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Abstract

Both classical Fourier transform-based methods and neural network methods
are widely used in image processing tasks. The former has better interpretability,
whereas the latter often achieves better performance in practice. This paper in-
troduces ButterflyNet2D, a regular CNN with sparse cross-channel connections. A
Fourier initialization strategy for ButterflyNet2D is proposed to approximate Fourier
transforms. Numerical experiments validate the accuracy of ButterflyNet2D approx-
imating both the Fourier and the inverse Fourier transforms. Moreover, through four
image processing tasks and image datasets, we show that training ButterflyNet2D
from Fourier initialization does achieve better performance than random initialized
neural networks.

Keywords: Convolutional neural network, ButterflyNet, Butterfly Algorithm,
image processing

1 Introduction

Image processing tasks appear widely in our daily life and are handled by classical methods
and/or neural network methods behind the screen. Image processing tasks [1] include but
are not limited to image denoising, image deblurring, image inpainting, image recognition,
image classification, etc. A decade ago, image processing tasks were almost always han-
dled by classical methods, e.g., Fourier transform, wavelet transform, partial differential
equations, etc. With the rise of machine learning and neural network, neural network
based methods dominate image processing. Among all neural network architecture, deep
convolutional neural network (CNN) is the most popular architecture for image processing
tasks. Many variants of CNN, including LeNet [2], AlexNet [3], U-Net [4, 5, 6], etc., are
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proposed and successfully address image processing tasks. In this paper, we bridge the
classical method, Fourier transform, with the convolutional neural network method for
image processing via ButterflyNet2D.

Fourier transform. Fourier transform is a linear transformation that decomposes func-
tions into frequency components. It has a wide range of applications in a variety of fields,
including signal processing [7, 8], image processing [9, 10, 11], etc. Besides the time-
frequency transformation, the existence of the well-known fast algorithm, fast Fourier
transform (FFT) [12, 13], makes the transform widely adopted in practice. An FFT
decomposes a dense discrete Fourier transform matrix of size N × N into a product of
O(logN) sparse matrices, each of which is sparsity O(N). Another family of fast al-
gorithms that could be applied to accelerate the Fourier transform is the butterfly al-
gorithm [14, 15, 16, 17, 18, 19]. Although butterfly algorithms were originally designed
to accelerate the computation of the Fourier integral operator, they could be applied to
approximate the discrete Fourier transform in O(N logN) operations as well. The same
scaling holds for both FFT and butterfly algorithms, while the latter suffers from an ap-
proximation error. Hence, for Fourier transform in classical image processing methods,
FFT is applied.

Neural Network. There has been a growing trend to ask for better and faster im-
age processing methods in the last two decades. CNN [2, 20] was initially introduced to
process images directly and has later been embedded into other deep neural network ar-
chitectures [21] to improve image processing further. The success of CNN and its variants
in image processing have been demonstrated in tons of works [22, 23]. However, unlike
Fourier transform in image processing, which has much mathematical understanding of
the methods, CNN lacks interpretability. In most cases, researchers refer to the univer-
sal approximation theorem of CNN [24, 25, 26] for its great success in image processing.
Recently, the Fourier transform has been imported to be part of the neural network ar-
chitecture and leads to Fourier CNN [27], Fourier neural network [28], etc. In addition,
the FFT structure was incorporated into neural networks and applied to image processing
tasks [29, 30]. The connection between the Fourier transform and CNN was established
via the butterfly algorithm, and ButterflyNet [26, 31] was proposed to address signal
processing tasks and one-dimensional PDEs.

Contribution. In this work, based on the two-dimensional butterfly algorithm, we in-
troduce a sparsified CNN architecture named ButterFlyNet2D. This neural network with
a particular initialization can approximate a two-dimensional discrete Fourier transform.
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The approximation power is theoretically guaranteed. In summary, our contribution can
be organized as follows.

• The ButterflyNet2D network is constructed, which is a CNN architecture with sparse
channel connections;

• Fourier initialization is proposed for ButterflyNet2D approximating a two-dimensional
discrete Fourier transform with guaranteed approximation error;

• ButterflyNet2D is applied to many ill-posed image processing tasks, i.e., denoising,
deblurring, inpainting, and watermark removal, on practical image data sets.

Numerical experiments demonstrate that ButterflyNet2D, as a specialized CNN, along
with the Fourier initialization, outperforms its randomly initialized counterpart and an-
other well-known Neumann network [32]. The latter was designed for inverse problems in
image processing.

Organization. The rest paper is organized as follows. Section 2 proposes the Butterfly-
Net2D architecture and Fourier initialization strategy. In Section 3, ButterflyNet2Ds with
Fourier initialization and random initialization are applied to the image denoising, image
deblurring, image inpainting, and watermark removal tasks. The comparison against the
Neumann network is also presented. Finally, Section 4 concludes the paper.

2 ButterflyNet2D and Fourier Initialization

This section constructs ButterflyNet2D and initializes it as an approximated two-dimensional
discrete Fourier transform. We first pave the path to review the two-dimensional butter-
fly algorithm in Section 2.1. In Section 2.2, the two-dimensional butterfly algorithm is
detailed, with the kernel function being Fourier transform. Section 2.3 introduces the
architecture of ButterflyNet2D, and its Fourier initialization is proposed in Section 2.4.

2.1 Preliminary

Chebyshev Interpolation. An important numerical tool in approximating the Fourier
transform is the Lagrange polynomial on Chebyshev points, which is known as the Cheby-
shev interpolation. The Chebyshev points of order r on [−1/2, 1/2] are defined as{

zi =
1

2
cos

(2i− 1)π

2r

}
i∈{1,...,r}

.
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The associated Lagrange polynomial at zk admits

Lk(x) =
∏
p 6=k

x− zp
zk − zp

.

In two dimension, r2 Chebyshev points in [−1/2, 1/2]× [−1/2, 1/2] are the tensor grid of
one-dimensional Chebyshev points,{

zi,j =

(
1

2
cos

(2i− 1)π

2r
,
1

2
cos

(2j − 1)π

2r

)}
i,j∈{1,...,r}

,

The two-dimensional Chebyshev interpolation then admits,

L(i,j) = LiLj. (1)

Domain Decomposition. The butterfly algorithm essentially relies on multiscale do-
main decomposition. Here we introduce the domain decomposition for square domain
pairs. Given two domains A = [0, K) × [0, K) and B = [0, 1) × [0, 1) for K being the
frequency range, we conduct 4-partition recursively to both A and B. The resulting de-
composed domains are denoted as A`ix,iy and BL−`

jx,jy
, where (ix, iy) and (jx, jy) are indices,

and ` is recursion layer index. More precisely, the explicit expressions of A`ix,iy and BL−`
jx,jy

are

A`ix,iy =

[
ixK

2`+1
,
(ix + 1)K

2`+1

)
×

[
iyK

2`+1
,
(iy + 1)K

2`+1

)
,

BL−`
jx,jy

=

[
jx

2L−`−1
,
(jx + 1)

2L−`−1

)
×

[
jy

2L−`−1
,
(jy + 1)

2L−`−1

)
.

Figure 1 gives a 3-layer recursive domain decomposition example.
We further adopt the notation ≺ to denote the relationship among recursive partitions,

i.e., (̃ix, ĩy) ≺ (ix, iy) or A`+1
ĩx ,̃iy
≺ A`ix,iy means that

A`+1
ĩx ,̃iy
⊂ A`ix,iy

for some `. Similarly, (jx, jy) ≺ (j̃x, j̃y), or BL−`
jx,jy
≺ BL−`−1

j̃x,j̃y
, means

BL−`
jx,jy
⊂ BL−`−1

j̃x,j̃y

for some `. The layer index ` in all cases can be referred from the text around. As in
Figure 1, we have

B2
00 ≺ B1

00 ≺ B0
00,

A2
00 ≺ A1

00 ≺ A0
00.

4



layer 0 layer 1 layer 2

A0
00 A0

01

A0
10 A0

11

B2
00 B2

01 B2
02 B2

03

B2
10 B2

11 B2
12 B2

13

B2
20 B2

21 B2
22 B2

23

B2
30 B2

31 B2
32 B2

33

A1
00 A1

01 A1
02 A1

03

A1
10 A1

11 A1
12 A1

13

A1
20 A1

21 A1
22 A1

23

A1
30 A1

31 A1
32 A1

33

B1
00 B1

01

B1
10 B1

11

A2
00

B0
00

Figure 1: Recursive domain decomposition for A,B.

Low-Rank Approximation of Fourier Kernel. The Fourier kernel,

K(ξ, t) = e−2πıξ·t, ξ ∈ [0, K)× [0, K) and t ∈ [0, 1)× [0, 1),

is a Fourier integral operator. Different from general multi-dimensional Fourier integral
operator, the Fourier kernel does not have a singularity around the origin. Hence the
low-rank approximation theorem for one-dimensional Fourier integral operator could be
extended to the two-dimensional Fourier kernel.

Theorem 2.1. Let A ⊂ [0, K)2 and B ⊂ [0, 1)2 be a domain pair such that γ = eπω(A)ω(B)
r2

<
1 1, where r2 is the number of Chebyshev points. Then the Fourier kernel restricted to the
domain pair admits both low-rank approximations,

sup
ξ∈A,t∈B

∣∣∣∣∣∣e−2πıξ·t −
r∑

kx=1

r∑
ky=1

e−2πıξ·tkx,ky e−2πıξ0·(t−tkx,ky )Lkx,ky(t)

∣∣∣∣∣∣ ≤C γr
2

1− γ
, and

sup
ξ∈A,t∈B

∣∣∣∣∣∣e−2πıξ·t −
r∑

kx=1

r∑
ky=1

Lkx,ky(ξ)e−2πı(ξ−ξk)·t0e−2πıξkx,ky ·t

∣∣∣∣∣∣ ≤C γr
2

1− γ
,

where ξ0 and t0 are centers of A and B respectively, C is a constant independent of t and
ξ, ξkx,ky and tkx,ky are Chebyshev points on A and B.

A sketched proof of Theorem 2.1 can be found in Appendix 5.1. From Theorem 2.1,
when restricted to the desired domain pairs, the Fourier kernel can be well-approximated
by a low-rank factorization. An underlying matrix-vector multiplication can be approxi-

1ω(·) is the sidelength function of a domain.
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mated as,

uB(ξ) =
∑
t∈B

K(ξ, t)x(t) ≈
r∑

kx=1

r∑
ky=1

αkx,ky(ξ)

(∑
t∈B

βkx,ky(t)x(t)

)

=
r∑

kx=1

r∑
ky=1

αkx,ky(ξ)λABkx,ky ,

(2)

where

αkx,ky(ξ) =e−2πıξ·tkx,ky ,

βkx,ky(t) =e−2πıξ0·(t−tkx,ky )Lkx,ky(t), and

λABkx,ky =
∑
t∈B

βkx,ky(t)x(t).

Hence, the Fourier transform of the vector x(t) is turned into computing λABkx,ky . The
butterfly algorithm employs (2) recursively to reduce the quadratic computational cost
down to quasi-linear.

2.2 2D Butterfly Algorithm Revisit

We revisit the butterfly algorithm applying to the two-dimensional Fourier kernel. We first
conduct a L-layer recursive domain decomposition for both A0

00 = [0, K)2 and B0
00 = [0, 1)2.

The butterfly algorithm comprises three major steps: interpolation at ` = 0, recursion,
and kernel application at ` = L. The interpolation at ` = 0 interpolates function on a
uniform grid in B0

00 to Chebyshev grids on BL
jx,jy for all (jx, jy). The recursion step then

recursively interpolates the function on four Chebyshev grids at the finer domain layer to
the Chebyshev grid at the coarse domain layer. Finally, the kernel application step applies
the Fourier kernel. The 2D butterfly algorithm applying to the Fourier kernel is detailed
as follows.

1. Interpolation (` = 0). For each domain pair (A0
ix,iy , B

L
jx,jy) at layer ` = 0, ix, iy ∈

[2], jx, jy ∈ [2L−1] 2, we conduct a coefficient transfer from the uniform grid in BL
jx,jy

to Chebyshev points in the same domain. The constructed expansion coefficients
admit,

λ
A0

ix,iy
BL

jx,jy

t(kx,ky)
=

∑
tuni∈BL

jx,jy

e−2πıξ
ix,iy
0 ·(tuni−t(kx,ky))L(kx,ky)(tuni)x(tuni), (3)

2Notation [n] is the set of integers, i.e., [n] = {0, 1, . . . , n− 1}.
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for t(kx,ky) ∈ BL
jx,jy being the Chebyshev points therein and ξ

ix,iy
0 being the center of

A0
ix,iy . Throughout the paper, we add a subscript “uni” to indicate the uniform grid

point in the domain, e.g., tuni ∈ BL
jx,jy denotes the uniform grid points in BL

jx,jy .

2. Recursion(` = 1, . . . , L − 1). For each domain pair (A`−1ix,iy
, BL−`+1

jx,jy
), ix, iy ∈ [2`],

jx, jy ∈ [2L−`], we conduct coefficients transfer from the Chebyshev points in BL−`+1
jx,jy

to the Chebyshev points in BL−`
j̃x,j̃y

. The domain BL−`
j̃x,j̃y

is a parent domain of BL−`+1
jx,jy

,

i.e., BL−`+1
jx,jy

≺ BL−`
j̃x,j̃y

. Similarly, the other domain satisfies A`
ĩx ,̃iy
≺ A`−1ix,iy

. The

coefficients transfer admits,

λ
A`

ĩx,̃iy
BL−`

j̃x,j̃y

t(kx,ky)
=

∑
(jx,jy)≺(j̃x,j̃y)

∑
t∈BL−`+1

jx,jy

e−2πıξ0·(t−t(kx,ky))L(kx,ky)(t)λ
A`−1

ix,iy
BL−`+1

jx,jy

t , (4)

for t(kx,ky) ∈ BL−`
jx,jy

and (̃ix, ĩy) ≺ (ix, iy), where t and t(kx,ky) are Chebyshev points in

BL−`+1
jx,jy

and BL−`
j̃x,j̃y

respectively, ξ0 is the center of Al
ĩx ,̃iy

.

3. Kernel Application(` = L). In the last step, the domain pairs are (ALix,iy , B0
0,0) for

ix, iy ∈ [2L]. All previous layers are transferring coefficients via interpolation. This
step applies the Fourier kernel to the transferred coefficients, and approximate u(ξ)
as

u(ξuni) ≈
∑

t(kx,ky)∈B0
0,0

e−2πıξuni·t(kx,ky)λ
AL

ix,iy
B0

0,0

t(kx,ky)
, (5)

for ξuni being uniform grids in ALix,iy . This gives us the desired approximation of
u(ξ).

Butterfly algorithm, in general, carries a complicated procedure. In this revisit, we
omit most intuition behind operations and review the algorithm flow. For more details,
readers are referred to [26].

2.3 ButterflyNet2D

This section introduces the network architecture of ButterflyNet2D, which is a CNN ar-
chitecture with sparsely connected channels. In the revisit of the butterfly algorithm, we
make a crucial observation that the summation kernels in (3) and (4) are independent of
the subdomain B`

jx,jy . More precisely, the summation kernels in (3) and (4),

e−2πıξ
ix,iy
0 ·(tuni−t(kx,ky))L(kx,ky)(tuni) and e−2πıξ0·(t−t(kx,ky))L(kx,ky)(t).
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depend only on the relative distance of either tuni and t(kx,ky) or t and t(kx,ky). Therefore,
these two summation kernels are the same for all B`

jx,jy at the same `-layer. The sum-
mations as in (3) and (4) are convolutions and could be represented by a CNN. In the
following, we construct the ButterflyNet2D architecture, which mimics the structure of
the butterfly algorithm and replace the summation operations by convolutions.

Network Architecture. We introduce the construction of a ButterflyNet2D with L
layers. The input is denoted as Z(0), whose size is ωx2

L−1 × ωy2L−1 and channel size is
1. The generalization to inputs of other sizes is straightforward. We adopt a channel-first
index rule, i.e., the input is indexed as Z0(c, i, j), where c = 0 is the channel index, i and
j range from 0 to ωx2

L−1 − 1 and ωy2
L−1 − 1 respectively are two spacial indices. The

desired output is assumed to be of size mx2
L × my2

L. The network architecture could
then be constructed as follows.

1. Interpolation(` = 0). Given c ∈ [4r2], the first layer is described as

Z(1)(c, i, j) = σ

B(0)(c) +
∑

sx∈[ωx]
sy∈[ωy ]

W (0)(0, c, sx, sy)Z
(0)(0, ωxi+ sx, ωyj + sy)

 , (6)

for i, j = [2L−1], where σ{·} is the nonlinear ReLU activation function, B(0) is
the bias, W (0) is the convolution kernel. The output function at the current layer
has 4r2 channels. This layer is a regular 2D convolution layer with input sizes
ωx2

L−1 × ωy2L−1, input channel size 1, output channel size 4r2, convolution kernel
size ωx × ωy, stride (ωx, ωy).

2. Recursion(` = 1, . . . , L − 1). The input at the ` layer is of size 2L−` × 2L−` and
channel size 4`r2. The convolution operation at the current layer admits,

Z(`+1)(co, i, j) = σ

B(`)(co) +
∑

kr2≤ci<(k+1)r2

sx,sy∈[2]

W (`)(ci, co, sx, sy)Z
(`)(ci, 2i+ sx, 2j + sy)

 ,

(7)
where i, j = [2L−`−1], co ∈ [4`+1r2], and k = co/(4r

2). We notice the relation
(̃ix, ĩy) ≺ (ix, iy) in (4). Hence in our network architecture, different from the regular
fully connected channel 2D convolutional layer, the input channels and output chan-
nels in (7) are sparsely connected. We could also view (7) as a sequence of 4` regular
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2D convolutional layers with input size 2L−`× 2L−`, output size 2L−`−1× 2L−`−1, in-
put channel size r2, and output channel size 4r2, acting to each set of input channels
and then concatenate the output along the channel direction.

3. Kernel Application(` = L). There are two ways to view the kernel application
layer. From the convolutional layer point of view, we apply 2D convolutional layers
with sparse channel connection, where the input size is 1 × 1. From a dense layer
point of view, we apply a dense layer to each set of channels in the input. From
either point of view, we could represent the operation as,

Z(L+1)(co, 0, 0) = σ

B(L)(co) +
∑

kr2≤ci<(k+1)r2

W (L)(ci, co, 0, 0)Z(L)(ci, 0, 0)

 , (8)

where co ∈ [mxmy4
L].

Figure 2: Input and output channel connection in ButterflyNet2D.

An important difference between the ButterflyNet2D and regular 2D CNN is the con-
nectivity between input and output channels. ButterflyNet2D has a sparse channel con-
nection, whereas a regular 2D CNN has a dense connection between input and output
channels. Figure 2 offers an illustration for the channel connections in ButterflyNet2D.

Parameter Counting. For a ButterflyNet2D with L layers and r2 Chebyshev grid
points, the input and output are assumed to be of size ωx2

L−1×ωy2L−1 and mx2
L×my2

L

respectively. We calculate the number of convolutional kernel weights and bias weights.
As been explained in Appendix 5.2, all weights and bias in (6), (7), and (8), are 4 × 4
real matrices, which would then be initialized to approximate the complex numbers for
Fourier transform. The calculation for the number of weights is as follows.
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1. Interpolation(` = 0). The number of nonzeros in the convolution kernel W (0) is

nnz(W (0)) = 4× (4× 4× r2)× (ωx × ωy) = 43r2ωxωy,

whereas that in the bias B(0) is

nnz(B(0)) = 4× (4× r2) = 42r2.

2. Recursion(` = 1, . . . , L − 1). The number of nonzeros in the convolution kernel
W (`) is

nnz(W (`)) = 4` × (4× r2)× (4× 4× r2)× (2× 2) = 4`+4r4,

whereas that in the bias B(`) is

nnz(B(`)) = 4` × (4× 4× r2) = 4`+2r2.

Hence summing over all layers, the total number of weights in convolution kernel
and bias in the recursion step admits,

L−1∑
`=1

nnz(W (`)) =
4L+4 − 45

3
r4,

L−1∑
`=1

nnz(B(`)) =
4L+2 − 43

3
r2.

3. Kernel Application(` = L). The number of nonzeros in the convolution kernel
W (L) is

nnz(W (`)) = 4L × (4× r2)× (4×mx ×my)× (1× 1) = 4L+2r2mxmy,

whereas that in the bias B(L) is

nnz(B(L)) = 4L × (4×mx ×my) = 4L+1mxmy.

With an input that is of the size N ×N , the number of layers in the network could be
L = logN . The overall number of weights is

42r2(1 + 4ωxωy) +
4L+2 − 43

3
r2(1 + 42r2) + 4L+1mxmy(1 + 4r2) = O(N).

When a similar CNN is considered and channels are fully connected, the number of weights
would be

42r2(1 + 4ωxωy) +
4L+2 − 43

3
+

42L+8 − 46

15
+ 4L+1mxmy(1 + 4r2) = O(N2 +N).

Hence, ButterflyNet2D, compared to the regular CNN, reduces the number of weights by
a factor of O(N).
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2.4 Fourier Initialization

The ButterflyNet2D is constructed in a way mimicking the butterfly algorithm. Extra
bias weights and ReLU activation functions are added. We now propose an initialization
strategy, which transfers coefficients in the butterfly algorithm to convolution kernels in
ButterflyNet2D. Given the same input and output sizes, and the same number of Cheby-
shev points, when the initialization strategy is applied, the ButterflyNet2D is identical to
the butterfly algorithm. We adopt a re-indexing of the channel,

c = (ix, iy, kx, ky)

for subdomain A`ix,iy and the Chebyshev node index (kx, ky). In the initialization strategy,
named Fourier initialization, all bias weights are initialized to be zero. The convolution
kernel weights are initialized as follows, where complex coefficients are converted to 4× 4
matrixes as in Appendix 5.2.

1. Interpolation(` = 0). Since the summation in (3) is a convolution, the dependence

on B
(L)
jx,jy

could be ignored. We initialize the convolution kernel W (0) as,

W (0)(0, c, sx, sy) = e−2πıξ
ix,iy
0 ·(u(sx,sy)−t(kx,ky))L(kx,ky)(u(sx,sy)),

where u(sx,sy) and t(kx,ky) are the uniform grid and Chebyshev grid in BL
0,0 respectively.

2. Recursion(` = 1, . . . , L− 1). The summation in (4) is a convolution with a sparse

channel connection, the dependence on B
(L−`+1)
jx,jy

could be ignored. We initialize the

convolution kernel W (`) as

W (`)(ci, co, sx, sy) = e−2πıξ0·(u(sx,sy)−t(kx,ky))L(kx,ky)(u(sx,sy)),

where u(sx,sy) is the Chebyshev node in BL−`+1
jx,jy

, where jx ∈ [2], jy ∈ [2]. And t(kx,ky)
is the Chebyshev node in BL−`

0,0 . Importantly, the input and output channel indices

ci and co are re-indexed as (ix, iy, sx, sy) and (̃ix, ĩy, kx, ky), such that A`+1
ĩx ,̃iy
≺ A`ix,iy .

3. Kernel Application(` = L). For the domain pair (ALix,iy , B
0
0,0), the kernel weights

connects (5) and (8) as,

W (L+1)(ci, co, 0, 0) = e−2πıξ(kx,ky)·(t(sx,sy)),

where t(sx,sy) is the Chebyshev node in B0
0,0 and ξ(kx,ky) is the uniform grid in ALix,iy .

Both the Fourier kernel and the inverse Fourier kernel admit the low-rank approxi-
mation property in Theorem 2.1. Hence, we could also initialize the ButterflyNet2D to
approximate the inverse Fourier transform. The initialization detail is omitted. Instead,
we numerically demonstrate the performance in the next section.
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3 Numerical Experiments

We implemented ButterflyNet2D together with random and Fourier initialization in Python,
with PyTorch (1.11.0). The code is available at https://github.com/Genz17/ButterFlyNet2D.
In Section 3.1, we first apply the ButterflyNet2D to approximate the Fourier transform
and inverse Fourier transform to verify the approximation accuracy of the Fourier initial-
ization. Then in Section 3.2, several image processing tasks on practical image datasets
are addressed by ButterflyNet2D.

3.1 Approximation of Fourier Transform

We explore the approximation power of Fourier initialization for the ButterflyNet2D before
and after training. The approximation power is measured by the relative matrix norm,

εp :=
‖B − F‖p
‖F‖p

,

where B, F denote the matrix representation of ButterflyNet2D and discrete (inverse)
Fourier transform matrix, respectively.

Approximation Before Training. We apply ButterflyNet2D with Fourier initializa-
tion to both the Fourier transform and inverse Fourier transform with N = 64× 64. The
numerical results are included in Table 1 and Table 2.

layer L (with r = 6) Cheb r2 (with L = 6)

4 5 6 42 52 62

ε1 5.27× 10−1 3.64× 10−2 1.72× 10−3 5.30× 10−2 8.18× 10−3 1.72× 10−3

ε2 7.71× 10−1 6.05× 10−1 1.84× 10−3 8.20× 10−2 1.20× 10−2 1.84× 10−3

ε∞ 8.07× 100 3.73× 10−2 1.12× 10−3 6.65× 10−2 8.16× 10−3 1.12× 10−3

Table 1: ButterflyNet2D with Fourier initialization approximating Fourier transform with
N = 64× 64 before training.

From both Table 1 and Table 2, the relative error decays exponentially with respect
to both the layer number L and the number of Chebyshev points r2.

Approximation After Training. We further train ButterflyNet2D with Fourier ini-
tialization in approximating the Fourier transform and inverse Fourier transform with
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layer L (with r = 6) Cheb r2 (with L = 6)

4 5 6 42 52 62

ε1 9.04× 10−1 6.80× 10−2 3.07× 10−3 1.07× 10−1 1.89× 10−2 3.07× 10−3

ε2 1.16× 100 7.87× 10−2 3.10× 10−3 1.09× 10−1 1.89× 10−2 3.10× 10−3

ε∞ 4.19× 100 1.76× 10−1 4.83× 10−3 1.79× 10−1 3.03× 10−2 4.83× 10−3

Table 2: ButterflyNet2D with Fourier initialization approximating inverse Fourier trans-
form with N = 64× 64 before training.

N = 64 × 64. The training data is generated by the exact Fourier and inverse Fourier
transforms with uniform random input vectors. The loss function is the `2 relative error.
For training, we adopt Adam optimizer with a learning rate 0.001 and batch size of 20.
The numerical results after 200 epochs are included in Table 3 and Table 4.

layer L (with r = 6) Cheb r2 (with L = 6)

3 4 22 32

ε1 9.51× 10−1 2.78× 10−1 3.66× 10−1 6.49× 10−2

ε2 4.96× 10−1 1.64× 10−1 1.97× 10−1 3.74× 10−2

ε∞ 2.58× 10−2 2.08× 10−2 1.93× 10−2 8.54× 10−3

Table 3: ButterflyNet2D with Fourier initialization approximating Fourier transform with
N = 64× 64 after training.

layer L (with r = 6) Cheb r2 (with L = 6)

3 4 22 32

ε1 5.00× 10−1 1.39× 10−1 2.42× 10−1 3.32× 10−2

ε2 5.02× 10−1 1.60× 10−1 2.62× 10−1 3.60× 10−2

ε∞ 7.04× 10−1 5.04× 10−1 5.45× 10−1 1.03× 10−1

Table 4: ButterflyNet2D with Fourier initialization approximating inverse Fourier trans-
forms with N = 64× 64 after training.

Comparing Table 1 and Table 3, we find that training a Fourier initialized Butterfly-
Net2D could further improve the approximation accuracy. ButterflyNet2D with smaller r2

after training achieves better accuracy than the network with larger r2 without training.
A similar conclusion holds for inverse Fourier transform if we compare Table 2 and Table 4.
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We further include the training result for ButterflyNet2D with Kaiming random initial-
ization in Appendix 5.3. If we compare the training result for Fourier initialization and
Kaiming random initialization, we find that ButterFlyNet2D with Fourier initialization
achieves better accuracy in approximating Fourier and inverse Fourier transform.

3.2 Image Processing Tasks

We apply ButterflyNet2D to four major image processing tasks: inpainting, deblurring,
denoising, and watermark removal. For the inpainting task, we adopt a 10× 10 mask for
32× 32 pictures, and when the picture size doubles, the mask size doubles. For example,
a mask of the size 80×80 is applied to input pictures of size 256×256. For the deblurring
task, the blurring kernel is a 5× 5 Gaussian kernel with a standard deviation of 2.5. For
the denoising task, we add Gaussian noise with mean zero and standard deviation 0.1. We
add 8 horizontal and vertical black lines to the original input picture for the watermark
removal task. The line width increases with the picture size. Three picture datasets used
are CIFAR10, STL10, and CelebA. They contain 30000, 5000, 30000 pictures, respectively.
For testing purposes, we resize pictures into different sizes. We crop the pictures into 2×2
or 4× 4 parts to make the neural network more efficient.

The neural network is not the vanilla ButterflyNet2D. We adopt the idea of special-
frequence transformation property and construct the neural network architecture to be
a ButterflyNet2D applied after another ButterflyNet2D, named ButterflyNet2D2. Both
ButterflyNet2Ds have log2(Input Size) layers and 22 Chebyshev points. The first But-
terflyNet2D is initialized to approximate the Fourier transform, whereas the second one
is initialized to approximate the inverse Fourier transform. Hence the neural network is
initialized as an approximation of the identity mapping.

Relative vector 2-norm error is used as the loss function,

L =
N∑
i=1

‖B(xi)− xi‖2
‖xi‖2

,

where B denotes the neural network and xi is the i-th training data out of N pictures.
The PSNR with a batch size of 256 is used as the measurement of testing results,

PSNR =

∑
x∈Batch−10 log10 (‖B(x)− x‖22/(3SxSy))

Batch Size
, (9)

where B(x) and x are RGB-colored pictures whose sizes are Sx×Sy. Adam optimizer with
an initial learning rate of 2× 10−3 is adopted as the minimizer. Further, “ReduceLROn-
Plateau” learning rate decay strategy is applied with a factor of 0.98 and patience of 100.
All the details of epochs and batch sizes are shown in Table 5.
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Task Dataset Input Size Training Epochs Batch Size

Inpainting
Denoising
Deblurring

CelebA(64× 64) 32× 32 12 20
CelebA(128× 128) 64× 64 12 20
CelebA(256× 256) 64× 64 3 5
CIFAR10(32× 32) 32× 32 12 20

STL10(64× 64) 32× 32 72 20

Watermark Removal

CelebA(64× 64) 16× 16 3 5
CelebA(128× 128) 32× 32 3 5
CelebA(256× 256) 32× 32 3 5
CIFAR10(32× 32) 16× 16 12 20

STL10(64× 64) 16× 16 12 5

Table 5: Batch sizes and epochs for various tasks on various datasets.

All the pictures in the datasets are RGB-colored pictures. We turn them into grayscale
for training. Then the trained ButterflyNet2D2 is applied to each of the three color chan-
nels of testing pictures. The three outputs are concatenated along the channel direction
and form an RGB-colored picture.

Table 6 and Figure 3 illustrates all numerical results of ButterflyNet2D2 applying to
various tasks and datasets. According to Table 6, the Fourier initialization outperforms
both Kaiming uniform random initialization and Kaiming normal random initialization.
As the complexity of the neural network increases, the training becomes more difficult.
The Fourier initialization bridges the classical image processing method with the neural
network methods. The network training starts from the classical method and approaches
the benefit of neural networks. We make another comparison against Neumann network.
In the inpainting tasks, ButterflyNet2D2 and Neumann network perform similarly. While
in the deblurring tasks, ButterflyNet2D2 with Fourier initialization outperforms Neumann
Network. This result is not surprising since deblurring is easier in the frequency domain.

4 Conclusions and Discussions

In this paper, we proposed a neural network architecture named ButterflyNet2D, together
with a specially designed Fourier initialization. The ButterflyNet2D with Fourier ini-
tialization approximates discrete Fourier transforms with O(N) parameters, where N is
the input size. ButterflyNet2D and Fourier initialization allow us to bridge the classical
Fourier transformation method and powerful neural network methods for image processing
tasks.
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Initialization

Task Dataset Fourier Uniform Normal

Inpaint

CelebA(64× 64) 30.25 16.51 17.39
CelebA(128× 128) 30.55 17.91 18.39
CelebA(256× 256) 30.83 17.63 18.49
CIFAR10(32× 32) 28.73 15.97 17.23

STL10(64× 64) 25.77 16.03 16.87

Deblur

CelebA(64× 64) 36.27 16.16 17.27
CelebA(128× 128) 38.30 17.93 18.02
CelebA(256× 256) 43.30 17.60 17.49
CIFAR10(32× 32) 40.39 16.35 17.14

STL10(64× 64) 33.88 16.16 16.99

Denoise

CelebA(64× 64) 26.71 16.18 17.55
CelebA(128× 128) 29.07 17.30 18.15
CelebA(256× 256) 32.02 18.17 18.59
CIFAR10(32× 32) 26.33 16.38 16.57

STL10(64× 64) 26.57 15.40 17.10

Watermark Removal

CelebA(64× 64) 31.63 18.25 18.02
CelebA(128× 128) 35.14 16.02 17.18
CelebA(256× 256) 41.69 16.03 17.31
CIFAR10(32× 32) 31.13 17.00 16.08

STL10(64× 64) 32.29 17.48 17.54

Table 6: The numerical results of ButterflyNet2D2.

Through numerical experiments, we explored the approximation power of Butterfly-
Net2D with Fourier initialization before and after training. Numerical results show that
ButterflyNet2D with Fourier initialization well-approximates the Fourier transform and
the training could further improve the approximation accuracy. Tests of ill-posed image
processing tasks are also conducted. ButterflyNet2D shows its power in these tasks.

The work can be extended in several directions. Firstly, the initialization method
has limited versatility. The Fourier initialization method heavily relies on the Butterfly-
Net2D architecture. Many popular techiniques, e.g., max-pooling, batch normalization, or
dropout, currently cannot be incorporated with the Fourier initialization directly. Hence
an extension of Fourier initialization to incorporating these popular techiniques is desired.
Secondly, the ButterflyNet2D is slow in backpropagation. The efficiency could be im-

16



Figure 3: Original picture, distorted picture, and recovered picture by ButterflyNet2D2.
From top to bottom, the distortions are inpainting, denoising, deblurring, and watermark
removal. From left to right, the datasets are CelebA, CIFAR10 and STL10.

proved if ButterFlyNet2D is better implemented as a building blocks in neural network
frameworks.

Task Dataset Preconditioned Not Preconditioned

Inpaint
CelebA(64× 64) 30.45 31.06

CIFAR10(32× 32) 28.40 28.20
STL10(64× 64) 28.00 27.47

Deblur
CelebA(64× 64) 33.79 31.01

CIFAR10(32× 32) 37.83 36.55
STL10(64× 64) 30.66 29.43

Table 7: The numerical results of Neumann network.
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5 Appendix

5.1 Proof

When focusing on some square domain pair A ⊂ [0, K)2, B ⊂ [0, 1)2, the Fourier kernel
can be decomposed as

K(ξ, t) = e−2πı(ξ·t−ξ0·t−ξ·t0+ξ0·t0)e−2πıξ0·te−2πıξ·t0e−2πı(−ξ0·t0)

= e−2πıR(ξ,t)e−2πıξ0·te−2πıξ·t0e2πıξ0·t0 ,
(10)

where R(ξ, t) = (ξ − ξ0) · (t− t0), ξ0 is the center of A, and t0 is the center of B.
For any fixed ξ, we have

e−2πıR(ξ,t) =
∞∑
k=0

(−2πıR(ξ, t))k

k!
. (11)

If we have ω(A)ω(B) <
r2

eπ
, the r2-term truncation error can be bounded as

∣∣∣∣∣e−2πıR(ξ,t) −
r2−1∑
k=0

(−2πıR(ξ, t))k

k!

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=r2

(−2πıR(ξ, t))k

k!

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=r2

(−πıω(A)ω(B))k

k!

∣∣∣∣∣ ≤
∞∑
k=r2

(πω(A)ω(B))k

k!

≤
∞∑
k=r2

(eπω(A)ω(B))k

kk
≤

∞∑
k=r2

(eπω(A)ω(B))k

r2k
=

(eπω(A)ω(B))r
2

r2r2

1− eπω(A)ω(B)
r2

=
γr

2

1− γ
,

(12)

here we use γ to denote
eπω(A)ω(B)

r2
.

Notice that
r2−1∑
k=0

(−2πıR(ξ, t))k

k!
is a polynomial about t, which means we have

∥∥∥∥∥∥e−2πıR(ξ,t) −
r∑

kx=1

r∑
ky=1

e−2πıR(ξ,tkx,ky )Lkx,ky(t)

∥∥∥∥∥∥
∞

< C
γr

2

1− γ
, (13)
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i.e. ∥∥∥∥∥∥e−2πı(ξ−ξ0)·(t−t0) −
r∑

kx=1

r∑
ky=1

e−2πı(ξ−ξ0)·(tkx,ky−t0)Lkx,ky(t)

∥∥∥∥∥∥
∞

≤ C
γr

2

1− γ
,

=⇒ sup
ξ∈A,t∈B

∣∣∣∣∣∣e−2πıξ·t −
r∑

kx=1

r∑
ky=1

e−2πıξ·tkx,ky e−2πıξ0·(t−tkx,ky )Lkx,ky(t)

∣∣∣∣∣∣ ≤ C
γr

2

1− γ
,

(14)

where C is a constant independent of t and ξ, tkx,ky are used to denote the r2 Chebyshev
nodes in B.

Similarly, for any fixed t ∈ B, we have
r2−1∑
k=0

(−2πıR(ξ, t))k

k!
is a polynomial about ξ.

Hence the second conclusion can be obtained through the same procedure.

5.2 Complex Valued Network

In order to realize complex number multiplication and addition via nonlinear neural
network, we represent a complex number as four real numbers, i.e., a complex number
x = <x+ ı=x ∈ C is represented as[

(<x)+ (=x)+ (<x)− (=x)−
]>
, (15)

where (z)+ = max(z, 0), (z)− = max(−z, 0) for any z ∈ R. Then a complex-scalar
multiplication

ax = y. (16)

can be represented as

σ



<a −=a −<a =a
=a <a −=a −<a
−<a =a <a −=a
−=a −<a =a <a




(<x)+
(=x)+
(<x)−
(=x)−


 =


(<y)+
(=y)+
(<y)−
(=y)−

 . (17)

Here σ is the activation function called ReLU.

5.3 Approximation to Fourier Transform with Random Initial-
ization

The training accuracy of ButterflyNet2D with random initialization to approximate the
Fourier and invese Fourier transform are included in Table 8 and Table 9 respectively.
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N = 64× 64(FT)

layer L (with r = 2) Cheb (with L = 6)

3 4 22 32

ε1 9.71× 10−1 9.71× 10−1 9.92× 10−1 9.71× 10−1

ε2 5.06× 10−1 5.06× 10−1 7.95× 10−1 5.06× 10−1

ε∞ 2.61× 10−1 2.61× 10−1 7.11× 10−1 2.62× 10−2

Table 8: Relative errors of the network approximating the Fourier Fourier operator after
training.

N = 64× 64(IFT)

layer L (with r = 2) Cheb (with L = 6)

3 4 22 32

ε1 6.27× 10−1 6.30× 10−1 6.38× 10−1 6.43× 10−1

ε2 6.52× 10−1 6.53× 10−1 6.64× 10−1 6.66× 10−1

ε∞ 9.75× 10−1 9.78× 10−1 9.87× 10−1 9.94× 10−1

Table 9: Relative errors of the network approximating the inverse Fourier operator after
training.

5.4 Loss Curve

In this section, we offer some images that describe how the loss drops.
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Figure 4: Loss drop in task Inpainting, dataset CelebA. These corresponds to four differ-
ent initializations used in our experiments, namely Fourier, Kaiming Uniform, Kaiming
Normal and Orthogonal.
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Figure 5: Loss drop in task Deblurring, dataset CelebA. These corresponds to four differ-
ent initializations used in our experiments, namely Fourier, Kaiming Uniform, Kaiming
Normal and Orthogonal.
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Figure 6: Loss drop in task Denoising, dataset CelebA. These corresponds to four differ-
ent initializations used in our experiments, namely Fourier, Kaiming Uniform, Kaiming
Normal and Orthogonal.
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Figure 7: Loss drop in task watermark removal, dataset CelebA. These corresponds to
four different initializations used in our experiments, namely Fourier, Kaiming Uniform,
Kaiming Normal and Orthogonal.
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