied orbitals ψ1,
ψ2, ..., ψN and the previously generated virtual orbitals ψv1,
ψv2, ..., ψv(n−1). If the optimization meets the convergence
criteria, the optimization for ψvn is finalized; otherwise,
Step 3 is revisited.

5 If n <Nvir, n is incremented by 1, and Step 2 is revisited. If
n = Nvir, the generation of virtual orbitals is finalized.

6 A FCI calculation of the ground state energy is performed
using all the occupied orbitals ψ1, ψ2, ..., ψN and the virtual
orbitals , , ..., Nv1 v2 v vir

.

During the gradient descent process, the gradient of each
matrix element of the CI matrix, which is constructed for 2-
electron system with 2 spatial orbitals nv and ψN, is computed
with respect to the virtual orbitals nv . The detailed derivation
can be found in the Supporting Information part 1 and part 2.
In the absence of external fields, the one-electron integral

takes the form

G G G G G

G

p q V V( )
2

( ) ( ( ) ( ))

( )

G
p q

pq

2

loc nloc| = * | | + +

(1)

where G is the reciprocal lattice vector, ψ(G) are the expansion
coefficients of the orbital in reciprocal space, G

2

2| | is the kinetic
energy term in reciprocal space, and ρpq(G) is the generalized
density in reciprocal space, defined as

G G G G( ) ( ) ( )
G

pq p q= *
(2)

The two-electron integral describes the Coulomb interaction
between electrons, which can also be written as32

G
G

Gpq rs
2

( )
4

( )
G

pr qs
0

2| = *
| | (3)

It should be noted that when computing with a single Γ-point,
the two-electron integrals can be expressed in a simplified form.
However, when incorporating a full k-point mesh, the equations
become significantly more complex due to the extended
sampling of the Brillouin zone. This complexity arises from

the need to carefully track phase relationships between Bloch
functions at different k-points, enforce momentum conserva-
tion, and perform nontrivial summations over the k-point grid.
These summations involve coupling wave functions from
different points in reciprocal space, introducing intricate
bookkeeping due to phase mismatches and effects analogous
to what Harry F. King, Richard E. Stanton, Hojing Kim, Robert
E. Wyatt, and Robert G. Parr referred to as noncoincidences, but
generalized here to periodic boundary conditions. These
noncoincidences reflect inherent structural mismatches between
quantum states that do not align trivially across the symmetry-
adapted k-space manifold. For further details, the reader is
referred to the work of Bylaska, Hutter, Monkhorst, and
others.37−43

The gradients with respect to ψj for all j of one-electron and
two-electron integrals can be expressed as
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We denote the CI matrix as HCI. When we perform gradient
descent on the smallest eigenvalue of HCI, first, we solve for the
smallest eigenvalue ECI and the corresponding eigenvector x of
HCI.
Subsequently, since the matrix elements of HCI are entirely

composed of one-electron and two-electron integrals, according
to the Hellmann−Feynman theorem,44 we can derive that

G
x x

G

G

G G

E H

H

c
p q

c
pq rs

( ) ( )

( )

( ) ( )

j

T

j

j

pq
pq

j pqrs
pqrs

j

CI CI

CI CI

=

=

=
|

+
|

(6)

where cpq and cpqrs are the single-electron and two-electron
reduced density matrices of xTHCIx, abbreviated as 1-RDM and
2-RDM, H is the system Hamiltonian operator, and ψCI is the
wave function corresponding to the smallest eigenvalue.
The pseudocode for the iterative process of ψvn in the original

COVOS is given in Algorithm 1.
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3. OPTIMIZATION ALGORITHM
The original COVOS algorithm includes only the outermost
occupied orbitals, designated as active orbitals,32 in the
optimization process. This approach significantly reduces the
computational cost of the COVOS virtual orbital calculations in
many-body systems. Simultaneously, approximating the outer-
most orbitals as the most likely to transition ensures the utility of
the virtual orbitals. However, for many systems, the transitions
of inner orbitals are also non-negligible,45,46 and the original
COVOS algorithm lacks representation for these orbital
transitions.
To address this limitation, we propose a new projection

method that incorporates inner orbitals into the optimization of
virtual orbitals in COVOS, and we present our algorithm in
Figure 1. This method is inspired by the treatment of the FCI
basis in OptOrb.23,47,48 The same strategy can be extended to
orbital optimization. Specifically, we project the N occupied
orbitals onto t (t ≤ N) auxiliary orbitals [ψ1′,ψ2′,···,ψt′] using a
projection matrix U N t× , where t represents the adjustable

size of the active space. These auxiliary orbitals are then used to
optimize the virtual orbitals

U, , , ..., , , ...,N t1 2 3 1 2[ ] × = [ ] (7)

The coefficients of the Umatrix are determined by the energy
difference generated when the initial parameters of virtual orbital

v interact with each occupied orbital under an FCI operation ψi

for a 2-electron system with 2 spatial orbitals. For this system,
this value corresponds to the difference between the FCI energy
and the HF energy, EFCI − EHF. We can refer to it as the
correlation strength49 and name it Ec(i, v). This difference
reflects the weight of the transition effect of each occupied
orbital relative to the Kohn−Sham orbital. In the final FCI
calculation of the overall ground state energy, Ec represents the
total correlation energy of the system.50 We can simply make the
first column of U proportional to Ec(i, v), that means U(i, 1) =
Ec(i, v), while the other columns are generated by various
functions. The U matrix always ensures that UTU = I. This is to
ensure the orthogonality and normalization of ψ1′,ψ2′,···,ψt′.
The auxiliary orbitals obtained via the U matrix, combined

with the virtual orbital, result in N + 1 orbitals before rotation
and t + 1 orbitals after rotation: , , ..., ,1 2 t v[ ]. In actual
calculations, we prefer to use Ualg for algorithm computation,
whichmakes the computational logic clearer. These t + 1 orbitals
can be expressed using a rotation matrixU N talg ( 1) ( 1)+ × + as

U
U 0
0 1

alg
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ=

(8)

U, , , ..., , , , ..., ,N t1 2 3 v
alg

1 2 v[ ] × = [ ] (9)

Figure 1. Overview diagrams of the original COVOS algorithm and the improved COVOS algorithm. We set N to represent the number of basis
orbitals occupied by the ground state, corresponding to the total number of electrons in the system. Then we set ψ to represent the spatial orbital basis,
and ψi (i ≤ N) to represent the occupied orbital, and ψv to represent virtual orbital; for ψv that has not yet been optimized, we refer to it as v , and U
represents the projection matrix. Compared to the original COVOS algorithm, which only uses ψN to iterate v , we introduced a projection matrixU to
generate auxiliary orbitals for the iterative calculation of v . The process involves continuously coupling the iteration of v and U until convergence
criteria are met.
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At this stage, the generated auxiliary orbitals and the virtual
orbital are subjected to an FCI calculation involving 2t electrons
and t + 1 orbitals. The gradient is then computed based on the
FCI results, as previously described, to optimize the virtual
orbital.
Since the introduction of rotation matrix U requires its

optimization, a coupled iterative strategy is employed. For a
given nv , the rotation matrix U is iterated to convergence to
minimize the Ec with t + 1 orbitals and 2t electrons.
Subsequently, U is kept fixed while the virtual orbital nv is
iteratively optimized to minimize the FCI energy for the same
condition, this process continues until convergence. After the
virtual orbital nv is finalized through this iterative process, it is
kept fixed while a new iteration is performed to calculateU. This
coupled iteration proceeds alternately until convergence.
In summary, the improved COVOS algorithm has modified

the previous steps 3 and 4. And we obtain the following novel
COVOS algorithm.

1 The rotation matrix U is initialized.

2The virtual orbital nv is interacted with the t auxiliary
orbitals ψ1′, ψ2′, ..., ψt′, which originate from the interaction
of the rotation matrix U with the occupied orbitals. That
forms a CImatrix for a 2t-electron systemwith t + 1 spatial
orbitals. While keeping nv unchanged, it is iterated to
optimize the rotation matrix U to minimize Ec calculated
from the 2t-electron system with t + 1 spatial orbitals. The
optimization method chosen is gradient descent,
continuing until the convergence criteria for U are met.
In actual calculations, we prefer to use Ualg for
computation, which makes the computational logic
clearer.

3 nv is optimized using the gradient descent method to
minimize the ground state energy obtained from the
diagonalization of the CI matrix in step 2, ensuring that
the orbital remains orthogonal to all occupied orbitals ψ1,
ψ2, ..., ψN and the previously generated virtual orbitals ψv1,
ψv2, ..., ψv(n−1). The process continues until the
optimization met the convergence criteria, and the
optimization for nv is finalized.

4 If the coupled iterations reach the convergence criteria,
the optimization of ψvn is terminated. Otherwise, Step 2 is
revisited.

For a given rotation matrix U that produces Ualg, the one- and
two-electron integrals in the iterative process can be expressed in
terms of the one- and two-electron integrals of all occupied and
virtual orbitals. Specifically

p q U U p q
pq

N

pp qq

1
alg alg| = |

+

(10)

p q r s U U U U pq rs
pqrs

N

pp qq rr ss

1
alg alg alg alg| = |

+

(11)

where the ⟨pq|rs⟩ and ⟨p|q⟩ represents the one- and two-electron
integrals before projection, while ⟨p′q′|r′s′⟩ and ⟨p′|q′⟩
represents those after projection.

x xE
U

H
U

E
U

H
U

E
U

c
p q

U
c

p q r s
U

T

p q
p q

p q r s
p q r s

c CI HF

CI CI
HF

=

=

=
|

+
|

(12)

where cp′q′ and c p q r s are the 1-RDM and 2-RDM of xTHCIx −

EHF.

Using these expressions, E
U

c can be analytically computed

based on the values of ⟨pq|rs⟩ and ⟨p|q⟩.
The pseudocode for the iterative process of ψvn in the

improved COVOS is shown in Algorithm 2.
Through this approach, we achieve arbitrary extension of the

active orbital space in COVOS and enhance the sampling of
inner orbitals rather than limit the process to the outermost
orbitals. This improvement has significant advantages in many-
body systems, where it provides a substantial boost in
computational accuracy, thereby enabling us to use fewer
orbitals to save computational time for FCI.

4. RESULTS AND DISCUSSION

4.1. Algorithm Convergence Test and Potential
Energy Surface. Since plane-wave systems are more suitable
for periodic calculations, the Na2 system serves as an excellent
example for our study. Here, theNa2 we use is the same as the Li2
mentioned later and is actually chosen as a periodic system. Its
primitive cell is a rectangular structure, with two sodium atoms

located at the fractional coordinates (0,0,0) and( ), ,1
2

1
2

1
2
sites.

The LiH system also meets periodic conditions, and its basic
supercell contains four Li atoms and four H atoms. When
calculating periodic systems within the plane-wave framework, it
is only necessary to use the standard unit cell structure.
However, for nonperiodic molecular systems, we often need to
add vacuum layers to construct approximate nonperiodic
boundary conditions. In addition, to reduce computational
complexity, the pseudopotential files we use contain the frozen
core approximation. In the results presented below, unless
otherwise specified, the unit of energy is Hartree, and we will use
“COVOSn” to represent FCI energy using n COVOS orbitals.
We test only closed shells without considering spin. In most of
the tests we conducted, since we set t = 1 (we will analyze the
rationality of this approach in the subsequent calculations), the
memory and time required for the COVOS optimization of
orbitals can be negligible compared to the final FCI calculation,
and the FCI solver is chosen as CDFCI.51,52
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First, we performed a full-basis FCI calculation (96 orbitals in
total) for the Na2 system on a coarse grid as a benchmark, which
means we only used a plane-wave basis set of 96. We also
evaluated the convergence of COVOS orbitals and compared
them with Kohn−Sham (KS) orbitals generated by DFT,53 as
shown in Figure 2. It can be observed that COVOS achieves

chemical accuracy rapidly with only 10 orbitals and that the FCI
results based on the COVOS orbitals outperform those using KS
orbitals for any number of orbitals. Both approaches eventually
converge to the same result when the full orbital configuration is
considered.
For calculations on a regular grid, the results for different

energy cutoffs (Ecut)54 and numbers of orbitals are shown in
Table 1. The energy values of the Na2 unit cell converge around
Ecut = 15. The virtual orbital count also converges to chemical
accuracy at approximately 40 orbitals, as indicated by the trend.
Compared with DFT results, the energy is significantly reduced.
Remarkably, with an original basis dimension of approximately
20,000, the COVOS method achieves a superior correlation
energy approximation with only 40 orbitals. Additionally, we
calculate the energy variations with respect to interatomic
distances near the equilibrium positions for Na2 and Li2, which is
a part of calculating potential energy surface (PES), as well as the
energy changes in the supercells. The equilibrium point results
shown in Figure 5 demonstrate excellent symmetry along the
equilibrium positions due to the periodic nature of Na2 and Li2.
The trends of the three curves are almost identical, with the
energies calculated by COVOS being overall lower than those
from DFT, which is an expected outcome.

4.2. Improvement Validation. The electronic structure of
HCl, comprising hydrogen’s single electron and chlorine’s seven
valence electrons, is analyzed using four computational methods
in Figure 3. From the perspective of molecular orbital theory, the
improved accuracy across panels arises from advancements in
treating electron correlation and orbital hybridization.
While DFT captures the overall electron density distribution,

its reliance on approximate exchange−correlation functionals
leads to slight overdelocalization in the bonding region between
H and Cl, as well as insufficient resolution of chlorine’s lone
pairs. Incorporating FCI with KS orbitals improves electron
correlation effects, yielding a sharper lone pair localization on
chlorine. However, computational limitations restrict the basis
set’s completeness, leaving minor artifacts near the H−Cl bond.
The evolution of the COVOS highlights pivotal advancements
in orbital optimization strategies. In the original COVOS
framework, valence-specific orbital optimization is achieved by
iteratively refining virtual orbitals derived exclusively from the
outermost valence orbitals. While this approach enhances
electron density accumulation in the H−Cl covalent bond
region compared to DFT or FCI(KS), its restriction to outer
valence orbitals introduces residual asymmetry in the lone pair
lobes of chlorine. This limitation likely stems from neglecting
the interplay between the core and valence orbitals, which subtly
modulates electron correlation and hybridization. The improved
COVOS method addresses this by incorporating a holistic
orbital optimization scheme that accounts for the superposi-
tional effects of all orbitals�core and valence�during virtual
orbital construction. By integrating dynamic correlation
corrections and employing an expanded basis set, this refined

Figure 2. Error with respect to the actual energy (COVOS95) ΔE as a
function of the number of virtual orbitals for Na2, where Nvir is the
number of selected virtual orbitals. The COVOS orbitals show stronger
convergence than the KS orbitals, and both eventually agree when all
orbitals are included.

Table 1. Ground State Energy for Different Energy Cutoffs (Ecut) and Methodsa

Ecut DFT HF COVOS4 COVOS16 COVOS30 COVOS40 COVOS70

10 −0.619861 −0.614642 −0.634784 −0.637169 −0.637515 −0.637607 −0.637697
15 −0.619862 −0.614658 −0.634790 −0.637190 −0.637536 −0.637627 −0.637718
20 −0.619862 −0.614662 −0.634807 −0.637190 −0.637537 −0.637627 −0.637718

aHF represents the Hartree−Fock energy, using Hartree as the unit. COVOSn represent calculations using n COVOS orbitals. The energy values of
the Na2 unit cell converge around Ecut = 15 and 40 COVOS orbitals.
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algorithm achieves a more balanced representation of electron
density. The H−Cl bond region now exhibits a smoother
density gradient, reflecting enhanced covalent character due to
improved orbital overlap. Simultaneously, chlorine’s lone pairs
adopt symmetric, sp3-hybridized geometries, a consequence of
including core−valence polarization effects and interorbital

correlation. These features align closely with theoretical
predictions for heteronuclear diatomics. The contrast between
the two COVOS variants underscores the importance of
comprehensive orbital interaction modeling. While the original
method prioritizes computational simplicity by focusing on
valence orbitals, the improved version demonstrates that
incorporating multiorbital superposition is critical for resolving
subtle electronic features, such as lone pair symmetry and bond
polarization. This advancement positions COVOS as a versatile
tool for studying systems where both accuracy and efficiency are
paramount, particularly in molecules with pronounced core−
valence coupling.
When we select one auxiliary orbital, Figure 4 illustrates the

role of the U matrix iteration in the COVOS algorithm. We
compare the performance of the SiH4 system under different
scenarios: iterating the U matrix, not iterating the U matrix, the
original COVOS algorithm, and the KS orbitals in FCI
calculations. The results show that the virtual orbitals obtained
through the coupled iterative active orbital approach signifi-
cantly outperforms the initial COVOS algorithm. Even results
calculated using only the initial rotation matrix U0 exhibit
substantial improvements compared with the original COVOS
algorithm, particularly when the number of virtual orbitals
increases.

4.3. Supercell Test and MP2 Comparison. Supercell
expansion increases the simulation system size, effectively
approximating the behavior of the actual physical system.55

This is particularly important for systems with long-range
interactions, such as materials with surface adsorption, as it

Figure 3. Electron density plots of the HCl molecule, reflecting contributions from the hydrogen atom (one electron) and chlorine’s valence electrons
(seven electrons), computed using four distinct methods: (a) DFT, (b) FCI with KS orbitals (FCI(KS)), (c) original COVOS, and (d) improved
COVOS. Progressive refinement in electron density distribution is observed from left to right, reflecting enhanced accuracy in capturing covalent
bonding and lone pair characteristics.

Figure 4. Comparison of the FCI energy for the SiH4 system using
virtual orbitals obtained through different methods is presented, where
Nvir represents the number of virtual orbitals. The data in the figure
indicate that the introduction of the rotation matrix U in the iteration
process has a significant effect. The optimized COVOS basis set
exhibits a smoother convergence curve and performs better in FCI
calculations.

Figure 5. Ground state energy variations with interatomic distances for Na2 and Li2 in periodic conditions. (a) Na2 system. (b) Li2 system. We place
one atom in the unit cell at the origin, and the other atom at the position on the diagonal where the fractional coordinate is located.When the fractional
coordinate is 1

2
, the position is ( ), ,1

2
1
2

1
2
. They demonstrate excellent symmetry along the equilibrium positions.
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ensures that the calculated properties more closely reflect those
of the real-world system by minimizing artifacts introduced by
periodic boundary conditions. In plane-wave basis set
calculations, k-point sampling56 significantly influences the
electronic structure of the system. Expanding the supercell
increases the density of sampling in the Brillouin zone, allowing
for more accurate electronic structure calculations and thereby
improving the computational precision. The energy variations in
the supercells are illustrated in Figure 6.
Owing to the prohibitive computational cost of FCI,

calculations on larger crystalline systems remain intractable.
Consequently, this study focuses on small systems, such as Na2
and Li2, to ensure computational feasibility while retaining
critical insights into the electronic structure behavior.
During the process of expanding the supercell, the unit cell

energy continuously increases. This indicates that even under a
periodic plane-wave basis set, using a Gamma-point unit cell

calculation is inaccurate. Although the overall trend of the
calculations remains consistent, the expansion of the supercell
significantly increases the grid size, leading to a substantial
increase in the number of plane-wave basis functions.
Consequently, the 70 COVOS orbitals can no longer fully
capture all of the correlation effects as effectively as they do in
smaller supercells. This results in a weaker correlation energy.
However, in terms of overall trends, the energies calculated by
COVOS, DFT, and HF remain similar.
In the FCI calculations for the Na2 and LiH systems, we also

perform MP2 calculations. The results in Table 2 show that the
MP2 energy is slightly lower than the FCI energy, which we
attribute to the nonvariational nature of the MP2 method.
Unlike variational methods that ensure an upper bound to the
true ground-state energy, MP2 can yield lower energies due to
the approximation involved in its perturbative approach.57 Due
to the presence of the Fermi surface, the density of electronic

Figure 6. Ground state energy variations after supercell expansion for Na2 and Li2 in periodic conditions. (a) Na2 system. (b) Li2 system. The x-axis
represents the degree of supercell expansion. Supercell calculations allow us to obtain more accurate results.

Table 2. Comparison of FCI Energy and MP2 Energy in Na2 and LiH Systems, Using Hartree as the Unit
a

Molecule HF COVOS4 COVOS16 COVOS30 COVOS40 COVOS50

Na2(FCI) −0.614658 −0.634790 −0.637190 −0.637536 −0.637627 −0.637668
Na2(MP2) −0.614658 −0.637221 −0.643007 −0.644422 −0.644815 −0.645020
LiH(FCI) −3.071960 −3.110087 −3.158765 −3.194827 −3.202727 −3.211777
LiH(MP2) −3.071960 −3.105716 −3.191571 −3.238124 −3.255190 −3.258975

aWe found that, with the same orbitals, the energy obtained from MP2 calculations is lower than the FCI energy, indicating that MP2’s correlation
energy calculation is inaccurate.

Figure 7. FCI energy variations for H2 and LiH systems as a function of the number of COVOS and KS orbitals. (a) H2 system: FCI energy plotted
against the number of virtual orbitals Nvir. (b) LiH system: FCI energy plotted under the same conditions. The results show that COVOS orbitals
perform significantly better than KS orbitals in FCI calculations.
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states near the Fermi surface is extremely high, leading to energy
differences between occupied and unoccupied states approach-
ing zero, which causes divergence in the MP2 method.
MP2 relies on perturbation theory, treating electron

correlation effects as a second-order correction to the
Hartree−Fock (HF) ground state. However, this approximation
is inadequate for metallic systems due to the complex nature of
electronic correlations and the unique behavior of delocalized
electrons near the Fermi surface, which cannot be fully captured
by the MP2 method.13 The numerous nearly degenerate excited
states near the Fermi surface cause the second-order
perturbation corrections to be excessively amplified, resulting
in significantly increased correlation energy values and an
unexpectedly low total energy.
Compared with more accurate many-body methods, MP2 is

only an approximation, and its perturbative corrections near the
Fermi surface often exaggerate correlation effects. On the other
hand, FCI can account for all electron correlations, providing a
more accurate solution and avoiding the inaccuracies caused by
divergence in MP2. Consequently, in metallic systems, the total
energy calculated by MP2 may even be lower than the FCI
energy, highlighting the limitations of MP2 in handling electron
correlations in metallic or quasi-metallic systems.

4.4. Dissociation Energy Curves for H2. For smaller
molecular systems such as H2, calculations with C = 10 Å and
Ecut = 15 are shown in Figure 7, where we compare the results
with those obtained using KS orbitals, where C is the length of
the supercell. Since the initial guess of COVOS orbitals is
derived from KS orbitals, this has an impact on the optimization
process. The results indicate that the energy reduction achieved
by COVOS orbitals is partially correlated with KS orbitals, but
overall, COVOS orbitals demonstrate significantly superior
performance, especially with fewer orbitals, which is critical for
reducing the computational cost of FCI. With 60 orbitals, the
FCI energy is nearly converged. Dissociation energy calculations
for the H2 system

58 are shown in Figure 8. Compared to the cc-
pVDZ and 6−31G basis sets, at smaller distances (around 1.0
Å), the dissociation energy curves are nearly identical due to the
sufficiently large vacuum layer in the periodic plane-wave
system. At larger distances (1.0−3.0 Å), the periodicity implies
the presence of equivalent hydrogen atoms at the supercell

boundary, causing the plane-wave dissociation energy curve to
exhibit slightly lower energies at long-range. In this range, the
dissociation energy curve obtained with COVOS is nearly
identical with the DFT results. To address this, we test a
supercell size of 6.0 Å, calculating the energy variations with
interatomic distances in a fully periodic system. The trends of
the COVOS and DFT results remain consistent. In the periodic
systems of Na2 and H2, the dissociation curves exhibit distinct
shapes due to fundamental differences in their bonding
characteristics. The U-shaped curve observed in Na2 and Li2
corresponds to metallic bonding, where the interaction between
atoms is dominated by the delocalization of the valence
electrons. This results in a balance between attractive and
repulsive forces, leading to a stable minimum in the potential
energy as a function of interatomic distance.59 On the other
hand, the W-shaped dissociation curve of H2 reflects the nature
of covalent bonding. When the interatomic distance exceeds the
equilibrium bond length, the energy increase is primarily due to
breaking of the covalent bond, which disrupts the shared
electron pair that holds the two hydrogen atoms together. The
relatively small peak in the W-shaped curve is a consequence of
the periodic boundary conditions imposed on the system and
not a result of dominant repulsive interactions. These
distinctions highlight the fundamentally different bonding
mechanisms in metallic systems like Na2 and covalent systems
like H2.

60

In Figure 7, we also perform calculations on the LiH system,
obtaining results similar to those of H2, where the FCI energy
results approached convergence at 80 orbitals with the COVOS.
Notably, in this calculation, four occupied orbitals are

projected onto one auxiliary orbital. When four virtual orbitals
are used, the FCI energy obtained with COVOS orbitals
optimized using all occupied orbitals was −3.12062, while the
energy with one projected orbital was −3.11009. At 70 virtual
orbitals, the FCI energy using all occupied orbitals was
−3.23900, and with projection, it was −3.23826. This
demonstrates that for larger systems with a high number of
virtual orbitals, projection-based optimization can significantly
improve computational efficiency during orbital optimization
(by a factor of O((N + 1)4)) while maintaining the final FCI
energy within chemical accuracy. Including more auxiliary

Figure 8. Dissociation energy curves for H2 are shown, where d represents the interatomic distance of hydrogen atoms. (a) Short-range dissociation
energy curves compared with the equilibrium position at d = 0.74 Å set as the zero-point energy. (b) Long-range dissociation energy curve comparison.
(c) Reduced cell size tested for energy periodicity in a periodically ordered hydrogen chain system. Due to the systematic deviations in calculation
results caused by the pseudopotentials used in the plane-wave basis set compared to Gaussian basis sets, we set the energy at d = 0.74 Å by eachmethod
and basis set as the energy zero point in (a−c).The figure shows that at smaller distances, both COVOS and DFT agree well with the commonly used
FCI basis set. At larger distances, due to the periodicity of plane waves, unavoidable differences arise. When we reduce the supercell size and adjust the
hydrogen atom spacing, we observed similar curves to those of Na and Li systems. The differences originate from the distinction between nonmetallic
and metallic systems.
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orbitals in the iterations improves computational accuracy,
particularly when the total number of virtual orbitals is small.
However, increasing the number of auxiliary orbitals signifi-
cantly raises the complexity of optimizing virtual orbitals. To
save computational costs, we aim to include as few auxiliary
orbitals as possible in the calculations.

4.5. Atomization Energy Test and RPA Comparison.
We also calculate the atomization energy for some molecular
systems and compared them with DFT and experimental
values,61,62 as shown in Table 3.

It should be emphasized that COVOS employs a plane-wave
basis set, which is not inherently optimized for isolated
molecular systems. The primary utility of applying COVOS to
molecular systems resides in validating its precision under
scenarios where testing on large periodic systems�such as
extended solids or surfaces�faces significant computational
challenges. This approach ensures rigorous benchmarking of the
method’s accuracy before scaling to complex periodic frame-
works.
Overall, COVOS demonstrates higher accuracy than DFT,

which is greatly related to the accurate calculation of correlation
energy by the FCI algorithm. At the same time, for the ground
state energy calculations of these molecular systems, the
comparison of COVOS orbitals with DFT, KS orbitals, and
the results obtained using KS orbitals for RPA calculations are
shown in Table 4. We can compare and observe that the
performance of the COVOS orbitals in FCI calculations is
significantly superior to that of the KS orbitals. Using 70 KS
orbitals, the RPA energy is found to be lower than the FCI

energy, indicating that the RPA likely overestimates the
correlation energy of the system.
The RPA is a method derived from many-body perturbation

theory and linear response theory. It computes the correlation
energy by integrating over the screened Coulomb interaction
within the framework of the Kohn−Sham orbitals. RPA is
particularly effective for capturing long-range correlation effects,
such as van der Waals interactions, and is free from self-
interaction errors in the exchange−correlation energy.63

However, its treatment of correlation is limited to the
summation of ring diagrams.
The observed overestimation of the correlation energy by

RPA can be attributed to several factors. First, the reliance on KS
orbitals, which are approximate solutions to the electronic
structure, can lead to inaccuracies in describing the virtual states.
The quality of these orbitals significantly influences the
computed RPA correlation energy. Second, RPA’s inability to
account for beyond-ring-diagram interactions inherently limits
its accuracy, particularly in systems with strong correlation
effects. Finally, the frequency-dependent integration required in
RPA calculations is prone to numerical approximations and
truncations, which can further increase the estimated correlation
energy.

5. CONCLUSION
In this study, we investigate the problem of applying a plane-
wave basis set to FCI calculations, aiming to achieve a higher
FCI accuracy with as few virtual orbitals as possible. To this end,
we improve the COVOS algorithm by expanding the active
space optimization process to generate more effective virtual
orbitals, and they perform excellently in all types of calculations.
During this process, we primarily address two challenges. The
first challenge is ensuring that the selected active space is
effective. For this purpose, we choose Ec as the convergence
criterion and adopt a gradient descent approach to iteratively
select the active space. This is coupled with the virtual orbital
iteration process in an iterative manner. The second challenge is
balancing the computational cost and accuracy. While a larger
active space can improve orbital selection, we found that for
many-body calculations, using an active space with only one
occupied orbital yields satisfactory results. This is because, when
the number of virtual orbitals is large, the iterative active space
steps account for transitions involving all occupied orbitals, fully
leveraging the properties of these orbitals�something that the
original COVOS algorithm could not achieve. This allows us to
optimize more dominantly contributing orbitals without
significantly increasing the computational complexity. Based
on this approach, we conduct larger-scale calculations and
compare the performance with other methods to explore the
limits of plane-wave FCI calculations.
In the numerical experiments, we first perform FCI energy

calculations for coarse systems to study the convergence
behavior of COVOS orbitals with respect to the number of
orbitals. We compare the performance of the new COVOS
orbitals with that of the original COVOS and KS orbitals.
As visualized in the electron density slice plots, the improved

COVOS achieves superior orbital localization, which aligns with
classical chemical motifs (e.g., Lewis structures). This synergy
enhances interpretability for bonding, charge transfer, and lone
pairs, directly bridging computational accuracy with chemical
intuition�critical for education and AI-driven molecular
design.

Table 3. Comparison of the Atomization Energy Differences
between FCI Calculations with COVOS Orbital, DFT, and
Experiment, Using Hartree as the Unita

molecule DFT COVOS70 experiment

C2H4 553.6 561.1 562.4
CS 195.6 175.6 171.2
CH4 404.8 417.1 420.1
C2H6 693.6 698.0 717.2
Cl2 69.0 48.7 58.0
SiH4 303.1 302.7 322.0
HCl 99.9 100.6 106.4

aThe experimental reference results are taken from.61 The unit is
kcal/mol. The results provided by COVOS are relatively close to the
experimental values.

Table 4. Comparison of the Energy Differences between
DFT, FCI Calculations with COVOS Orbital and KS Orbital,
and RPA, Using Hartree as the Unita

molecule DFT COVOS70 FCI(KS70) RPA(KS70)

C2H4 −13.6148 −13.6268 −13.4491 −13.5480
CS −15.8023 −15.7703 −15.7163 −15.8184
CH4 −8.0094 −8.0290 −7.9107 −7.9775
C2H6 −14.8358 −14.8429 −14.6528 −14.7718
Cl2 −30.1217 −30.0893 −30.0025 −30.1283
SiH4 −6.2392 −6.2385 −6.2085 −6.3067
HCl −15.6640 −15.6651 −15.6049 −15.6795

aKS70 represent calculations using 70 KS orbitals. By comparing the
FCI results of the KS orbitals with the RPA results, we found that
RPA may overestimate the correlation energy of the system.
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The numerical results demonstrate the effectiveness of our
work, as FCI energy calculations using our new COVOS orbitals
show improvements exceeding chemical accuracy compared to
the original COVOS and KS orbitals at the same number of
orbitals. Therefore, even the initial choice of altering the active
space, which barely increases the computational load, can
significantly enhance the performance of the COVOS orbitals.
Moreover, the strategy of coupled iterations has enabled us to
obtain excellent virtual orbitals that are worth investigating.
Subsequently, we examine periodic systems such as Na2, Li2, and
LiH, computing FCI energies under various parameters,
including a part of PES calculations and supercell expansion,
and compare the results with DFT energies. In comparison with
MP2 energies, we identify the divergence issue in periodic
metallic systems. For such systems, MP2 fails to accurately
calculate the total energy, yielding ground state energies that are
lower than the true values. We also perform calculations on
molecular systems such as H2, SiH4, and so on, including
dissociation energy calculations for H2, which are compared
with results from cc-pVDZ, 6−31G, and DFT methods,
validating the correctness of our calculations. Finally, we
conduct calculations related to atomization energies, and the
results indicate that COVOS’s calculations of atomization
energies are closer to experimental values compared to DFT.
When comparing energies with RPA, we found that RPA may
overestimate the correlation energy of the system. Sometimes
we need to be more cautious about the results of RPA, which
also emphasize the benchmark role of FCI.
In conclusion, the improved COVOS algorithm can optimize

better-performing virtual orbitals, enabling us to use the FCI
method with plane-wave basis sets to explore periodic system
problems more effectively.
The COVOS algorithm presents several potential research

directions. In the current implementation, we only consider the
Γ-point, while one of the most prominent features of plane
waves is the ability to perform calculations equivalent to periodic
supercell expansion by incorporating k-points. For FCI,
supercell expansion doubles both the number of occupied
electrons and the total number of orbitals, while the
Hamiltonian matrix dimension for a closed-shell system scales
as C( )N

m 2, where N is the number of spatial orbitals, and m is the
number of electrons divided by two. This exponential increase in
computational complexity makes supercell expansion in FCI
infeasible. However, k-points can circumvent this issue by
providing more precise sampling in the reciprocal space to
obtain accurate results for periodic systems. Therefore,
developing a COVOS algorithm with a k-point is an important
future research direction.
Additionally, for iterative orbitals and rotation matrices, the

current algorithm’s use of coupled iteration may not be the most
efficient approach. The criteria used to evaluate the orbital and
active space performance could also be improved. Optimizing
the iterative process could further enhance the performance of
the COVOS orbitals. Beyond this, other aspects of wave
function-based methods with plane waves, such as the impact of
different singularity treatments on FCI energy, the choice of
pseudopotentials, and other corrections, are also worthy of
investigation.
Finally, we can also explore the role of the COVOS algorithm

in other theories. For example, it can provide more accurate
calculations for the impurity solver in dynamical mean field
theory (DMFT)64 or optimize the orbitals used in algorithms

such as RPA and MP2 with similar ideas, thereby facilitating a
wider range of research directions.
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