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Abstract
Structured CNN designed using the prior information of problems potentially improves efficiency
over conventional CNNs in various tasks in solving PDEs and inverse problems in signal pro-
cessing. This paper introduces BNet2, a simplified Butterfly-Net and inline with the conventional
CNN. Moreover, a Fourier transform initialization is proposed for both BNet2 and CNN with guar-
anteed approximation power to represent the Fourier transform operator. Experimentally, BNet2
and the Fourier transform initialization strategy are tested on various tasks, including approximat-
ing Fourier transform operator, end-to-end solvers of linear and nonlinear PDEs, and denoising
and deblurring of 1D signals. On all tasks, under the same initialization, BNet2 achieves similar
accuracy as CNN but has fewer parameters. And Fourier transform initialized BNet2 and CNN
consistently improve the training and testing accuracy over the randomly initialized CNN.
Keywords: Convolutional neural network, Butterfly Algorithm, signal processing, inverse problem

1. Introduction

Deep convolutional neural network (CNN) has been widely applied to solving PDEs as well as
inverse problems in signal processing. In both applications, spectral methods, namely involving
forward and backward Fourier transform operators, serve as a traditional solution. Spectral methods
have been a classical tool for solving elliptic PDEs. For image inverse problems, primarily image
restoration like denoising and deblurring, a large class of PDE methods consider the nonlinear
diffusion process (Perona and Malik, 1990; Tsiotsios and Petrou, 2013) which are connected to
wavelet frame methods (Cai et al., 2012; Dong et al., 2017). The involved operator is elliptic,
typically the Laplace operator.

Apart from the rich prior information in these problems, the conventional end-to-end deep CNN,
like U-Net (Ronneberger et al., 2015) and Pix2pix (Isola et al., 2017), consists of convolutional lay-
ers which have fully trainable local filters and are densely connected across channels. The enlarged
model capacity and flexibility of CNN improves the performance in many end-to-end tasks, how-
ever, such fully data-driven models may give a superior performance on one set of training and
testing datasets, but encounter difficulty when transfer to another dataset, essentially due to the
overfitting of the trained model which has a large amount of flexibility (Plotz and Roth, 2017; Ab-
delhamed et al., 2018). Also, as indicated in Chollet (2017); Jin et al. (2015); Mamalet and Garcia
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(2012); Wang et al. (2017, 2018), the dense channel connection can be much pruned in the post-
training process without loss of the prediction accuracy.

This motivates the design of structured CNNs which balance between model capacity and pre-
venting over-fitting, by incorporating prior knowledge of PDEs and signal inverse problems into the
deep CNN models. The superiority of structured CNNs over ordinary CNNs has been shown both
for PDE solvers (Fan et al., 2019c) and for image inverse problems (Gilton et al., 2020). Several
works have borrowed ideas from numerical analysis in deep models: Li et al. (2019) introduces
Butterfly-Net (BNet) based on the butterfly algorithm for fast computation of Fourier integral op-
erators (Ying, 2009; Candès et al., 2009; Demanet et al., 2012; Li et al., 2015a,b); Khoo and Ying
(2019) proposes to use a switching layer with sparse connections in a shallow neural network, also
inspired by the butterfly algorithm, to solve wave equation based inverse scattering problems; Fan
et al. (2019c) and Fan et al. (2019b) introduce hierarchical matrix into deep network to compute non-
linear PDE solutions; Fan et al. (2019a) proposes a neural network based on the nonstandard form
(Beylkin et al., 1991) and applies to approximate nonlinear maps in PDE computation. Problem-
prior informed structured CNNs have become an emerging tool for a large class of end-to-end tasks
in solving PDEs and inverse problems.

This paper introduces a new Butterfly network architecture, which we call BNet2. A main ob-
servation is that, as long as the Fourier transform operator is concerned, the switch layer in Butterfly
algorithm can be removed while preserving the approximation ability of BNet. This leads to the
proposed model, which inherits the approximation guarantee the same as the BNet, but also makes
the network architecture much simplified and inline with the conventional CNN.

We also investigate the Fourier transform (FT) initialization. FT initialization adopts the inter-
polative construction in Butterfly factorization as in Li and Yang (2017) to initialize BNet2. Since
BNet2 now is a conventional CNN with sparsified channel connections, FT initialization can also
be applied to CNN to realize a linear FT. We experimentally find that both BNet2 and CNN are
sensitive to initialization in problems that we test on, and FT initialized networks outperform their
randomly initialized counterpart in our settings. The trained network from FT initialization also
demonstrates better stability with respect to statistical transfer of testing dataset from the training
set.

In summary, the contributions of the paper include: (1) We introduce BNet2, a simplified struc-
tured CNN based on Butterfly algorithm, which removes the switch layer and later layers in BNet
and thus is inline with the conventional CNN architecture; (2) FT initialization for both BNet2 and
CNN serves as an initialization recipe for a large class of CNNs in many applications; (3) FT ini-
tialized BNet2 and CNN inherit the theoretical exponential convergence of BNet in approximating
FT operator, and the approximation can be further improved after training on data; (4) Applications
to end-to-end solver for linear and nonlinear PDEs, and inverse problems of signal processing are
numerically tested, and under the same initialization BNet2 with fewer parameters achieves similar
accuracy as CNN; (5) FT initialized BNet2 and CNN outperforms randomly initialized CNN on all
tasks included in this paper.

2. Butterfly-Net2

The structure of BNet2 inherits a part of design in BNet but makes it more simple and similar
to CNN. The specific difference between BNet and BNet2 will be presented in Remark 2. For
completeness, we will first recall the CNN under our own notations and then introduce BNet2.
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Towards the end of this section, the numbers of parameters for both CNN and BNet2 are derived
and compared.

Before introducing network structures, we first familiarize ourselves with notations used through-
out this paper. The bracket notation of n denotes the set of nonnegative integers smaller than n, i.e.,
rns “ t0, 1, . . . , n´ 1u. Further, a contiguous subset of rns is denoted as rnski , where k is a divisor
of n denoting the total number of equal partitions and i indexed from zero denotes the i-th partition,
i.e., rnski “ t

n
k i,

n
k i`1, . . . , nk pi`1q´1u. While describing the network structure,X and Y denote

the input and output vector with lengthN andK respectively, i.e.,X “ X
`

rN s
˘

and Y “ Y
`

rKs
˘

.
Z, W , and B denote hidden variables, multiplicative weights and biases respectively. For example,
Zp`q

`

rns, rCs
˘

is the hidden variable at `-th layer with n spacial degrees of freedom (DOFs) and
C channels; W p`q

`

rws, rCins, rCouts
˘

is the multiplicative weights at `-th layer with w being the
kernel size, Cin and Cout being the in- and out-channel sizes; Bp`q

`

rCouts
˘

denotes the bias at `-th
layer acting on Cout channels. Activation function is denoted as σp¨q, which is ReLU in this paper
by default.

2.1. CNN Revisit

A one dimensional CNN can be precisely described using notations defined as above. For a L layer
CNN, we define the feedforward network as follows.

• Layer 0: The first layer hidden variable Zp1q
`

r N2w s, r2rs
˘

with 2r channels is generated via
applying a 1D convolutional layer with kernel size 2w and stride 2w followed by an activation
function on the input vector X

`

rN s
˘

, i.e.,

Zp1q
`

j, c
˘

“ σ
´

Bp0q
`

c
˘

`
ÿ

iPr2ws

W p0q
`

i, 0, c
˘

X
`

2wj ` i
˘

¯

, (1)

for j P r N2w s and c P r2rs.

• Layer ` “ 1, 2, . . . , L ´ 1: The connection between the `-th layer and the p` ` 1q-th layer
hidden variables is a 1D convolutional layer with kernel size 2, stride size 2, 2`r in-channels
and 2``1r out-channels followed by an activation function, i.e.,

Zp``1q
`

j, c
˘

“ σ
´

Bp`q
`

c
˘

`
ÿ

kPr2`rs

ÿ

iPr2s

W p`q
`

i, k, c
˘

Zp`q
`

2j ` i, k
˘

¯

, (2)

for j P r N
2``1w

s and c P r2``1rs. The first and second summation in (2) denotes the summation
over in-channels and the spacial convolution respectively.

• Layer L: The last layer mainly serves as a reshaping from the channel direction to spacial
direction, which links the L-th layer hidden variables with the output Y via a fully connected
layer, i.e.,

Y
`

c
˘

“
ÿ

kPr2Lrs

ÿ

iPr N

2Lw
s

W pLq
`

i, k, c
˘

ZpLq
`

i, k
˘

, (3)

for c P rKs. If Y is not the final output, then the bias and activation function can be added.
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Figure 1: The comparison between CNN and BNet2.

In the above description, readers who are familiar with CNN may find a few irregular places. We
will address these irregular places in Remark 1 after the introduction of BNet2.

CNN is the most successful neural network in practice, especially in the area of signal process-
ing and image processing. Convolutional structure, without doubt, contributes most to this success.
Another contributor is the increasing channel numbers. In practice, people usually double the chan-
nel numbers until reaching a fixed number and then stick to it till the end. Continually doubling
channel numbers usually improves the performance of the CNN, but has two drawbacks. First,
large channel numbers lead to the large parameter number, which in turn leads to overfitting issue.
The second drawback is the expensive computational cost in both training and evaluation.

2.2. Butterfly-Net2

BNet2, in contrast to CNN, has the identical convolutional structure and allows continually doubling
the channel numbers. For the two drawbacks mentioned above, BNet2 overcomes the second one
and partially overcomes the first one.

The Layer 0 in BNet2 is identical to that in CNN. Hence, we only define other layers in the feed
forward network as follows.

• Layer ` “ 1, 2, . . . , L ´ 1: The 2`r in-channels are equally partitioned into 2` parts. For
each part, a 1D convolutional layer with kernel size 2, stride 2, in-channel size r and out-
channel size 2r is applied. The connection between the `-th layer and the p` ` 1q-th layer
hidden variables obeys,

Zp``1q
`

j, c
˘

“ σ
´

Bp`q
`

c
˘

`
ÿ

kPr2`rs2`p

ÿ

iPr2s

W p`q
`

i, k, c
˘

Zp`q
`

2j ` i, k
˘

¯

, (4)

for j P r N
2``1w

s, c P r2``1rs2
`

p , and p P r2`s.
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• Layer L: The 2Lr in-channels are equally partitioned into 2L parts. For each part, a 1D
convolutional layer with kernel size N

2Lw
, in-channel size r and out-channel size K

2L
is applied.

The last layer links the L-th layer hidden variables with the output Y , i.e.,

Y
`

c
˘

“
ÿ

kPr2Lrs2Lp

ÿ

iPr N

2Lw
s

W pLq
`

i, k, c
˘

ZpLq
`

i, k
˘

, (5)

for c P rKs2
L

p and p P r2Ls. If Y is not used as the final output directly, then the bias term
and activation function can be added.

Remark 1 This remark addresses two irregular places in the CNN and BNet2 described above
against the conventional CNN. First, all convolutions are performed in a non-overlapping way,
i.e., the kernel size equals the stride size. Regular convolutional layer with a pooling layer can
be adopted to replace the non-overlapping convolutional layer in both CNN and BNet2. Second,
except the Layer 0 and Layer L, all kernel sizes are 2, which can be generalized to other constant
for both CNN and BNet2. We adopt such presentations to simplify the notations in Section 3, the FT
initialization.

Remark 2 This remark addresses the difference between BNet and BNet2. As seen in Section 2.2
and Appendix A, BNet2 deletes Switch Layer and Conv-T Layers in BNet and expands Conv Layers
to all layers. So the Switch Layer and Layer L in BNet are actually combined to be the Layer L in
BNet2. These difference make the structure of BNet2 simpler than BNet. On the other hand, the
removal of Switch Layer and Conv-T Layers makes BNet2 directly a sparsified regular CNN, while
BNet does not has such a property.

In (4), the in-channel index k and the out-channel index c of BNet2 are linked through the
auxiliary index p, whereas in the CNN, the in-channel index k and the out-channel index c are
independent (see (2)). Figure 1 (b) illustrates the connectivity of k and c in CNN and in BNet2 at
the 2-nd layer. Further, Figure 1 (a) shows the overall structure of CNN and BNet2. If we fill part of
the multiplicative weights in CNN to be that in BNet2 according to (4) and set the rest multiplicative
weights to be zero, then CNN recovers BNet2. Hence, any BNet2 can be represented by a CNN.
The approximation power of CNN is guaranteed to exceed that of BNet2. Surprisingly, according to
our numerical experiments, the extra approximation power does not improve the training and testing
accuracy much in all examples we have tested.

2.3. Parameter Counts

Parameter counts are explicit for both CNN and BNet2. The numbers of bias are identical for two
networks. It is 2r for Layer 0, 2``1r for Layer ` and 0 for Layer L. Hence the overall number of
biases is

7tbiasu “
ÿ

`PrLs

2``1r “ p2L`2 ´ 2qr. (6)

The total number of multiplicative parameters are very different for CNN and BNet2. For CNN, the
parameter count is 2r ¨ 2w for Layer 0, 2`r ¨ 2``1r ¨ 2 for Layer `, and 2Lr ¨K ¨ N

2Lw
for Layer L.

Hence the overall number of multiplicative parameters for CNN is

7tWCNNu “ 4rw `
rNK

2Lw
`

L´1
ÿ

`“1

22``2r2 “ 4rw `
rNK

w
`

22L`2 ´ 24

3
r2. (7)
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While, for BNet2, the parameter count is 2r ¨2w for Layer 0, 2`r ¨2r ¨2 for Layer `, and 2Lr ¨ K
2L
¨ N
2Lw

for Layer L. Hence the overall number of multiplicative parameters for BNet2 is

7tWBNet2u “ 4rw `
rNK

2Lw
`

L´1
ÿ

`“1

2``2r2 “ 4rw `
rNK

2Lw
`

2L`2 ´ 23

3
r2. (8)

If we assume N „ K „ 2L and r „ w „ 1, which corresponds to doubling channel number till the
end, then we have

7tparameter in CNNu “ OpN2q and 7tparameter in BNet2u “ OpNq. (9)

Let us consider another regime, i.e., K „ 2L and r „ N
2Lw

„ 1, which can be viewed as an analog
of doubling the channel number first and then being fixed to a constant 2L. Under this regime, the
total numbers of parameters can be compared as,

7tparameter in CNNu “ Op
N

K
`K2q and 7tparameter in BNet2u “ Op

N

K
`Kq, (10)

where both N
K come from 4rw term. Hence, in both regimes of hyper parameter settings, BNet2 has

lower order number of parameters comparing against CNN. If the performance in terms of training
and testing accuracy remains similar, BNet2 is then much more preferred than the CNN.

3. Fourier Transform Initialization

A good initialization is crucial in training CNNs especially in training highly structured neural
networks like BNet2. It is known that CNN with random initialization achieves remarkable results
in practical image processing tasks as shown in Krizhevsky et al. (2012). However, for synthetic
signal data as in Section 4, in which the high accuracy prediction is possible through a CNN with
a set of parameters, we notice that CNN with random initialization and ADAM stochastic gradient
descent optimizer is not able to converge to that CNN.

In this section, we aim to initialize both BNet2 and CNN to fulfill the discrete FT operator,
which is defined as

Kpξ, tq “ e´2πıξ¨t, (11)

for ξ P rKs and t P rNs
N , where N denotes the number of discretization points and K denotes the

frequency window size. When the network is initialized as an approximated discrete FT, we call it
FT initialization. Discrete FT is the traditional computational tool for signal processing and image
processing. Almost all related traditional algorithms involve either FT directly or Laplace operator,
which can be realized via two FTs, see Buades et al. (2005); Chan and Shen (2005). Hence, if
we can initialize a neural network as such a traditional algorithm involving discrete FT, the train-
ing of the neural network would be viewed as refining the traditional algorithm and makes its data
adaptive. In another word, neural network solving image processing and signal processing tasks
can be guaranteed to outperform traditional algorithms, although it is widely accepted in practice.
This section is composed of two parts: preliminary and initialization. We will first introduce related
complex number neural network realization, Chebyshev interpolation, FT approximation in the pre-
liminary part. The receipt of the FT initialization for both BNet2 and CNN is then introduced in
detail, mainly in (16), (17), and (18).
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3.1. Preliminary

Fourier transform is a linear operator with complex coefficients. The realization of complex number
operations via ReLU neural network is detailed in Appendix B together with the definition of the
extensive assign operator ˛“.

An important tool is the Lagrange polynomial on Chebyshev points. The Chebyshev points of
order r on r´1

2 ,
1
2 s is defined as,

"

zi “
1

2
cos

´ iπ

r

¯

*

iPrrs

. (12)

The associated Lagrange polynomial at zk is

Lkpxq “
ź

p‰k

x´ zp
zk ´ zp

. (13)

If the interval r´1
2 ,

1
2 s is re-centered at c and scaled by w, then the transformed Chebyshev points

obeys z1i “ wzi ` c and the corresponding Lagrange polynomial at z1k is

L1kpxq “
ź

p‰k

x´ z1p
z1k ´ z

1
p

“
ź

p‰k

x´z1k
w ` zk ´ zp

zk ´ zp
“ rLkp

x´ z1k
w

q, (14)

where rLkp¨q is independent of the transformation of the interval.
Recall the Chebyshev interpolation representation of FT as Theorem 2.1 in Li et al. (2019). We

include part of that theorem with a small modification here with our notation rLk for completeness.

Proposition 3 (Theorem 2.1 in Li et al. (2019)) Let L and r be two parameters such that πeK ď

r2L. For any ` P rLs, let A``1 and BL´`´1 denote two connected subdomains of r0,Kq and r0, 1q
with length K ¨2´`´1 and 2``1´L respectively. Then for any ξ P A``1 and t P BL´`´1, there exists
a Chebyshev interpolation representation of the FT operator,∣∣∣∣∣ e´2πıξ¨t ´ r

ÿ

k“1

e´2πıξ¨tke´2πıξ0¨pt´tkq rLk
´ t´ tk
2L´`´1

¯

∣∣∣∣∣ ď
ˆ

2`
2

π
ln r

˙ˆ

πeK

r2L`1

˙r

, (15)

where ξ0 is the centers of A``1, ttkukPrrs are the Chebyshev points on BL´`´1.

Obviously, part of the approximation, e´2πıξ0¨pt´tkq rLk
´

t´tk
2L´`´1

¯

, admits the convolutional structure

across allBL´`´1. This part will be called the interpolation part in the following. It is the key that
we can initialize CNN and BNet2 as a FT.

3.2. Fourier Transform Initialization for CNN and BNet2

Since all weights fit perfectly into the structure of BNet2, we will only introduce the initialization
of BNet2 in detail. Assume the input is a function discretized on a uniform grid of r0, 1q with N
points and the output is the discrete FT of the input at frequency rKs. Throughout all layers, the
bias terms are initialized with zero. In the description below, we focus on the initialization of the
multiplicative weights. Without loss of generality, we further assume N “ w2L.
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• Layer 0: For ` “ 0, we consider A1
i “ rKs2i and BL´1

j “
rNs2

L´1

j

N for i P r2s and
j P r2L´1s, which satisfies the condition in Proposition 3. An index pair pi, kq for i being the
index of A1

i and k being the index of the Chebyshev points can be reindexed as r2rs. Hence
we abuse the channel index c as c “ pi, kq. Then fixing c, the interpolation part is the same
for all BL´1

j , which is naturally a non-overlapping convolution. Hence we set

W p0q
`

Nt, 0, c
˘ ˛
“ e´2πıξ0¨pt´tkq rLk

´ t´ tk
2L´1

¯

(16)

for t P
r N

2L´1 s

N , c “ pi, kq, and tk is the Chebyshev point onBL
0 orBL

1 . Then after applying the
1D convolutional layer as (1), the first hidden variable Zp1q

`

j, c
˘

represents the input vector
interpolated to the Chebyshev points tk on BL´1

j with respect to A1
i . The following layers

recursively apply Proposition 3 to the remaining e´2πıξ¨tk part.

• Layer ` “ 1, 2, . . . , L ´ 1: We concern A``1i and BL´`´1
j for i P r2``1s and j P r2L´`´1s

at the current layer. The hidden variable Zp`q
`

j1, c1
˘

represents the input interpolated to the
Chebyshev points on BL´`

j1 with respect to A`i1 , where c1 “ pi1, k1q and k1 is the index of
Chebyshev points. A``1i is a subinterval of A`

t i
2

u
and BL´`´1

j covers BL´`
2j and BL´`

2j`1. For a

fixed c “ pi, kq, the interpolation part is the same for each index j. The convolution kernel,
hence, is defined as,

W p`q
`

p, c1, c
˘ ˛
“ e´2πıξ0¨ptk1´tkq rLk

´ tk1 ´ tk
2L´`´1

¯

(17)

where c1 “ pt i2 u, k1q, c “ pi, kq, tk1 and tk are Chebyshev points on BL´`
2j`p and BL´`´1

j

respectively, and p P r2s.

• Layer L: This layer concerns ALi and B0
0 for i P r2Ls. All previous layers take care of the

interpolation part. And the current layer applies the FT operator on each ALi . The hidden
variable ZpLq

`

j, c1
˘

represents the input interpolated to the Chebyshev points on BL
0 with

respect to A`i , where c1 “ pi, k1q and k1 is the index of Chebyshev points. Define the channel
index c as an index pair pi, kq, where i P r2Ls is the index of ALi and k P r K

2L
s is the index for

uniform points ξk P ALi . Then the multiplicative weights are initialized as,

W pLq
`

0, c1, c
˘ ˛
“ e´2πıξk¨tk1 . (18)

Since BNet2 can be viewed as a CNN with many zero weights, such an initialization can be used to
initialize CNN as well. When we set the weights as above and set the rest weights to be zero, the
CNN is then initialized by the FT initialization.

Remark 4 As mentioned in Remark 1, a few irregular places in the current CNN and BNet2 de-
scription can be modified to match conventional CNN. The FT initialization can be updated accord-
ingly. First, when convolutions are performed in a non-overlapping way without pooling layer, we
can enlarge the kernel size and embed zeros to eliminate the impact of the overlapping part. Sec-
ond, when the kernel sizes are a constant different from 2, the generalization of the initialization is
feasible as long as the bipartition is modified to a multi-partition.
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The approximation power of FT initialized CNN and BNet2 can be analyzed in an analogy way
as that in Li et al. (2019) and the sketch proof in Appendix C.

Theorem 5 Let N and K denote the size of the input and output respectively. The depth L and
channel parameter r satisfies πeK ď r2L. Then there exists a BNet2/CNN, Bp¨q, approximating
the discrete FT operator such that for any bounded input vector f , the error satisfies,

‖Kf ´ Bpfq‖p ď Cr,K

˜

r
1´ 1

p
`

2
π ln r ` 1

˘

2r´2

¸L

‖f‖p, (19)

where Cr,K “ p2`4{π ln rq3pπeKqr{p2rqr´1 is a constant depending only on r and K, for p P r1,8s.

Theorem 5 is validated numerically in next section. In terms of function approximation, Li et al.
(2019) showed that for BNet a result in the type of (19) implies that a large class of functions can
be well approximated with network complexity depending on the effective frequency bandwidth
instead of the input dimension. Based on Theorem 5, such a function approximation result applies
to BNet2 and CNN as well. The approximation analysis can be extended to vector-valued output
functions. Numerically, we apply BNet2 to the computation of the Laplace operator energy, which
has scalar output (Section 4.2.1) , as well as end-to-end solvers of PDEs (Section 4.2.3, 4.2.3) and
signal processing inverse problems (Section 4.3), both of which have vector-valued output.

4. Numerical Results

This section presents numerical experiments to demonstrate the approximation power of CNN and
BNet2, and compare the difference between FT initialization and random initialization. Thus, four
different settings, CNN with random initialization (CNN-rand), CNN with FT initialization (CNN-
FT)1, BNet2 with random initialization (BNet2-rand), and BNet2 with FT initialization (BNet2-FT)
are tested on three different sets of problems: (1) approximation of FT operator; (2) energy and
solution maps of elliptic equations; (3) 1D signals de-blurring and de-noising tasks.

4.1. Approximation of Fourier Transform Operator

This section repeats experiments as in the original BNet Li et al. (2019) on BNet2, namely approx-
imation power before training, approximation power after training, and transfer learning capability.

4.1.1. APPROXIMATION POWER BEFORE TRAINING

The first experiment aims to validate the exponential decay of the approximation error of the BNet2
as either the depth L increases or the number of Chebyshev points r increases. We construct and
initialize a BNet2 to approximate a discrete FT operator, which has length of inputN “ 16, 384 and
length of outputK representing integer frequency on r0,Kq. The approximation power is measured
under the relative operator p-norm, i.e., εp “ ‖K´B‖p{‖K‖p, where B and K denote BNet2 and FT
operator respectively.

In Table 1, we fix the number of Chebyshev points being r “ 4 and varying L for two choices
ofK. All errors with respect to different norms decay exponentially as L increases. The decay rates
for different Ks remain similar, while the prefactor is slightly larger for larger K.

1. The Layer L is often combined with feature layers. Hence for both CNN, Layer L as in BNet2 is adopted.
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N
K “ 64 K “ 256

L ε1 ε2 ε8 L ε1 ε2 ε8

16384

6 3.48e´02 5.25e´02 6.30e´02 8 3.80e´02 7.26e´02 6.94e´02
7 2.18e´03 4.18e´03 6.36e´03 9 2.39e´03 6.05e´03 6.95e´03
8 1.37e´04 2.84e´04 5.30e´04 10 1.54e´04 4.31e´04 5.73e´04
9 8.96e´06 1.79e´05 4.08e´05 11 1.05e´05 2.89e´05 4.37e´05

10 6.41e´07 1.16e´06 3.11e´06 12 7.64e´07 1.86e´06 3.30e´06

Table 1: Relative error of BNet2 before training with r “ 4 in approximating FT operator.

r
K “ 64 K “ 128 K “ 256

k1 k2 k8 k1 k2 k8 k1 k2 k8

3 -0.90 -0.87 -0.82 -0.90 -0.85 -0.82 -0.91 -0.85 -0.82
4 -1.18 -1.14 -1.04 -1.18 -1.16 -1.16 -1.17 -1.15 -1.08
5 -1.44 -1.42 -1.34 -1.48 -1.43 -1.39 -1.44 -1.40 -1.36
6 -1.72 -1.67 -1.60 -1.72 -1.69 -1.60 -1.72 -1.70 -1.61

Figure 2: (Left plot) Exponential convergence rate when K = 64, p = 2. (Right table) Convergence
rate of BNet2 before training in approximating FT operator for rs. k1, k2, and k8 are the logarithms
of convergence rates under different norms, N “ 16384.

In the table in Figure 2, we calculate the logarithms of rates of convergence for different rs
and Ks under different norms. The table shows that for all choices of K the convergence rates
measured under different norms stay similar for any fixed r. And the convergence rate decreases as
r increases.

All of these above convergence behaviors agree with the analysis in this paper and Li et al.
(2019). And all rates we obtained are better than the corresponding theoretical ones. In summary,
when approximating FT operator using FT initialized BNet2, the approximation accuracy decays
exponentially as L increases and the rate of convergence decreases as r increases.

4.1.2. APPROXIMATION POWER AFTER TRAINING

The second numerical experiment aims to demonstrate the approximation power of the four net-
works in approximating FT operator after training.

Each data point used in this section is generated as follows. We first generate an array of K
random complex numbers with each component being uniformly random in r´a, as. The zero fre-
quency is a random real number. Second, we apply a Gaussian mask with width (standard deviation)
Gwidth “ 2 and center Gcenter “ 0(low frequency data) or Gcenter “ 56(high frequency data) on
the array. The array then is complexly symmetrized to be a frequency vector and the inverse discrete
FT is applied to obtain the real input vector. The constant a is chosen such that the two norm of the
output vector is close to 1. Examples of low and high frequency input can be seen in Appendix E.

In this experiment, we have input length being N “ 128, output length being K “ 8, level
number being L “ 5, channel parameter being r “ 3. All networks are trained under the infinity
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data setting, i.e., the training data is randomly generated on the fly. ADAM optimizer with batch
size 256 and exponential decay learning rate is adopted. For FT initialized networks, the maximum
training steps is 10,000, whereas for random initialization we train 20,000 steps. The reported
relative error in vector two norm is calculated on a testing data set of size 16, 384 with the same
distribution as the training data set. Default values are used for any unspecified hyper parameters.

Network 7 Parameters Low Frequency High Frequency
Pre-Train Rel Err Test Rel Err Pre-Train Rel Err Test Rel Err

BNet2-FT 9252 2.44e´3 1.33e´5 2.61e´3 1.29e´5
BNet2-rand 1.38e`0 8.82e´3 1.25e`0 8.50e´3

CNN-FT
49572

2.44e´3 9.29e´6 2.61e´3 7.54e´6
CNN-rand 5.09e`0 4.63e´2 2.73e`0 2.20e´2
CNN-BNet2(FT-trained) 1.33e´5 6.18e´6 1.29e´5 4.06e´6

Table 2: Relative errors of networks in approximating FT operator before and after training. The
last row use the trained parameters in the first row as it’s initialization.

Table 2 shows the pre-training and testing relative errors for BNet2-FT, BNet2-rand, CNN-FT,
CNN-rand and CNN-BNet2(FT-trained) on both low and high frequency training set. Comparing
the results, every network have similar performance on both data set, BNet2 and CNN have similar
performance for both initializations, while BNet2 has only about 1{5 parameters as CNN. Hence
those extra coefficients in CNN do not improve the approximation to FT operator. On the other
hand, FT initialization achieves an accuracy better than that of BNet2-rand and CNN-rand after
training. After training FT initialized networks, extra two digits accuracy is achieved for both
BNet2-FT and CNN-FT. The CNN with trained FT initialized BNet2 performs slightly better than
CNN-FT, but the improvement is not as significant as FT initialization. We conjecture that the local
minima found through the training from the FT initialization has a narrow and deep well on the
energy landscape such that the random initialization with stochastic gradient descent is not able to
find it efficiently.

4.1.3. TRANSFER LEARNING CAPABILITY

This numerical experiment compares the transfer learning capability of four networks. The training
and testing data are generated in a same way as in Section 4.1.2 with different choices of Gcenter

and Gwidth. We have three training sets: low frequency training set (Gcenter “ 0 and Gwidth “ 2),
high frequency training set (Gcenter “ 7 and Gwidth “ 2) and mixture training set (no Gaussian
mask). A sequence of testing sets of size 16, 384 are generated withGcenter “ 0, 0.2, 0.4, . . . , 7 and
Gwidth “ 2.

The networks used here have the same structure and hyper-parameters as in Sec 4.1.2 while the
channel parameter r “ 2 instead of 3 here. Each experiment is repeated 20 times. Then the mean
and standard deviation of the error in two norm are reported below.

As in Figure 3, for both initializations, BNet2 and CNN have similar accuracy especially on
testing sets away from the training set. Taking the FT initialization before training as a reference,
we also notice that even if randomly initialized networks can reach the accuracy of the reference on
some testing sets, they lose accuracy on transferred testing sets. On the other side, FT initialized
networks after training maintain accuracy better than that of the reference on all testing sets. In
terms of the stability after training, BNet2-FT and CNN-FT are much more stable than BNet2-rand
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(a) low frequency training set (b) high frequency training set (c) mixture training set

Figure 3: Figures show the transfer learning results of four networks trained on three different
training sets. The horizontal axis represents testing sets with different Gcenter. The testing results
on the mixture testing set are plotted as the isolated error bars at the left of each plot. Each error bar
represents the mean and standard deviation across 20 repeating experiments. The horizontal dash
lines indicate the testing error of FT initialized networks before training.

and CNN-rand, which is due to the randomness in initializers. This phenomenon also emphasizes
the advantage of FT initialization in stability and repeatability.

4.2. Energy and Solution Map of Elliptic PDEs

This section focus on the elliptic PDE of the following form,

´
d

dx

´

apxq
dupxq

dx

¯

` bu3pxq “ fpxq, x P r0, 1q, (20)

with periodic boundary condition, where apxq ą 0 denotes coefficients and b denotes the strength
of nonlinearity. Such an equation appears in a wide range of physical models governed by Laplace’s
equation, Stokes equation, etc. Equation (20) is discretized on a uniform grid with N points.

4.2.1. ENERGY OF LAPLACE OPERATOR

In this section, we aim to construct an approximation of the energy functional of 1D Poisson’s
equations, i.e., apxq ” 1 and b “ 0. The energy functional of Poisson’s equation is defined as
the negative inner product of u and f , which can also be approximated by a quadratic form of the
leading low-frequency Fourier components. Hence, Here we adopt BNet2-FT, BNet2-rand, CNN-
FT, and CNN-rand with an extra square layer, which is called task-dependent layer.

In this numerical example, the input f has the same distribution as that in Section 4.1.2. All
other hyper parameters of networks and the training setting are also identical to that in Section 4.1.2.

7 Parameters Pre-Train Rel Err Test Rel Err

BNet2-FT 9268 2.11e´3 8.10e´6
BNet2-rand 7.97e´1 4.62e´3

CNN-FT 49588 2.11e´3 4.79e´6
CNN-rand 5.53e´1 6.21e´3

Table 3: Training results for networks in representing the energy of the Laplace operator.
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Table 3 shows the results for energy of 1D Laplace operators, which has similar property as
Table 2. Hence all conclusions in Section 4.1.2 apply here.

4.2.2. END-TO-END LINEAR ELLIPTIC PDE SOLVER

In this section, we aim to represent the end-to-end solution map of linear elliptic PDEs by an
encoder-decoder structure. The linear elliptic PDE is (20) with high contrast coefficient apxq as,

apxiq “

#

10, t8i´N2N u ” 0 pmod2q

1, t8i´N2N u ” 1 pmod2q
, (21)

for xi being the uniform point in r0, 1q and b “ 0.
It is well known that the inverse of linear constant coefficient Laplace operator can by repre-

sented by F‹D´1F where F denotes the FT and D is a diagonal operator. Therefore, we design
our network in the same sprite. Our network contains three parts: a BNet2/CNN encoder with in-
put length 2N ,output length Ken, a Ken ˆ Kde fully connected dense layer with bias terms and
activation function, and a BNet2/CNN decoder with input length Kde, output length N . Since the
input f is real function, here we apply odd symmetry to it and initialize the first BNet2/CNN as FT
to make the first part of the network serves as sine transform. Then we initialize D according to
apxq, and initialize the third part to be an inverse sine transform so that the overall network is an
approximation of the inverse operator. In this example, we set N “ 64, Ken “ 8, and Kde “ 16.
Both BNet2s/CNNs are constructed with L “ 4 layers and channel parameter r “ 3.

Each training and testing data is generated as follows. We first generate an array of length K
with K ´ 1 random numbers. The first entry is fixed to be 0 to incorporate the periodic boundary
condition, whereas the following K ´ 1 entries are uniform sampled from r´1, 1s. Then an inverse
discrete sine transform is applied to obtain the input vector. The reference solution is calculated
through traditional spectral methods on a finer grid of 16N nodes. The training and testing data set
contain 4, 096 and 5, 000 points respectively. Other settings are the same as in Section 4.1.2.

7 Parameters Linear PDE Nonlinear PDE
Pre-Train Rel Err Train Rel Err Test Rel Err Pre-Train Rel Err Train Rel Err Test Rel Err

BNet2-FT 17856 5.16e´2 4.71e´3 4.86e´3 3.48e`0 1.97e´2 2.02e´2
BNet2-rand 9.75e`0 4.26e´2 4.43e´2 4.37e`2 1.00e`0 1.00e`0

CNN-FT 82368 5.16e´2 3.80e´3 3.96e´3 3.48e`0 1.36e´2 1.52e´2
CNN-rand 3.53e`0 2.02e´2 2.03e´2 5.65e`2 1.00e`0 1.00e`0

Table 4: Relative errors in approximating the solution map of the linear and nonlinear elliptic PDE.

Table 4 and Figures 4 show that in this end-to-end task, CNN performs slightly better than
BNet2 at the cost of 5 times more parameters. Training from FT initialization in both cases provides
one more digit of accuracy. Figures 4 further shows that BNet2-FT and CNN-FT significantly
outperform BNet2-rand and CNN-rand near sharp changing areas in u.

4.2.3. END-TO-END NONLINEAR ELLIPTIC PDE SOLVER

In this section, we focus on a highly nonlinear elliptic PDE (20) with apxq ” 1 and b “ 103. The
reference solution for nonlinear PDEs in general is difficult and expensive to obtain. Hence, in this
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Figure 4: The left figure shows an example solution u and the output from four networks for the
linear elliptic PDE. The right figure is a zoom-in of the green box in the left.

section, we apply the solve-train framework proposed in Li et al. (2020) to avoid explicitly solving
the nonlinear PDE.

Denoting the nonlinear PDE as an operator acting on u, i.e., Apuq “ f , our loss function here
is defined as

`
´

tfiu
Ntrain
i“1 ,A,N

¯

“
1

Ntrain

Ntrain
ÿ

i“1

∥∥fi ´A
`

N pfiq
˘∥∥2, (22)

where N denotes the used neural network. The reported relative error is calculated on testing data
tgiu

Ntest
i“1 as follows,

1

Ntest

Ntest
ÿ

i“1

∥∥∥gi ´A
´

N pgiq
¯
∥∥∥

‖gi‖
. (23)

The same networks and other related settings as in Section 4.2.2 are used here.
Table 4 shows that under solve-train framework randomly initialized networks are not able to

converge to a meaningful result, whereas FT initialized networks find a representation for the solu-
tion map with 2 digits accuracy. Partially, this is due to the extra condition number of A introduced
by solve-train framework in training. Comparing BNet2-FT with CNN-FT, we find similar conclu-
sions as before, i.e., CNN-FT achieves slightly better accuracy with higher cost in the number of
parameters.

4.3. Denoising and Deblurring of 1D Signals

In this section, we aim to apply networks to the denoising and deblurring tasks in signal processing.
An encoder-decoder structure is used in this experiment, which concatenates two networks, i.e., two
BNet2-FT, two BNet2-rand, two CNN-FT or two CNN-rand. Such a structure with FT initialization
reproduces a low pass filter.

The low frequency true signal f is generated as the input vector in Section 4.1.2. Two polluted
signals, fnoise and fblur, are generated by adding a Gaussian noise with standard deviation 0.002 and
convolving a Gaussian with standard deviation 3, respectively. The mean relative errors of fnoise
and fblur are 0.0226 and 0.165 respectively.

Regarding the encoder-decoder structure, the first part has input length N “ 128 and output
length K “ 8 in representing frequency domain r0,Kq. After that, the output of the first part is
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complex symmetrized to frequency domain r´K,Kq. Then the second part has input length 16,
output length 128. In both parts, we adopt L “ 4 layers. The other hyper parameters are the same
as that in Section 4.1.2. All relative errors are measured in two norm.

Network 7 para fnoise fblur

Pre-Train Rel Err Test Rel Err Pre-Train Rel Err Test Rel Err

BNet2-FT 19,392 9.56e´2 7.54e´3 1.64e´1 8.02e´4
BNet2-rand 1.07e`0 1.52e´2 1.02e`0 1.07e´2

CNN-FT 83,904 9.56e´2 7.74e´3 1.64e´1 8.19e´4
CNN-rand 1.23e`0 1.28e´2 1.05e`0 9.95e´3

Table 5: Relative error of denoising and deblurring of 1D signals.

(a) Example of signal denoising

(b) Example of signal deblurring

Figure 5: (a) and (b) show an example of denoising and deblurring respectively. The right figures
are zoom-in of green boxes in the left figures.

Table 5 lists all relative errors of four networks and Figure 5 shows the performance of four
networks on an example signal. We observe that, for both tasks, the FT initialized networks have
better accuracy than their randomly initialized counterparts. Under the same initialization, BNet2
achieves similar accuracy as CNN with much fewer parameters. Comparing two tasks, we notice
that the improvement of FT initialization over random initialization is more significant on deblurring
task than that on denoising task. For denoising tasks, as we enlarge additive noise level, BNet2-rand
and CNN-rand perform almost as good as BNet2-FT and CNN-FT. However, for deblurring tasks,
we always observe significant improvement from FT initialization.
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Appendix A. BNet Revisit

For a L layer BNet with an additional parameter Lt denoting the number of layers before switch
layer, the feedforward network is as follows.

• Layer 0: The same as Layer 0 in CNN.

• Layer ` “ 1, . . . , Lt ´ 1: The same as Layer ` in BNet2.

• Switch Layer: This layer first applies many small dense layer to each part and then the role
of spacial dimension and channel dimension is switched afterwards. We denote the hidden
variables on switch layer as Zpsq. The connection between the `-th layer and the psq-th layer
hidden variables obeys,

Zpsq
`

i, rj ` c
˘

“ σ
´

Bpsq
`

i, j, c
˘

`
ÿ

kPrrs

Dpsq
`

i, j, c, k
˘

ZpLtq
`

i, rj ` k
˘

¯

, (24)

for j P r2Lts, i P r N
2Ltw

s, and c P rrs. Here Dpsq and Bpsq denote the weights and bias
respectively.

• Layer ` “ Lt, . . . , L ´ 1: The 2`r in-channels are equally partitioned into 2` parts. A
1D transposed convolutional layer is applied. The connection between the `-th layer and the
p`` 1q-th layer hidden variables obeys,

Zp``1q
`

2j ` i, c
˘

“ σ
´

Bp`q
`

c
˘

`
ÿ

kPr2L´`rs2L´`´1
p

W p`q
`

i, k, c
˘

Zp`q
`

j, k
˘

¯

, (25)

for j P r N
2L´`w

s, i P r2s, c P r2L´`´1rs2
L´`´1

p , and p P r2L´`´1s. Here we abuse notation
ZpL{2q “ Zpsq.

• Layer L: The last layer links the L-th layer hidden variables with the output Y , i.e.,

Y
`

c
˘

“
ÿ

kPrrs

ÿ

iPrN
w
s2
L
p

W pLq
`

i, k, c
˘

ZpLq
`

i, k
˘

, (26)

for c P rKs2
L

p and p P r2Ls.
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Appendix B. Complex valued network

In order to realize complex number multiplication and addition via nonlinear neural network, we
first represent a complex number as four real numbers, i.e., a complex number x “ Rex`ı Imx P C
is represented as

`

pRexq` pImxq` pRexq´ pImxq´
˘J
, (27)

where pzq` “ maxpz, 0q and pzq´ “ ´minpz, 0q for any z P R. The vector form of x contains at
most two nonzeros. The complex number addition is the vector addition directly, while the complex
number multiplication must be handled carefully. Let a, x P C be two complex numbers. The
multiplication y “ ax is produced as the activation function acting on a matrix vector multiplication,
i.e.,

σ

¨

˚

˚

˝

¨

˚

˚

˝

Re a ´ Im a ´Re a Im a
Im a Re a ´ Im a ´Re a
´Re a Im a Re a ´ Im a
´ Im a ´Re a Im a Re a

˛

‹

‹

‚

¨

˚

˚

˝

pRexq`
pImxq`
pRexq´
pImxq´

˛

‹

‹

‚

˛

‹

‹

‚

“

¨

˚

˚

˝

pRe yq`
pIm yq`
pRe yq´
pIm yq´

˛

‹

‹

‚

. (28)

In the initialization, all prefixed weights are in the role of a instead of x. In order to simplify the
description below, we define an extensive assign operator as ˛

“ such that the 4 by 4 matrix A in
(28) then obeys A ˛

“ a. Without loss of generality, (28) can be extended to complex matrix-vector
product and ˛

“ notation is adapted accordingly as well.

Appendix C. Sketch Proof of Theorem 5

The detail proof of Theorem 5 is composed of layer by layer estimations on the multiplicative weight
matrices, which is analogy to the proof of Theorem 4.8 in Li et al. (2019). Here we omit the detail
and discuss the relations and differences.

If we consider the approximation under condition L ď logK, then the bound in Theorem 5
is exactly the same as that in Theorem 4.8 in Li et al. (2019) with Lξ “ 0, where Lξ denotes the
number of Conv-T layers after switch layer. However, when we consider L ą logK, the number
of partitions of the frequency domain in BNet is limited by K due to the existence of switch layer.
Hence the bottleneck domain pair, A and B as in Proposition 3, are of length 1 and 1 respectively.
The Chebyshev interpolation error is then

ˆ

2`
2

π
ln r

˙

´πe

2r

¯r
, (29)

which can be well controlled as we increase r. Therefore, in Theorem 4.8 in Li et al. (2019), the
approximation error is also controlled in terms of r.

BNet2, different from BNet, dose not have the constraint from switch layer. The frequency
domain can be partitioned into 2L subdomains and each has length K

2L
. When the number of sub-

domains is larger than the number of output frequencies, only those subdomains containing output
frequencies are constructed in the network and considered in the proof. Due to the fine partition of
the frequency domain, in Proposition 3, the product of the lengths of domain pairA andB is always
bounded by K

2L
and the Chebyshev interpolation error is

ˆ

2`
2

π
ln r

˙ˆ

πeK

r2L`1

˙r

(30)
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for any L. Replacing the interpolation error in the proof of Theorem 4.8 in Li et al. (2019) by (30)
throughout layers proves Theorem 5.

Appendix D. BNet against BNet2

This numerical experiment compares BNet2 with BNet in a similar task as in Section 4.1.2. Com-
paring to that in Section 4.1.2, L “ 3 are used here, while N , K and r remain the same. We train
both BNet and BNet2 on the same training set with the same training hyper-parameters.

7 Parameters training time Pre-Train Rel Err testing time Test Rel Err

BNet2-FT 4596 68.3 s 1.28e´1 0.095 s 3.13e´4
BNet2-rand 1.06e`0 1.69e´2

BNet-FT 3876 95.4 s 8.01e´2 0.182 s 3.51e´4
BNet-rand 1.03e`0 1.84e´2

Table 6: Training results for BNet and BNet2

Due to the huge difference in architectures of BNet and BNet2, the numbers of parameters and
pre-train relative errors are not identical but stay close to each other. After training, BNet2 achieves
slightly better accuracy than that of BNet for both random initialization and FT initialization. This
is likely due to the small difference in the number of parameters. Regarding the runtime, both the
training and evaluation of BNet are more expensive than that of BNet2.

Appendix E. Extra Numerical Results
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(a) Low frequency input example
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(b) High frequency input example

Figure 6: (a) and (b) show examples of low and high frequency input used in Section 4.1.2.
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