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Abstract. A novel unconstrained optimization model named weighted trace-penalty minimiza-
tion (WTPM) is proposed to address the extreme eigenvalue problem arising from the full configura-
tion interaction (FCI) method. Theoretical analysis shows that the global minimizers of the WTPM
objective function are the desired eigenvectors, rather than the eigenspace. Analyzing the condition
number of the Hessian operator in detail contributes to the determination of a near-optimal weight
matrix. With the sparse feature of FCI matrices in mind, the coordinate descent (CD) method is
adapted to WTPM and results in the WTPM-CD method. The reduction of computational and
storage costs in each iteration shows the efficiency of the proposed algorithm. Finally, the numerical
experiments demonstrate the capability to address large-scale FCI matrices.

Key words. eigensolver, weighted trace-penalty minimization, full configuration interaction,
coordinate descent method

MSC code. 65F15

DOI. 10.1137/23M1547676

1. Introduction. The time-independent, nonrelativistic Schr\"odinger equation
is a linear Hermitian extreme eigenvalue problem,

H| \psi i\rangle =Ei| \psi i\rangle , i= 1,2, . . . , p,(1.1)

where H is a Hamiltonian operator, (Ei, | \psi i\rangle ) denotes the ground-state and low-
est few excited-state energies and their corresponding wavefunctions, and p is the
number of desired eigenvalues. Efficiently solving the Schr\"odinger equation plays
a fundamental role in the field of electronic structure calculation. The problem is
of high-dimensionality, i.e., | \psi \rangle = \psi (x1, . . . , xN\mathrm{e}

) for xi \in \BbbR 3 being the position of
electrons and Ne being the number of active electrons in the system. Further, iden-
tical electron wavefunctions admit an antisymmetry property, which corresponds to
the Pauli exclusion principle. Full configuration interaction (FCI) is a variational
method that solves (1.1) numerically exactly within the space of all Slater determi-
nants [21, 22, 38]. By the nature of Slater determinants, the antisymmetry property
is encoded into the many-body basis functions. Nevertheless, the high-dimensionality
feature still leads to extremely large Hamiltonian matrices. More precisely, the size of
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A180 WEIGUO GAO, YINGZHOU LI, AND HANXIANG SHEN

Hamiltonian matrices grows factorially with respect to the number of electrons and
orbitals in the system. For a system with Norb orbitals and Ne electrons, the number
of Slater determinants is O(

\bigl( 
N\mathrm{o}\mathrm{r}\mathrm{b}

N\mathrm{e}

\bigr) 
) [23]. A single H2O molecule with cc-pVDZ basis

(24 orbitals) and 10 active electrons leads to a 4.53\cdot 108\times 4.53\cdot 108 Hamiltonian matrix
[43]. The antisymmetry property of the problems leads to the notorious sign problem.

In electronic structure calculation, widely used eigensolvers can be classified into
two groups: Krylov subspace methods and optimization methods. Krylov subspace
methods include the Chebyshev--Davidson algorithm [47], the locally optimal block
preconditioned conjugate gradient method [24], the block Krylov--Schur algorithm
[48], the projected preconditioned conjugate gradient algorithm [42], etc. In all these
methods, an explicit orthogonalization step is carried out every few iterations, which
costs a significant amount of computational resources throughout the algorithm. The
other group, optimization methods, transforms the eigenvalue problem into an opti-
mization problem with or without the orthogonality constraint. The orthogonality
constrained optimization problem is also known as the Stiefel manifold optimization.
The corresponding optimization algorithms [1, 14, 19, 36] require either a projection
or a retraction step to keep the iteration on the manifold. The computational costs
for these projections and retractions remain the same as that of the orthogonalization.
Solving the eigenvalue problem via an unconstrained optimization is popular recently,
especially when the large-scale eigenvalue problems are considered. Such methods
include the symmetric low-rank product model [27, 29, 43], the orbital minimization
method [13, 30], trace-penalty minimization [45], etc. All these methods converge to
the invariant subspace corresponding to the smallest eigenvalues and require a single
Rayleigh--Ritz procedure to extract eigenvectors from the invariant subspace.

However, due to the large-scale matrix size, none of the eigensolvers mentioned
above can be applied directly to the FCI eigenvalue problem. Almost all of them run
into the memory bottleneck. Many nonstandard eigensolvers are designed particu-
larly for FCI ground-state computation. The density matrix renormalization group
(DMRG) [9, 33, 46] approximates the high-dimensional wavefunctions by a tensor
train. The underlying eigenvalue problem is solved by the vanilla power method.
FCI quantum Monte Carlo (FCIQMC) [6, 7, 31] adopts the quantum Monte Carlo
method to overcome the sign problem and the curse of dimensionality. Related meth-
ods [11, 35] in this family further adjust the variance-bias trade-off to obtain efficient
algorithms. Selected configuration interaction (SCI) [18, 20, 37, 41] employs pertur-
bation analysis of eigenvalue problems and selects important configurations accord-
ingly. Then the eigenvalue problem of the selected principal submatrix is solved via
traditional eigensolvers. Various methods in this family differ from each other in the
computationally efficient approximations to the perturbation result. Coordinate de-
scent FCI (CDFCI) [27, 43] applies the coordinate descent method on the symmetric
low-rank product model to select important configurations and to update the coef-
ficients. A carefully designed compression scheme is incorporated to overcome the
memory bottleneck.

Furthermore, the nonstandard eigensolvers mentioned above can be adapted to
the low-lying excited-states computation. DMRG [2] and FCIQMC [5] adopt the de-
flation idea and compute excited states one by one. SCI [37, 41] needs to select many
more configurations to capture the important configurations for excited states. CD-
FCI [44] could be naturally extended and converge to the invariant subspace formed
by the ground state and excited states. The extra rotation matrix within the in-
variant subspace leads to less sparse iteration variables and increases the memory
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WEIGHTED TRACE-PENALTY MINIMIZATION A181

cost. Specifically targeting the low-lying excited-states computation, the triangular-
ized orthogonalization free method [15, 16] proposes a triangularized iterative scheme
converging to eigenvectors directly without any projection or Rayleigh--Ritz step.

In this paper, inspired by the weighted subspace-search variational quantum
eigensolver [32] from quantum computing and the trace-penalty model [45], we pro-
pose an unconstrained optimization model called weighted trace-penalty minimization
(WTPM),

min
X\in \BbbR n\times p

f\mu ,W (X) =
1

2
tr(X\top AX) +

\mu 

4
\| X\top X  - W\| 2F,(1.2)

where A \in \BbbR n\times n is a symmetric matrix, \mu > 0 is the penalty parameter, and W is a
diagonal weight matrix with distinct diagonal entries. Our analysis shows that (1.2)
does not have spurious local minima, and the 2p isolated global minima of (1.2) are
scaled eigenvectors corresponding to the smallest p eigenvalues of A. Moreover, we
calculate the condition number of the W -dependent Hessian matrix of f\mu ,W (X) at
global minima, which leads to the local convergence rate for the first-order method.
A near-optimal weight matrix W is then derived to achieve a fast local convergence
rate.

With the size of the FCI problem size in mind, we focus on first-order methods to
address (1.2). One choice is the gradient descent method with Barzilai--Borwein (BB)
stepsize [3]. A more desirable choice is the coordinate descent method, which reveals
the sparsity in FCI problems efficiently [43]. Hence, we tailor the coordinate descent
method for (1.2) and obtain an efficient eigensolver for the FCI eigenvalue problem.
Global convergence of the proposed eigensolver can be proved in the same way as that
of CDFCI [27], whereas the local linear convergence is obtained with a rate related
to the Hessian operator. We emphasize that both gradient descent and coordinate
descent methods for (1.2) converge to the scaled eigenvectors directly. Hence the
expensive and parallel inefficient Rayleigh--Ritz step is omitted entirely from both
methods.

Numerically, we test and compare the performance of the original trace-penalty
model [45] and our WTPM on FCI matrices from practice. The numerical results show
that both models with first-order methods converge to desired global minima. Adding
the extra weight matrix in WTPM does not destroy the efficiency of the original
trace-penalty model. For the FCI matrices, the WTPM-CD method converges in far
less cost of flops. WTPM-CD finds the sparse representations of the eigenvectors
corresponding to the smallest p eigenvalues, whereas the trace-penalty model requires
an extra Rayleigh--Ritz step.

The rest of this paper is organized as follows. In section 2, we give a theoretical
analysis on (1.2) with a focus on the global minima and the condition number of
the Hessian operator. Section 3 proposes algorithms for (1.2) and analyzes their
performance and complexity. Section 4 reports the numerical results showing the
efficiency of our method. Finally, we conclude this paper in section 5 with some
discussion on future work.

2. Model analysis. This section focuses on the analysis of the energy landscape
of the WTPM model. We will first analyze the stationary points and Hessian operator
of (1.2) in sections 2.1 and 2.2, respectively. Based on the condition number of the
Hessian operator at the global minimum, a near-optimal choice of the weight matrix
W is discussed in section 2.3 to achieve a near-optimal local convergence rate for first-
order methods. Finally in section 2.4, we discuss the extensions of all analysis results
to Hermitian matrices.
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A182 WEIGUO GAO, YINGZHOU LI, AND HANXIANG SHEN

We consider a real symmetric matrix A of size n \times n. The eigenvalue decompo-
sition of A is denoted as

A= V \Lambda V \top ,(2.1)

where V = (v1, v2, . . . , vn)\in \BbbR n\times n and \Lambda = diag(\lambda 1, \lambda 2, . . . , \lambda n) such that

\lambda 1 <\lambda 2 < \cdot \cdot \cdot <\lambda p <\lambda p+1 \leqslant \cdot \cdot \cdot \leqslant \lambda n.(2.2)

A pair (\lambda i, vi) is an eigenpair of A. Throughout this paper, we aim to compute the
smallest p eigenpairs of A via WTPM. The real weight matrix in (1.2) satisfies the
following assumption.

Assumption 1. The weight matrix is diagonal,W =diag(w1,w2, . . . ,wp) such that

w1 >w2 > \cdot \cdot \cdot >wp >
\lambda p
\mu 
.(2.3)

2.1. Stationary points. Stationary points of (1.2) satisfy the first-order neces-
sary optimal condition,

\nabla f\mu ,W (X) =AX + \mu X(X\top X  - W ) = 0.(2.4)

Left multiplying both sides of (2.4) by the transpose of X, we obtain

X\top AX = \mu X\top X(W  - X\top X),(2.5)

where the left-hand side is symmetric. The symmetry property of (2.5) leads to the
fact that X\top XW =WX\top X. SinceW is a diagonal matrix and all entries are distinct
as in (2.3), the equation X\top XW = WX\top X implies that X\top X is diagonal, i.e.,
columns of stationary pointX are either zero or mutually orthogonal. In Theorem 2.1,
we give the explicit form of the stationary points of (1.2), where each column of X is
either an eigenvector of A or the zero vector.

Theorem 2.1 (stationary points). Assume A and W satisfy (2.1) and (2.3),
respectively. Any stationary point \widehat X of (1.2) has the form

\widehat X = \widehat Up
\widehat Sp,(2.6)

where \widehat Up = (\^u1, \^u2, . . . , \^up) and \widehat Sp =diag(\^s1, \^s2, . . . , \^sp) such that

A\^ui = \sigma i\^ui, \^u\top i \^uj = \delta ij , and

\^si \in 
\biggl\{ 
0,

\sqrt{} 
wi  - 

\sigma i
\mu 

\biggr\} 
.

(2.7)

Proof. As we discussed above, \widehat X\top \widehat X is a diagonal matrix. Columns of (2.4), then,
can be represented as

A\^xi = di\^xi, i= 1,2, . . . , p,(2.8)

where \^xi is the ith column of \widehat X and di = \mu (wi  - \^x\top i \^xi). Vector \^xi is either a zero
vector or an eigenvector of A. When \^xi is a zero vector, it can be represented as the
form in the theorem for \^si = 0. When \^xi is not a zero vector, we denote \^xi = \^ui\^si for
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WEIGHTED TRACE-PENALTY MINIMIZATION A183

\^ui being a unit length eigenvector of A associated with eigenvalue \sigma i and \^si being a
positive scalar. Then \^si satisfies

\sigma i = di = \mu (wi  - \^s2i )\Rightarrow \^si =

\sqrt{} 
wi  - 

\sigma i
\mu 
.

Recall that \widehat X\top \widehat X is a diagonal matrix. For nonzero \^si and \^sj , it is required that
\^u\top i \^uj = \delta ij . When \^si is zero, we could always find an extra orthogonal eigenvector of
A, such that \^u\top i \^uj = \delta ij still holds. Therefore, we proved that the stationary points
of (1.2) must admit the form in the theorem and any point that admits the form in
the theorem is a stationary point.

Furthermore, we will distinguish the local and global minima from saddle points.
Interestingly, it can be shown that the columns of global minimizerX\ast are eigenvectors
of A associated with the p smallest eigenvalues.

Theorem 2.2 (global minima). Assume A and W satisfy (2.1) and (2.3). Any
global minimizer X\ast of (1.2) has the form

X\ast = VpSp,(2.9)

where Vp = (v1, v2, . . . , vp) and Sp =diag(\pm s1,\pm s2, . . . ,\pm sp) such that

si =

\sqrt{} 
wi  - 

\lambda i
\mu 
.

Proof. By Theorem 2.1, the stationary point has the form \widehat X = \widehat Up
\widehat Sp. Substitut-

ing it into the objective function leads to

2f\mu ,W ( \widehat X) =

p\sum 
i=1

\Bigl[ 
\^s2i\sigma i +

\mu 

2
(\^s2i  - wi)

2
\Bigr] 
=

p\sum 
i=1

\mu 

2
w2

i  - 
\sum 

i\in \{ \^si \not =0\} 

(\sigma i  - \mu wi)
2

2\mu 
,

where \sigma i is one of the eigenvalues of A and the second equality is due to the expression
of \^si. If some \^si = 0, then we have \sigma i  - \mu wi = 0. Under Assumption 1, there are at

least p eigenvalues to make  - (\lambda  - \mu wi)
2

2\mu < 0 and at least one of them is not in \{ \sigma i\} pi=1.

Replacing \sigma i by one of the unselected eigenvalue with  - (\lambda  - \mu wi)
2

2\mu < 0 would lead to a
smaller objective function value. Hence if \^si = 0 for some i, the stationary point is
not a global minimizer. Notice that if \^si \not = 0, then \sigma i < \mu wi. We only need to show
that \sigma i = \lambda i.

First, we claim that \sigma 1, \sigma 2, . . . , \sigma p must be a permutation of \lambda 1, \lambda 2, . . . , \lambda p. If not,
for example, there exists \sigma i0 such that \mu wi0 > \sigma i0 > \lambda p. There also exists \lambda j not

used such that \lambda j \leqslant \lambda p. If \sigma i0 = \lambda j instead, the value of f\mu ,W ( \widehat X) will decrease. This
contradicts the minimal property so our claim holds.

Next, since there are at least p eigenvalues smaller than any \mu wi due to Assump-
tion 1, the optimization (1.2) changes into the form as

max
\sigma i\in \{ \lambda 1,...,\lambda p\} 
\sigma i \not =\sigma j if i\not =j

p\sum 
i=1

(\sigma i  - \mu wi)
2 =

p\sum 
i=1

 - 2\mu \sigma iwi + const.(2.10)

According to the rearrangement inequality [17], we can conclude that the minimum
value is reached if \sigma i = \lambda i, i.e.,

X\ast = VpSp.
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A184 WEIGUO GAO, YINGZHOU LI, AND HANXIANG SHEN

Theorem 2.2 presents an interesting result that any global minimizer of theWTPM
(1.2) is composed of desired eigenvectors directly rather than the underlying invariant
subspace.

Another result is that there are no spurious local minima, i.e., the rest of the
stationary points are all strict saddle points. To show this, we first introduce the
Hessian operator of f\mu ,W ,

Hessf\mu ,W (X)[Z] =AZ + \mu (ZX\top X +XZ\top X +XX\top Z  - ZW ),(2.11)

where Z \in \BbbR n\times p is an arbitrary matrix. A stationary point \^X is called a strict
saddle point of f\mu ,W if and only if the Hessian operator Hessf\mu ,W ( \^X) has negative
eigenvalues.1

In Theorem 2.3, we prove that (1.2) does not have any spurious local minimum.

Theorem 2.3. Assume A and W satisfy (2.1) and (2.3). There are no local
minima other than the global minimizers X\ast .

Proof. First, we discuss the case that the stationary point \widehat X = \widehat Up
\widehat Sp is of full

column rank, i.e., \^si \not = 0 \forall i. We focus on the sign of

tr
\Bigl( 
Z\top Hessf\mu ,W ( \^X)[Z]

\Bigr) 
(2.12)

= tr
\Bigl( 
Z\top (A+ \mu \^X \^X\top )Z + \mu Z\top Z( \^X\top \^X  - W ) + \mu Z\top \^XZ\top \^X

\Bigr) 
for Z \in \BbbR n\times p. If (2.12) at \^X is strictly negative for a particular Z, then we could
conclude that the Hessian operator has negative eigenvalues and hence \^X is a strict
saddle point.

Since \^X is not a global minimizer, there exists an eigenvector vi in \{ v1, v2, . . . , vp\} 
satisfying v\top i

\^Up = 0 and \exists j, \lambda i <\sigma j . Let Z be the matrix whose jth column is vi and
others are zero. Then we have

tr
\Bigl( 
Z\top Hessf\mu ,W ( \^X)[Z]

\Bigr) 
= \lambda i  - \sigma j < 0,(2.13)

implying that full-rank stationary points are all saddle points except global minima.
Next, we discuss the rank-deficient case. Without loss of generality we assume

the jth column of \^X is zero, and there also exists an eigenvector vi in \{ v1, v2, . . . , vp\} 
satisfying v\top i

\^X = 0. Let the jth column of Z be vi and the others are zero. We can
obtain

tr
\Bigl( 
Z\top Hessf\mu ,W ( \^X)[Z]

\Bigr) 
= \lambda i  - \mu wj < 0.(2.14)

Hence, rank-deficient stationary points are all saddle points.

2.2. Hessian operator. For first-order optimization methods, the local conver-
gence rate relies on the condition number of the Hessian operator [8]. Specifically, in
the neighborhood of a global minimum X\ast , the error of a gradient descent method
with exact line search decreases linearly as

f\mu ,W (X(j+1)) - f\mu ,W (X\ast )\leqslant 
\bigl( 
1 - \kappa  - 1

\bigr) \bigl( 
f\mu ,W (X(j)) - f\mu ,W (X\ast )

\bigr) 
,(2.15)

1Here the strict saddle point includes the maximizer of the problem, i.e., a stationary point with
negative semidefinite Hessian operator.
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WEIGHTED TRACE-PENALTY MINIMIZATION A185

where X(j) denotes the iteration variable at the jth iteration and \kappa denotes the
condition number of the Hessian operator at X\ast .

From Theorem 2.2, we find that all global minima of (1.2) are isolated points and
the Hessian operator at any global minimizer X\ast is strictly positive definite. In order
to give a depiction of the local convergence rate of (1.2), we present a tight estimation
of the condition number of the Hessian operator in Theorem 2.4.

Theorem 2.4. Assume A and W satisfy (2.1) and (2.3). Let X\ast be a global
minimizer of f\mu ,W . Then

\kappa (Hessf\mu ,W (X\ast ))\triangleq 
max

\| Z\| \mathrm{F}=1
tr
\bigl( 
Z\top Hessf\mu ,W (X\ast )[Z]

\bigr) 
min

\| Z\| \mathrm{F}=1
tr (Z\top Hessf\mu ,W (X\ast )[Z])

(2.16a)

=

max

\biggl\{ 
\lambda n  - \lambda 1,2(\mu w1  - \lambda 1),max

i<j
\lambda max(Mij)

\biggr\} 
min

\biggl\{ 
\lambda p+1  - \lambda p,2(\mu wp  - \lambda p),min

i<j
\lambda min(Mij)

\biggr\} ,(2.16b)

where \lambda max(\cdot ) and \lambda min(\cdot ) denote the largest and the smallest eigenvalue of the matrix

Mij =

\biggl( 
\mu wi  - \lambda j

\sqrt{} 
(\mu wi  - \lambda i)(\mu wj  - \lambda j)\sqrt{} 

(\mu wi  - \lambda i)(\mu wj  - \lambda j) \mu wj  - \lambda i

\biggr) 
,

respectively.

Proof. Given a Z \in \BbbR n\times p such that \| Z\| F = 1, it can be represented as

Z = VpZ1 + \=VpZ2,

tr(Z\top 
1 Z1) + tr(Z\top 

2 Z2) = 1,

where \=Vp = (vp+1, . . . , vn), Z1 \in \BbbR p\times p, and Z2 \in \BbbR (n - p)\times p. Using the expressions of
the global minimizer (2.9) and the Hessian operator (2.11), we obtain

tr
\bigl( 
Z\top Hessf\mu ,W (X\ast )[Z]

\bigr) 
= tr(Z\top 

2
\=\Lambda pZ2) - tr(Z\top 

2 Z2\Lambda p)

(2.17)

+ tr(\mu Z\top 
1 WZ1) - tr(Z\top 

1 Z1\Lambda p) + tr(\mu Z\top 
1 SpZ

\top 
1 Sp),

where \Lambda p =diag(\lambda 1, . . . , \lambda p) and \=\Lambda p =diag(\lambda p+1, . . . , \lambda n). The first two terms in (2.17)
can be bounded as

tr(Z\top 
2 Z2)(\lambda p+1  - \lambda p)\leqslant tr(Z\top 

2
\=\Lambda pZ2) - tr(Z\top 

2 Z2\Lambda p)\leqslant tr(Z\top 
2 Z2)(\lambda n  - \lambda 1),(2.18)

where the upper and lower bounds are achieved when Z2 = c \cdot (en - p,0, . . . ,0) or
Z2 = c \cdot (0, . . . ,0, e1), where ei denotes the ith column of the identity matrix and c is
a scalar.

Next, we would like to bound the terms in (2.17) associated with Z1. Let Z1 =
(zij)p\times p. A short calculation shows that

tr(\mu Z\top 
1 WZ1) - tr(Z\top 

1 Z1\Lambda p) + \mu tr(Z\top 
1 SpZ

\top 
1 Sp)

= 2

p\sum 
i=1

(\mu wi  - \lambda i)z2ii +
\sum 
j>i

\bigl( 
zij zji

\bigr) 
Mij

\biggl( 
zij
zji

\biggr) 
,

(2.19)
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A186 WEIGUO GAO, YINGZHOU LI, AND HANXIANG SHEN

where Mij \in \BbbR 2\times 2 as defined in the theorem. Eigenvalues of Mij can be calculated
explicitly,

\lambda (Mij) =
1

2
(\mu wi + \mu wj  - \lambda i  - \lambda j)

\pm 
\sqrt{} 

1

4
(\mu wi + \mu wj  - \lambda i  - \lambda j)2  - \mu (wi  - wj)(\lambda j  - \lambda i),

(2.20)

and both of them are positive. Thus, (2.19) has the lower and upper bounds,

(2.19)\geqslant tr(Z\top 
1 Z1) \cdot min

\biggl\{ 
2(\mu wp  - \lambda p),min

i<j
\lambda min(Mij)

\biggr\} 
,(2.21a)

(2.19)\leqslant tr(Z\top 
1 Z1) \cdot max

\biggl\{ 
2(\mu w1  - \lambda 1),max

i<j
\lambda max(Mij)

\biggr\} 
.(2.21b)

Again, both bounds in (2.21) are achievable. In (2.21a), the inequality is saturated
if Z1 is parallel to (0, . . . ,0, ep), or if (zij , zji)

\top is the eigenvector corresponding to
mini<j \lambda min(Mij) and other entries of Z1 are zero. Similarly in (2.21b), the equality
is satisfied if Z1 is parallel to (e1,0, . . . ,0), or if (zij , zji)

\top is the eigenvector corre-
sponding to maxi<j \lambda max(Mij) and other entries of Z1 are zero. Putting all bounds
in (2.18) and (2.21) together, we proved (2.16).

Theorem 2.4 gives the exact condition number at global minimizers, which pro-
vides an estimation of the local convergence rate around the optima. Based on (2.16),
we could estimate the local convergence if the weight matrix W is chosen. In order to
minimize the condition number of the Hessian operator, we will provide an intuitive
approach to select a near-optimal weight matrix in the next section.

Remark 1. We give a discussion for matrices with degenerate eigenvalues among
\lambda 1, \lambda 2, . . . , \lambda p, i.e., we relax the assumption (2.2) as

\lambda 1 \leqslant \lambda 2 \leqslant \cdot \cdot \cdot \leqslant \lambda p <\lambda p+1 \leqslant \cdot \cdot \cdot \leqslant \lambda n.(2.22)

Theorems 2.1 and 2.3 remain valid in their current forms. Theorem 2.2 is also valid
up to some changes due to the nonuniqueness of the eigenvectors of A. We give an
example to show the idea of the required changes. Assume \lambda i = \lambda i+1 for i < p.
Then any vector v \in span\{ vi, vi+1\} is an eigenvector of A corresponding to \lambda i and
\lambda i+1. Therefore, the matrix Vp in Theorem 2.2 may not be in the current form,
V = (v1, v2, . . . , vn). Instead, the matrix Vp could be changed to

Vp = (v1, v2, . . . , vp) \cdot 

\left(  Ii - 1

Q1

In - i - 1

\right)  ,

where Q1 is a 2\times 2 orthogonal matrix. More generally, if there are r distinct eigen-
values among \{ \lambda 1, \lambda 2, . . . , \lambda p\} , the matrix Vp in Theorem 2.2 admits the form

Vp = (v1, v2, . . . , vp) \cdot 

\left(     
Q1

Q2

. . .

Qr

\right)     ,

where Qi is an orthogonal matrix with dimension being the degree of degeneracy of
the ith distinct eigenvalues.
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WEIGHTED TRACE-PENALTY MINIMIZATION A187

However, as for Theorem 2.4, since the global minimizers are not isolated, the
Hessian matrix of f\mu ,W atX\ast cannot be positive definite. We could employ techniques
in section 2.4 to remove the nonzero null space in the Hessian matrix.

2.3. Near-optimal weight matrix. According to the analysis above, the pa-
rameter \mu and the weight matrix W could be considered as an ensemble \mu W . That
means that the degree of freedom of the parameters in (1.2) is p instead of p + 1.
Therefore, we can always set that \mu = 1 in analysis. Given the exact expression of the
condition number \kappa (Hessf\mu ,W (X\ast )), we would like to minimize the condition number
with respect to the weight matrix W and obtain the optimal weight matrix W \ast , i.e.,

W \ast = argmin
W

max

\biggl\{ 
\lambda n  - \lambda 1,2(w1  - \lambda 1),max

i<j
\lambda max(Mij)

\biggr\} 
min

\biggl\{ 
\lambda p+1  - \lambda p,2(wp  - \lambda p),min

i<j
\lambda min(Mij)

\biggr\} .(2.23)

However, (2.23) relies on the eigenvalues of A, which is not known a priori. Hence
solving (2.23) exactly is infeasible.

In the following, we derive a near-optimal solution to (2.23) with eigenvalues
of A. The final near-optimal solution relies on the relative eigenvalue distribution
of A, which is known a priori in many practical applications, e.g., FCI. In quantum
chemistry, an FCI solver is usually applied after Hartree--Fock calculation, which offers
a good estimation of the eigenvalues [40]. For general eigenvalue problems, we could
estimate the eigenvalues of A at a lower cost than eigensolvers [28].

To simplify the later discussion, we assume that \lambda p + \lambda p+1 < \lambda 1 + \lambda n, which in
almost all practical applications is satisfied if n\gg p. We choose the weight matrix W
such that

\lambda 1 + \lambda n
2

\geqslant w1 > \cdot \cdot \cdot >wp \geqslant 
\lambda p + \lambda p+1

2
.(2.24)

Then the objective function in (2.23) can be simplified as

\kappa (Hessf\mu ,W (X\ast )) =

max

\biggl\{ 
\lambda n  - \lambda 1,max

i<j
\lambda max(Mij)

\biggr\} 
min

\biggl\{ 
\lambda p+1  - \lambda p,min

i<j
\lambda min(Mij)

\biggr\} .(2.25)

Recall that the eigenvalues of Mij as in (2.20) admit

\lambda (Mij) =
1

2
(wi +wj  - \lambda i  - \lambda j)

\Biggl( 
1\pm 

\sqrt{} 
1 - 4(wi  - wj)(\lambda j  - \lambda i)

(wi +wj  - \lambda i  - \lambda j)2

\Biggr) 
\leqslant wi +wj  - \lambda i  - \lambda j \leqslant \lambda n  - \lambda 1,

where the second inequality follows from (2.24). Thus, to find the minimizer of (2.23)
means to maximize the denominator, whose difficulty lies in solving

max
w1>\cdot \cdot \cdot >wp

min
1\leqslant i<j\leqslant p

1

2
(wi +wj  - \lambda i  - \lambda j)

\Biggl( 
1 - 

\sqrt{} 
1 - 4(wi  - wj)(\lambda j  - \lambda i)

(wi +wj  - \lambda i  - \lambda j)2

\Biggr) 
.(2.26)

Exactly solving (2.26) remains complicated. Here we give an intuitive analysis. Notice
that, due to (2.24), (wi + wj  - \lambda i  - \lambda j) is lower bounded by \lambda p+1  - \lambda p. When
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A188 WEIGUO GAO, YINGZHOU LI, AND HANXIANG SHEN

4(wi - wj)(\lambda j - \lambda i)
(wi+wj - \lambda i - \lambda j)2

> c \forall i < j and c > 0 is a constant bounded away from zero, then we

have \kappa (Hessf\mu ,W (X\ast )) < \lambda n - \lambda 1

\lambda p+1 - \lambda p

2
1 - 

\surd 
1 - c

. When some
4(wi - wj)(\lambda j - \lambda i)
(wi+wj - \lambda i - \lambda j)2

approaches
zero, e.g., the eigengap \lambda j  - \lambda i is small, we apply the linear approximation to the
square root term in (2.26) and obtain

max
w1>\cdot \cdot \cdot >wp

min
1\leqslant i<j\leqslant p

(wi  - wj)(\lambda j  - \lambda i)
(wi +wj  - \lambda i  - \lambda j)

.(2.27)

Solving the max-min problem (2.26) exactly is difficult. Since (2.24) give lower and
upper bounds of the denominator in (2.27), we only focus on optimizing the numerator
part,

F (W ) = max
w1>\cdot \cdot \cdot >wp

min
1\leqslant i<j\leqslant p

(wi  - wj)(\lambda j  - \lambda i),

which has the analytical solution \widehat W satisfying

\^w1 =
\lambda 1 + \lambda n

2
,

\^wp =
\lambda p + \lambda p+1

2
,

\^wi  - \^wi+1 =

\left(  p - 1\sum 
j=1

(\lambda j+1  - \lambda j) - 1

\right)   - 1

\^w1  - \^wp

\lambda i+1  - \lambda i
,

F (\widehat W ) =

\left(  p - 1\sum 
j=1

(\lambda j+1  - \lambda j) - 1

\right)   - 1

( \^w1  - \^wp).

Furthermore, through a simple calculation, we obtain that

F (\widehat W )

p - 1
\leqslant F (\widetilde W )\leqslant F (\widehat W ),

where the weight matrix \widetilde W is evenly distributed between \^wp and \^w1. Such an in-

equality indicates that the uniform weight matrix \widetilde W is a simple but effective choice
for small p because it could use a few eigenvalues known a priori to determine a weight
matrix with a controlled condition number. Later in section 4, all the numerical ex-
periments use the evenly distributed weight matrix \widetilde W since in practice it needs no
extra cost.

2.4. Generalization for Hermitian matrices. In this section, we will discuss
the extension of (1.2) for the eigenvalue problem of complex Hermitian matrices.
Given that A is a Hermitian matrix and (\Lambda , V ) is the eigenpairs such that

A= V \Lambda V H,(2.28)

where V = (v1, v2, . . . , vn)\in \BbbC n\times n and \Lambda = diag(\lambda 1, \lambda 2, . . . , \lambda n) such that

\lambda 1 <\lambda 2 < \cdot \cdot \cdot <\lambda p <\lambda p+1 \leqslant \cdot \cdot \cdot \leqslant \lambda n,

we generalize the weighted trace-penalty model (1.2) for complex Hermitian matrices
as

min
X\in \BbbC n\times p

f\mu ,W (X) =
1

2
tr(XHAX) +

\mu 

4
\| XHX  - W\| 2F,(2.29)
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WEIGHTED TRACE-PENALTY MINIMIZATION A189

where the conditions on \mu and W remain unchanged, i.e., \mu is a positive scalar and
W is a real diagonal matrix that satisfies Assumption 1. The first-order optimal
condition is

\nabla f\mu ,W (X) =AX + \mu X(XHX  - W ) = 0.(2.30)

Theorems 2.1 and 2.2 could be generalized to complex matrices, which are detailed
in Theorems 2.5 and 2.6. The proofs of these theorems remain similar to the cases of
real matrices.

Theorem 2.5. Assume A and W satisfy (2.28) and Assumption 1, respectively.
Any stationary point \widehat X of (2.29) has the form

\widehat X = \widehat Up
\widehat Sp,(2.31)

where \widehat Up = (\^u1, \^u2, . . . , \^up)\in \BbbC n\times p and \widehat Sp =diag(\^s1, \^s2, . . . , \^sp)\in \BbbR p\times p such that

A\^ui = \sigma i\^ui, \^uHi \^uj = \delta ij , and

\^si \in 
\biggl\{ 
0,

\sqrt{} 
wi  - 

\sigma i
\mu 

\biggr\} 
.

(2.32)

Theorem 2.6. Assume A and W satisfy (2.28) and Assumption 1, respectively.
The global minimizer X\ast of (2.29) has the form

X\ast = VpSp,

where Vp = (v1e
\imath \theta 1 , v2e

\imath \theta 2 , . . . , vpe
\imath \theta p) for every \theta i \in \BbbR , and Sp = diag(s1, s2, . . . , sp) \in 

\BbbR p\times p such that

s2i =wi  - 
\lambda i
\mu 
.

However, the properties of the Hessian operator for (2.29),

Hessf\mu ,W (X)[C] =AC + \mu (CXHX +XCHX +XXHC  - CW ),(2.33)

change dramatically. The major difference is that the Hessian operator (2.33) is no
longer a positive definite operator; instead, it is positive semidefinite. From Theo-
rem 2.6, we find that any global minimizer X\ast multiplied by a phase rotation e\imath \theta 

remains a global minimizer. Hence, unlike the symmetric matrix case where global
minimizers are isolated, for Hermitian matrices, the global minimizers are located
on a circle of the np-dimensional complex space and the Hessian operator at these
global minimizers is positive semidefinite but not positive definite. In the following,
we update our previous results and extend them for Hermitian matrices.

Define the inner product of X \in \BbbC n\times p and Y \in \BbbC n\times p as

\langle X,Y \rangle \triangleq Re[tr(XHY )],

where Re[\cdot ] denotes the real part of a complex number. For any global minimizer X\ast ,
each element in\bigl\{ 

X \in \BbbC n\times p | X =X\ast e\imath \Theta ,\Theta =diag(\theta 1, \theta 2, . . . , \theta p), \theta i \in \BbbR 
\bigr\} 

(2.34)
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A190 WEIGUO GAO, YINGZHOU LI, AND HANXIANG SHEN

is still a global minimizer. The set of tangent vectors of the manifold (2.34) is

T \triangleq 
\bigl\{ 
\imath X\ast \Gamma \in \BbbC n\times p | \Gamma = diag(\gamma 1, \gamma 2, . . . , \gamma p)\in \BbbC p\times p

\bigr\} 
.

Then, we constrain the condition number of the Hessian operator on the perpendicular
manifold

T\bot =
\bigl\{ 
C \in \BbbC n\times p | Im[CHX\ast ]ii = 0 \forall i

\bigr\} 
,(2.35)

where the subscript ii denotes the ith diagonal element and Im[\cdot ] denotes the imagi-
nary part. Finally, we would like to estimate the lower and upper bounds of the inner
product,

\langle C,Hessf\mu ,W (X\ast )[C]\rangle 
\bigm| \bigm| \bigm| 
C\in T\bot 

= tr(CHAC) - tr(CHC\Lambda p)(2.36)

+ tr(\mu CHX\ast (X\ast )HC) +Re
\bigl[ 
tr(\mu CHX\ast CHX\ast )

\bigr] 
.

Similar to the proof of Theorem 2.4, (2.36) is upper and lower bounded by the nu-
merator and the denominator in (2.16b), respectively.

Now, we are going to explain the reason behind splitting the space into T and
T\bot . Considering the gradient \nabla f\mu ,W (X) in (2.30), it can be represented near the
global minimizer as

\nabla f\mu ,W (X) =GX +\Delta GX ,(2.37)

where GX \in \{ C \in \BbbC n\times p : Im[CHX\ast ]ii = 0 \forall i\} and \| \Delta GX\| is o(\| GX\| ). Let X =
X\ast +\Delta X. Consequently, without loss of generality let \mu = 1 and (2.37) can be shown
by

\nabla f\mu ,W (X) =A(X\ast +\Delta X) + (X\ast +\Delta X)
\bigl( 
(X\ast +\Delta X)H(X\ast +\Delta X) - W

\bigr) 
(2.38)

=A \cdot \Delta X +X\ast \bigl( (X\ast )H\Delta X +\Delta XHX\ast \bigr) +\Delta X
\bigl( 
(X\ast )HX\ast  - W

\bigr) 
+ o(\| \Delta X\| ),

\triangleq GX +\Delta GX ,(2.39)

where the second equality adopts (2.30). Thus,

(X\ast )HGX = (X\ast )HA\Delta X + (X\ast )HX\ast \bigl( (X\ast )H\Delta X +\Delta XHX\ast \bigr) (2.40)

+ (X\ast )H\Delta X
\bigl( 
(X\ast )HX\ast  - W

\bigr) 
= (W  - | Sp| 2)(X\ast )H\Delta X + (X\ast )H\Delta X(| Sp| 2  - W )

+ | Sp| 2
\bigl( 
(X\ast )H\Delta X +\Delta XHX\ast \bigr) ,

where | Sp| 2 = diag
\bigl( 
| s1| 2, . . . , | sp| 2

\bigr) 
. It is revealed that the diagonal elements of the

third term are real, and the diagonal parts of the first two terms are opposite, which
means the diagonal of (2.40) is real and GX \in T\bot .

That indicates the gradient in the neighborhood of the global minimizer is located
on the manifold (2.35) dominantly, and when we use a gradient descent method to
solve the optimization, the convergence rate is mainly dependent on the constrained
condition number. Though the Hermitian matrix is interesting in some applications,
in our target applications the matrices are real symmetric. Hence, we omit the detail
for the analysis of Hermitian matrices.
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WEIGHTED TRACE-PENALTY MINIMIZATION A191

3. Algorithms. In this section, we introduce several algorithms to address the
unconstrained nonconvex minimization problem (1.2) for large-scaled matrices A.

3.1. Gradient descent methods. A common choice for our unconstrained
minimization problem (1.2) is the gradient descent method. A general gradient de-
scent method with various stepsize strategies admits the form

X(j+1) =X(j)  - \alpha (j)\nabla f\mu ,W (X(j)),(3.1)

where the superscript (j) denotes the iteration index and \alpha (j) is the stepsize at the jth
iteration. Different stepsize strategies lead to different convergence properties. We
first consider a fixed stepsize that is sufficiently small. As shown in Theorem 2.3, the
weighted trace penalty model (1.2) does not have spurious local minima. We could
then first adopt the idea in [15] to guarantee that the iteration never escapes from a big
area such that the Lipshitz constant is bounded. Then by the discrete stable manifold
theorem [16, 26], we could show that the gradient descent method for (1.2) converges
to global minima for all initial points besides a set of measure zero. Consider another
choice of stepsize strategy, i.e., random perturbation of a fixed stepsize. Instead of
using the discrete stable manifold theorem, we could apply ideas from the stable
manifold theorem for random dynamical systems [10] to show global convergence
almost surely. Wen et al. [45] showed that if the stepsize is sufficiently small, not
necessarily constant, the iteration variable of the gradient descent method for the
original trace-penalty model stays full-rank. Such a result could be extended to our
weighted trace-penalty model as well, though the aforementioned stepsize strategies,
in theory, work well on global convergence. In practice, these stepsize strategies are
too conservative to be numerically efficient.

For most applications, especially the FCI eigenvalue problem we consider in this
paper, a good initialization is available, and, hence, more aggressive stepsize strategies
are adopted in practice. Such stepsize strategies include but are not limited to exact
line search, BB stepsize, etc. For the weighted trace-penalty model, the stepsize
\alpha (j) can be computed by exact line search to make X(j+1) attain local directional
optima in each iteration, which leads to a cubic polynomial of \alpha as the subproblem.
Numerically, we find that BB stepsize works better in the gradient descent method
for our weighted trace-penalty model. Therefore, we mainly focus on the BB stepsize.
Let \delta 

(j)
X \triangleq X(j)  - X(j - 1) and \delta 

(j)
G \triangleq \nabla f\mu ,W (X(j)) - \nabla f\mu ,W (X(j - 1)). The BB stepsize

is defined as

\alpha 
(j)
odd = tr

\biggl( \Bigl( 
\delta 
(j)
X

\Bigr) \top 
\delta 
(j)
G

\biggr) \Big/ 
\| \delta (j)G \| 

2
F,

\alpha (j)
even = \| \delta 

(j)
X \| 

2
F

\Big/ 
tr

\biggl( \Bigl( 
\delta 
(j)
X

\Bigr) \top 
\delta 
(j)
G

\biggr) 
,

where the subscripts ``odd"" and ``even"" mean the iteration number (j) is odd or even.

The BB stepsize requires some extra storage to store intermediate matrices \delta 
(j)
X and

\delta 
(j)
G (or their variants), and the computational cost for the stepsize is O(np). As a com-
parison, in the gradient descent method, the dominant per-iteration computational
cost is to compute the matrix-matrix product of AX, which costs about O(nnz(A) \cdot p)
for nnz(A) denoting the number of nonzero entries in A.

Compared with the original trace-penalty optimization [45], the only change is
the weight matrix. Introducing such a weight matrix reduces the cardinality of the
global minima set from infinite to finite and makes all global minima isolated from
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A192 WEIGUO GAO, YINGZHOU LI, AND HANXIANG SHEN

each other, while searching for the global minima becomes more difficult. This could
be seen from the theoretical condition numbers of the Hessian operator in (2.16) and
that in [45],

\kappa (Hessf\mu ,W )\geqslant \kappa 

\biggl( 
Hessf\mu ,I

\bigm| \bigm| \bigm| 
V \bot 
p

\biggr) 
\triangleq 

\lambda n  - \lambda 1
\lambda p+1  - \lambda p

.(3.2)

Viewing both optimization methods as eigensolvers, the original trace-penalty opti-
mization requires an extra Rayleigh--Ritz process, whereas the weighted trace-penalty
model converges to desired eigenpairs directly.

3.2. Coordinate descent for FCI. The gradient descent method for (1.2)
works well for problems of small to moderate size, while for FCI matrices, the gradient
descent method becomes less efficient and, in many cases, infeasible. In this section,
we will introduce the coordinate descent method to optimize (1.2).

Recall that an FCI matrix has the following properties:
\bullet Extremely large-scale: in practice, the dimension of the FCI matrix could

easily exceed O(1014). This makes the eigenvectors impossible to store in
memory. The FCI matrix itself has to be generated on the fly, and we cannot
keep the whole matrix in memory but calculate one column or row when we
use it.

\bullet Sparsity: the Hamiltonian operator under the second-quantization [4] admits

\^H =
\sum 
p,q

tpq\^a
\dagger 
p\^aq +

1

2

\sum 
p,q,r,s

upqrs\^a
\dagger 
p\^a

\dagger 
q\^as\^ar,

where \^a\dagger p and \^ap denote the creation and annihilation operators of an elec-
tron with spin-orbital index p, and tpq and upqrs are one- and two-electron
integrals, and the (i, j)th element of FCI matrices is nonzero if and only if
the ith basis wavefunction and the jth basis wavefunction differ in at most
two occupied spin-orbitals [12, 39]. Thus, the number of nonzero elements
grows polynomially with respect to the number of particles, whereas the FCI
matrix size grows factorially.

\bullet Approximately sparse eigenvectors: the eigenvectors associated with low-
lying eigenvalues of FCI matrices usually are sparse. The magnitudes of
different entries vary widely, ranging from 10 - 16 to 10 - 1 in normalized eigen-
vectors. Only a few dominant entries account for nearly all the norms of
eigenvectors. In practice, we approximate these eigenvectors by sparse vec-
tors and focus on those dominant entries.

Taking all these properties into account, for symmetric FCI matrix A, the gradient
descent method is not feasible: the matrix A and iteration variableX cannot be hosted
in memory; and computing AX each iteration is not affordable. CDFCI [43], solving
the leading eigenpair of the FCI problem, inspires us that the coordinate descent
method would be an efficient algorithm to locate the sparse entries and calculate the
values.

When a coordinate descent method is considered, the per-iteration updating
scheme for (1.2) is of the form

Pick a coordinate from X(j), i.e., (k(j), \ell ),(3.3a)

\alpha (j) = argmin
\alpha \in \BbbR 

f\mu ,W

\Bigl( 
X(j) + \alpha Ek(j)\ell 

\Bigr) 
,(3.3b)

X(j+1) =X(j) + \alpha (j)Ek(j)\ell ,(3.3c)
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WEIGHTED TRACE-PENALTY MINIMIZATION A193

where Ek(j)\ell \in \BbbR n\times p denotes the matrix whose (k(j), \ell )th element is one and zero
elsewhere. The optimization problem in (3.3b) is a fourth-order polynomial of \alpha ,
whose minimizers can be obtained via solving a cubic polynomial directly. The cubic
polynomial is of the form

(\alpha + xk\ell )
3 + c1(\alpha + xk\ell ) + c0 = 0,

where the coefficients are

c1 =
1

\mu 
akk  - w\ell +

n\sum 
m=1

(xm\ell )
2 +

p\sum 
m=1

(xkm)2  - 2(xk\ell )
2,

c0 =
1

\mu 

n\sum 
m=1

akmxm\ell  - 
akkxk\ell 
\mu 

+

n\sum 
m=1

p\sum 
s=1

xksxmsxm\ell 

+ x3k\ell  - xk\ell 

\Biggl( 
p\sum 

s=1

(xks)
2 +

n\sum 
m=1

(xm\ell )
2

\Biggr) 
.

(3.4)

Since all variables in the above two equations are at the jth iteration, we drop the
iteration index superscript for all variables. As we shall see later in Algorithm 3.1,
we maintain Y = AX and S = X\top X throughout iterations. Hence both coefficients
can be computed in O(p) operations and then the exact line search for stepsize \alpha (j)

can be calculated efficiently.
Our coordinate picking strategy, (3.3a), is inspired by CDFCI [43], which depends

on the gradient and the nonzero pattern of A. In the (j)th iteration, we focus on the
\ell th column for \ell \equiv j(modp). We search for the entry with largest magnitude of the
\ell th column of \nabla f\mu ,W (X(j)) among the nonzero pattern of the k(j - p)th column of A,
where k(j - p) is the row coordinate updated in the (j  - p)th iteration. That is,

k(j) = argmax
i\in \scrN 

\Bigl( 
A

:,k(j - p)

\Bigr) 
\bigm| \bigm| \bigm| \Bigl( \nabla f\mu ,W (X(j))

\Bigr) 
i\ell 

\bigm| \bigm| \bigm| ,(3.5)

where \scrN (\cdot ) denotes the nonzero pattern, A:,k(j - p) denotes the k(j - p)th column of A,

and (\nabla f\mu ,W (X(j)))i\ell denotes the (i, \ell )th element of \nabla f\mu ,W (X(j)).
According to the expression of \nabla f\mu ,W as in (2.4), though only a small set of

entries is needed, computing them at every iteration is not affordable. Thanks to an
important feature of the coordinate descent method, i.e., a single entry is updated
per iteration, we could efficiently maintain two important quantities: Y (j) \approx AX(j)

and S(j) = (X(j))\top X(j). Similar to CDFCI [43], we maintain Y (j) as a compressed
approximation of AX(j). The updating combined with compression formula is

Y
(j+1)
i\ell =

\Biggl\{ 
Y

(j)
i\ell + \alpha (j)Aik(j) if | \alpha (j)Aik(j) | > \varepsilon or Y

(j)
i\ell \not = 0,

Y
(j)
i\ell otherwise

(3.6)

for i \in \scrN (A:,k(j)). Besides, in order to get a stable estimation of corresponding

eigenvalues with high accuracy, we need to recalculate the element Y
(j+1)

k(j)\ell 
exactly by

Y
(j+1)

k(j)\ell 
= (A:,k(j))\top X:,\ell , since the Rayleigh quotient has the updating scheme

\bigl( 
X\top AX

\bigr) (j+1)

\ell \ell 
=
\bigl( 
X\top AX

\bigr) (j)
\ell \ell 

+ 2\alpha (j)Y
(j+1)

k(j)\ell 
 - (\alpha (j))2Ak(j)k(j) .(3.7)
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A194 WEIGUO GAO, YINGZHOU LI, AND HANXIANG SHEN

Algorithm 3.1 WTPM by coordinate descent (WTPM-CD).

1: Initialize X(0) \in \BbbR n\times p, penalty parameter \mu , and weight matrix W .
2: Store matrices Y (0) =AX(0) and S(0) = (X(0))\top X(0).
3: Store p-dimensional vector d(0) = the diagonal of (X(0))\top Y (0).
4: Construct \nabla f\mu ,W (X(0)). Set j = 0.
5: while stopping criterion not achieved do
6: Pick the coordinate (k(j), \ell ) to be updated in (j + 1)th iteration by picking

rule (3.5).
7: Compute the coefficients c0, c1 by (3.4) and obtain the increment \alpha (j).
8: X(j+1) =X(j) + \alpha (j)Ek(j)\ell .
9: Update Y (j+1) by (3.6).
10: Update d(j+1) by (3.7).
11: Update S(j+1) by (3.8).
12: Construct the searching domain in \nabla f\mu ,W (X(j+1)) dependent on \scrN (A:,k(j)).
13: j\leftarrow j + 1.
14: end while

Due to the symmetry of S(j), only the upper-triangular part is stored and updated,
and the updating expression for S(j) is

S
(j+1)
im =

\left\{           
S
(j)
im + \alpha (j)X

(j)

k(j)i
if i < \ell ,m= \ell ,

S
(j)
im + 2\alpha (j)X

(j)

k(j)i
+ (\alpha (j))2 if i= \ell ,m= \ell ,

S
(j)
im + \alpha (j)X

(j)

k(j)m
if i= \ell ,m> \ell ,

S
(j)
im otherwise.

(3.8)

The compression strategy of Y (j) restricts the increase of the number of nonzero
elements of both Y and X. Compressing coordinates is very much desired, which
saves a significant amount of memory. Algorithm 3.1 illustrates the framework of the
algorithm.

A good choice of initial point would make iterative methods efficient. For FCI
problems, Hartree--Fock provides excellent initial values for ground states and a few
low-lying excited states. We lack a systematic way of choosing good initial vectors
for other excited states. In principle, the initial X(0) must be an extremely sparse
matrix so that Y (0) =AX(0) could be calculated in a reasonable amount of time. In
particular, we adopt the following initialization for our numerical results. We find the
p smallest elements and corresponding indices \{ i1, i2, . . . , ip\} in the diagonal of the
FCI matrix. The initial point X(0) is set to be (ei1 , ei2 , . . . , eip), where ei denotes the
ith column of the identity matrix.

As for the stopping criterion, in general, we use the residual norm \| AX  - X\Lambda \| F,
where \Lambda consists of the Ritz values or Rayleigh quotients, or use the gradient norm
\| \nabla f\mu ,W \| F to compare with the tolerance tol. However, in these methods, high com-
putational cost arises from the extremely large size of A. The matrices AX and
\nabla f\mu ,W gathered during the iteration are not exact due to inadequate update of Y (j)

and \nabla f\mu ,W (X(j)). Accordingly, we introduce the summation of historical absolute
increments as the stopping criterion at jth iteration, i.e.,
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WEIGHTED TRACE-PENALTY MINIMIZATION A195

h\sum 
i=0

\gamma i| \alpha (j - i)| < tol,(3.9)

where h is a positive integer and \gamma \in (0,1). Usually, we choose h= 100 and \gamma = 0.99.
In the jth iteration, the cost of updating Xk(j)\ell dominantly includes selecting

the index of largest elements (k(j), \ell ) with O(nnz(A:,k(j - p))) flops, updating Y (j) with

O(nnz(A:,k(j))) flops, and inadequately constructing\nabla f\mu ,W (X(j)) withO(nnz(A:,k(j)))
flops. Thus the coordinate descent method makes the computational cost affordable
in each iteration. Another advantage of the algorithm is the utilization of memory.
It only requires us to store some sparse matrices like X(j), Y (j), a p\times p matrix S(j),
and incomplete \nabla f\mu ,W (X(j)) in memory.

In theory, the coordinate descent method converges faster than the full gradient
descent method. However, due to the fact that modern computer architecture prefers
batch operations, i.e., contiguous memory operations, the full gradient descent method
often outperforms the coordinate descent method in runtime. However, the intrinsic
structure of the FCI matrix benefits most from the coordinatewise method. The
gradient descent method has to access the sparse matrix and the related entries in
X, which destroys the contiguous memory access. On the other hand, the coordinate
descent method allows us to compress coordinates and restrict the cost of memory.
Furthermore, the updating strategy provides more chances for dominant elements
to achieve their optimal values. Detailed numerical results are provided in the next
section.

4. Numerical experiments. In this section, we will test the performance of
our algorithms for computing a set of smallest eigenpairs of Hamiltonian matrices.

4.1. Performance in small systems. This section will discuss the performance
of applying WTPM to some small systems and compare it with other eigensolvers.
The FCI matrices are illustrated in Table 4.1. There are two matrices: ``ham448"" and
``h2o."" The ``h2o"" matrix is generated from one H2O molecule system with STO-3G
basis set and the ``ham448"" matrix is generated by the Hubbard model on a 4\times 4 grid
with 8 fermions. The dimension n ranges from 6\times 104 to 2\times 105, which is much smaller
than the dimension of the systems of practical interest. That is because we want to
reveal the feature of WTPM compared with the other classical solvers. The average
nnz(A:,j) shows the number of nonzero elements of each column in average, which
roughly estimates the computational expense of O(nnz(A:,j)) flops in each iteration
by WTPM-CD. These numerical experiments on testing matrices are performed in
MATLAB R2021b.

There still exists a problem of how the \mu and W are determined in practice.
We present a feasible approach to choosing the proper parameters based on roughly
estimated eigenvalues. Since we usually could get a good initial X(0) due to Hartree--
Fock theory and this initial X(0) has only one nonzero element in each column, matrix
(X(0))\top AX(0) with corresponding Rayleigh quotients r1 \leqslant r2 \leqslant \cdot \cdot \cdot \leqslant rp can be com-
puted cheaply. Just let \mu = 1, and W is distributed evenly in the interval [wp,w1]
such that

Table 4.1
Testing FCI matrices.

Name n nnz(A) Average nnz(A:,j) nnz(A)/n2

ham448 207168 32040806 155 7.47e-4

h2o 61441 25060625 408 6.64e-3
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Fig. 4.1. Absolute value of each coordinate in the sorted eigenvectors. ``Eigk"" denotes the kth
smallest eigenvector.

wp = rp + \varepsilon ,

w1 = 2wp  - r1,
(4.1)

where \varepsilon is a positive parameter depending on both the magnitude and the gap of
initial Rayleigh quotients.

First, we demonstrate that the smallest eigenvectors are approximately sparse
in Figure 4.1. In the accurate eigenvectors, the magnitude of coordinates decreases
quickly and the vector norm is dominantly distributed on a few coordinates. It implies
that in the process of updating we could reserve the coordinates whose magnitude is
larger than a threshold and cut out others despite the loss of accuracy. Figure 4.1
also shows the compression threshold we used in the experiments.

We apply different eigensolvers to both FCI matrices, including LOBPCG in
BLOPEX toolbox [24, 25], EigPen-B introduced in trace-penalty minimization [45],
and our WTPM by both gradient descent (WTPM-GD) and coordinate descent
(WTPM-CD) methods. The numerical results for the case p = 5 are illustrated in
Table 4.2. All these solvers use the same initial matrix X(0), which is provided by
Hartree--Fock theory, and terminate when the error decreases to around 10 - 3. Let

err(j) = max
\ell =1,2,...,p

\bigm| \bigm| \bigm| \lambda \ell  - d(j)\ell 

\bigm| \bigm| \bigm| ,(4.2)

where \lambda \ell , d
(j)
\ell respectively denote the exact eigenvalue and the corresponding Ritz

value at the jth iteration. As for the individual settings of each solver, in LOBPCG,
the preconditioner is not used. The penalty parameter in EigPen-B is set as

\mu =max(rp,1).(4.3)

The weight matrix W in WTPM is set as the above statement in (4.1) and \mu = 1.

Another thing we should emphasize is the computational complexity of each solver
in one iteration. In LOBPCG, EigPen-B, and WTPM-GD, the dominant cost is
2p \cdot nnz(A) flops to obtain matrix AX. But WTPM-CD updates each iteration mainly
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WEIGHTED TRACE-PENALTY MINIMIZATION A197

Table 4.2
A comparison of updating iterations between eigensolvers for p = 5. The numbers in the

``WTPM-CD"" row represent relative iteration outside the bracket and actual iteration in the bracket.

h2o ham448

err Iteration err Iteration

LOBPCG 8.676e-4 18 9.929e-4 68

EigPen-B 2.971e-4 73 6.19e-4 134

WTPM-GD 4.879e-4 185 3.68e-4 191
WTPM-CD 3.901e-4 7 (283111) 7.29e-4 4 (462000)
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(b) ham448

Fig. 4.2. Convergence of the smallest eigenvalues and number of nonzero elements (nnz) of the
corresponding eigenvectors against iteration for p= 5. The nnz of AX in LOBPCG and EigPen-B
is not shown here since it quickly increases to the maximum size of AX.

at the expense of 2(p+2) \cdot nnz(A:,\ell ) flops, consisting of selecting the largest elements
index, updating Y , and inadequately constructing \nabla f\mu ,W . That means, on average,
the complexity of updating np

p+2 times in WTPM-CD equals that of updating once
in the other three solvers. Hence, we introduce ``relative iteration"" in WTPM-CD,
which means np

p+2 iterations, and the actual iteration number is shown in brackets in
Table 4.2.

The results in Table 4.2 tell us that under the requirement of 10 - 3 accuracy,
WTPM-CD shows the efficiency applied to FCI matrices, since its theoretical com-
plexity is much lower than the others, though the coordinate method cannot take
advantage of level-3 BLAS operations as the others and its actual runtime is longer
on small systems. Instead, WTPM-GD seems not an optimal choice due to the slow
convergence compared with EigPen-B and no compression of the coordinates. That
is because WTPM's theoretical condition number is larger than the original trace-
penalty minimization model if the elements of weight matrix W differ from each
other.

Furthermore, Figure 4.2 shows the convergence of the eigenvalues in different
eigensolvers and the number of nonzero elements of the matrix Y (j) in WTPM-CD
varying against iteration. In LOBPCG and WTPM-CD, the error monotonically
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A198 WEIGUO GAO, YINGZHOU LI, AND HANXIANG SHEN

decreases to the specified tolerance, but there exist spikes on the curve of error varying
in EigPen-B. That is because the BB stepsize cannot guarantee monotonicity during
minimization. The increasing tendency of nnz(Y (j)) in Figure 4.2 shows the effects of
the coordinate descent method and compression update. The nnz(Y (j)) is restricted
at a low level and so is the nnz(X(j)) because of the inequality nnz(Y (j))\geqslant nnz(X(j))
in WTPM-CD, which could significantly reduce the burden of the memory source.
This is what the other eigensolvers cannot do since the matrix multiplication without
compression will result in a dense matrix AX.

Besides, we apply WTPM-CD with different weight matricesW to the ``h2o"" case
to show the impact of W on the convergence as analyzed in section 2.3. We use the
exact eigenvalues of A to generate three different weight matrices. Let w1 = \lambda 1+\lambda n

2

and wp =
\lambda p+\lambda p+1

2 . We set

\widetilde W : wi =w1  - (w1  - wp) \cdot 
i - 1

p - 1
,

\widehat W : wi  - wi+1 =

\left(  p - 1\sum 
j=1

(\lambda j+1  - \lambda j) - 1

\right)   - 1

w1  - wp

\lambda i+1  - \lambda i
,

Random : wi is uniformly distributed in the interval (wp,w1),

for i = 2,3, . . . , p  - 1. Figure 4.3 shows the convergence results for different weight
matrices. It follows our conclusion in section 2.3 that \widehat W is the best choice among the
three weight matrices and \widetilde W makes the convergence at least faster than the random
choice does. In practice, if \widehat W cannot be obtained a priori due to the cost of the
construction, \widetilde W is often found efficient enough for WTPM-CD.

In summary, these examples indicate that WTPM-CD could efficiently solve the
eigenvalue problem (1.1) for FCI systems and provide an outstanding result for prac-
tical systems. In the next section, we will illustrate the performance of WTPM-CD
in some larger FCI matrices of more practical interest.

0 0.5 1 1.5 2 2.5 3

Iteration 10
5

10
-8

10
-6

10
-4

10
-2

10
0

E
rr

o
r

Fig. 4.3. Convergence of the smallest eigenvalues against iteration for p = 5 and WTPM-CD
applied to the ``h2o"" matrix with different weight matrices.
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4.2. Performance in large systems. This section provides some tests of larger
FCI matrices by WTPM-CD. All programs are implemented in C++14 and compiled
by Intel compiler 2021.5.0 with -O3 option. MPI and OpenMP support are disabled
for all programs in this section. All of the tests in this section are produced on a
machine with an Intel Xeon Gold 6226R CPU at 2.90GHz and 1 TB memory. The
basic properties of matrices are illustrated in Table 4.3. Two matrices correspond to
H2O and C2 molecules generated via restricted Hartree--Fock in the PSI4 package [34]
with a ccpVDZ atomic orbital basis set.

In the experiments, we use the err(j) defined in (4.2) to measure the accuracy.
Since we do not have the exact energies of excited states, we use the energies obtained
by our algorithm without the compression threshold after a long enough time until
the first seven digits to the right of the decimal remain unchanged as the benchmark.
The penalty parameter is simply set as \mu = 1, and the weight matrix W follows the
rules in (4.1). Thus we obtain

Wh2o =diag( - 75.0, - 75.175, - 75.35),(4.4)

Wc2 =diag( - 75.138, - 75.238, - 75.338).(4.5)

In the ``h2o ccpvdz"" case, the compression threshold is 1 \times 10 - 6, and that in the
``c2 ccpvdz"" case is 3 \times 10 - 8. Table 4.4 and Figure 4.4 show the convergence of
WTPM-CD. The ``GS,"" ``1st ES,"" and ``2nd ES"" respectively denote the computed
energies of the ground state, first excited state, and second excited state. The ``Time""
column denotes the time of the computed energies first reaching the appointed preci-
sion, i.e., the runtime when err(j) \leqslant tol. This practical runtime shows the efficiency
of the WTPM-CD on such molecules discretized by FCI.

From Table 4.3, we can see that storing the dense matrices X (or AX) in dou-
ble type needs at least 10GB memory for ``h2o ccpvdz"" and 400GB memory for
``c2 ccpvdz."" This results in the memory bottleneck of classical eigensolvers due to
the unavoidable gradient calculation or orthogonalization. The nnz(Y ) in Table 4.4
tells us that under the 10 - 4 accuracy, the cost of memory by WTPM-CD decreases
to 0.4GB for ``h2o ccpvdz"" and 10GB for ``c2 ccpvdz,"" which improves our capabil-

Table 4.3
Properties of testing molecule systems.

Name Number of electrons Number of orbitals Matrix dimension

h2o ccpvdz 10 24 4.53\times 108

c2 ccpvdz 12 28 1.77\times 1010

Table 4.4
Convergence of WTPM-CD.

Energy

Matrix p tol GS 1st ES 2nd ES Time (s) nnz(Y )

h2o ccpvdz 3 1.0e-2 -76.24141 -75.88563 -75.86844 378 5.10e07

1.0e-3 -76.24182 -75.89341 -75.86120 2179 5.16e07
1.0e-4 -76.24186 -75.89430 -75.86050 8653 5.16e07

c2 ccpvdz 3 1.0e-2 -75.72888 -75.63648 -75.63609 560 3.03e08

1.0e-3 -75.73193 -75.64174 -75.63398 34248 1.26e09
1.0e-4 -75.73196 -75.64250 -75.63327 102503 1.27e09
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Fig. 4.4. Convergence of the smallest eigenvalues and number of nonzero elements (nnz) of the
corresponding eigenvectors against runtime for p= 3.

ity of solving larger FCI matrices generated by more complicated particle systems.
Figure 4.4 shows the details of the convergence, from which we can see the nnz(Y )
increases quickly at the beginning and is fixed at a small number in comparison with
the dimension. Besides, the curve of ``2nd ES"" in Figure 4.4(a) has a different ten-
dency from the others. That is because the energy of the second excited state in
``h2o ccpvdz"" is monotonically increasing during the iteration, and it converges to a
value larger than the benchmark. It indicates that if we set a compression threshold,
the converged result may lose some accuracy.

5. Conclusion. In this paper, we propose an eigensolver WTPM-CD, which is
an efficient algorithm for FCI eigenvalue problems of quantum many-body systems.
We first propose a novel unconstrained minimization objective, namely WTPM, for
Hermitian eigenvalue problems. The theoretical analysis of the minimization model
tells us that the global minimizers of WTPM are exactly the eigenvectors we expect
instead of the invariant subspace, so the orthogonalization process required by other
methods is not needed in WTPM. Moreover, we calculate the exact condition number
of the Hessian operator, and use it to give a near-optimal weight matrix W . For
the algorithm framework, the coordinate descent method with compression threshold
reduces the number of nonzeros and the cost of storage. In numerical experiments,
compared with LOBPCG and EigPen-B solvers, WTPM-CD shows a better compu-
tational complexity on small systems. On large-scale systems, WTPM-CD guarantees
its efficiency while the other two solvers suffer from the bottleneck of memory.

There is still some interesting work to be explored in the future. First, we do not
give theoretical proof on the convergence of the WTPM-CD algorithm. The perfor-
mance of WTPM-CD converging varies while the picking rule changes. Some in-depth
research on the convergence theory is necessary to explain such a phenomenon. And
some cheaper picking rules, such as stochastic search, may be introduced to the co-
ordinate descent algorithm. The parallelization also attracts us to dive into it, since
at present we can only update one element in each iteration, and the utilization effi-
ciency of multicore is at a low level. We believe it is possible to modify the coordinate
descent method to update elements in a batch and increase the parallel efficiency on
shared memory systems.
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