
Journal of Scientific Computing           (2022) 93:63 
https://doi.org/10.1007/s10915-022-02025-0

Triangularized Orthogonalization-Free Method for Solving
Extreme Eigenvalue Problems

Weiguo Gao1,2 · Yingzhou Li1 · Bichen Lu3

Received: 30 November 2021 / Revised: 25 July 2022 / Accepted: 5 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
A novel orthogonalization-free method together with two specific algorithms is proposed
to address extreme eigenvalue problems. On top of gradient-based algorithms, the proposed
algorithms modify the multicolumn gradient such that earlier columns are decoupled from
later ones. Locally, both algorithms converge linearly with convergence rates depending on
eigengaps. Momentum acceleration, exact linesearch, and column locking are incorporated
to accelerate algorithms and reduce their computational costs. We demonstrate the efficiency
of both algorithms on random matrices with different spectrum distributions and matrices
from computational chemistry.

Keywords Eigenvalue problem · Orthogonalization-free · Iterative eigensolver · Full
configuration interaction
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1 Introduction

This paper proposes a novel triangularized orthogonalization-free method (TriOFM) for
solving extreme eigenvalue problems. Given a symmetric matrix A, the extreme eigenvalue
problem is defined as,

AU = U�, (1)
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where A ∈ R
n×n , A� = A, � ∈ R

p×p is a diagonal matrix with A’s p smallest eigenvalues
on the diagonal in ascending order, and the columns of U are the corresponding eigenvec-
tors. The proposed methods target some specific applications in computational chemistry, in
which areas smallest eigenpairs are desired as the ground-state and low-lying excited-states.
Though we introduce algorithms for p smallest eigenpairs, all algorithms in this paper can be
adapted to compute p largest eigenpairs. Besides computational chemistry, solving extreme
eigenvalue problems is a fundamental computational step in a wide range of applications,
including but not limited to the principal component analysis, dimension reduction, spectral
clustering, etc.

In this paper, we specifically concern extreme eigenvalue problems with two properties:

(i) Orthogonalization of the iteration variable X is not permitted;
(ii) Eigenvectors are sparse vectors.

At least two important applications from computational chemistry, linear-scaling density
functional theory (DFT) [30] and full configuration interaction (FCI) [16] for low-lying
excited states, admit these two properties. In linear-scaling DFT, the number of desired
eigenpairs is of the same order as the problem size. The orthogonalization step then scales
cubically, which is not permitted in linear-scaling DFT. Regarding the sparsity, linear-scaling
DFT adopts localized basis sets, and the eigenvectors therein are indeed sparse [4, 37].
Although FCI also admits the above two properties, it has its own unique feature. In FCI, the
desired number of eigenpairs p is usually a small constant, e.g., p = 5, 10. While the size
of the matrix n grows factorially as the system increases. For example, considering a single
water molecule with 48 spin-orbitals and 10 electrons, the matrix is of size∼ 108. Due to the
factorially increasing matrix size, orthogonalization is too expensive in both computational
and memory costs to be applied in practice. Sparsity is also an important feature of FCI.
Thanks to the two-body interaction feature of the electrons, the matrix is extremely sparse.
Regarding the water molecule example, each column of the matrix has roughly 104 nonzero
entries. The eigenvectors of the ground-state and low-lying excited-states are sparse. FCI
is the motivating application of this work, and hence some of our algorithm designs would
prefer FCI to DFT.

1.1 RelatedWork

For linear symmetric eigenvalue problems as (1), there are many classical eigensolvers
from textbooks of numerical linear algebra. Readers are referred to [12] for references. In
electronic structure calculation, variants of classical eigensolvers, like Davidson [8], conju-
gate gradient(CG) [15, 32], locally optimal block preconditioned conjugate gradient method
(LOBPCG) [17], projected preconditioned conjugate gradient (PPCG) [38], Chebyshev fil-
tering [1, 2, 20, 45], pole expansion [25, 33], Rayleigh quotient based optimization methods
[13, 21, 35], are widely used in the self-consistent field iteration in DFT. All these methods
are related to Krylov subspace. A recent software ELSI [42, 43] provides an interface to
many of these eigensolvers for DFT calculation.

Besides Krylov subspace methods, another family of methods view the symmetric eigen-
value problem as a constrained optimization problem and solve it using either first-order
or second-order methods [7, 9, 14, 36, 41, 44]. These methods usually target more general
objective functions with orthonormal constraints. However, the linear eigenvalue problem
is always one of their important applications. Since the feasible set of the orthonormality
constraint is the Stiefel manifold, these methods are also known as manifold optimization
methods. They take either the Euclidean gradient or Riemannian gradient step with certain
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strategies in calculating the stepsize. A retraction or projection step is needed to maintain
the feasibility of the iteration variable. Recently, in order to enhance the parallelizability,
the retraction step is avoided through either the augmented Lagrangian method [10, 40] or
extend gradient [6].

Linear symmetric eigenvalue problems can also be written as an unconstrained optimiza-
tion problem. The most well-known one is minimizing the Rayleigh quotient, which can be
generalized to the multicolumn case. Another two unconstrained optimization problems are

min
X∈Rn×p

∥
∥
∥A + XX�

∥
∥
∥

2

F
, (Obj1)

and

min
X∈Rn×p

tr
((

2I − X�X
)

X�AX
)

, (Obj2)

where ‖·‖F denotes the Frobenius norm and tr (·) denotes the trace operation. (Obj1) has been
adopted to address the extreme eigenvalue problems arsing from several areas [19, 24, 27],
including FCI [23, 39]. (Obj2) is widely known as the orbital minimization method (OMM)
[5, 28–31], which is popular in the area of (linear-scaling) DFT. More details about (Obj1)
and (Obj2)are deferred to Sect. 2.

For all methods aforementioned in this section, some of them are orthogonalization-
free, and some of them converge to eigenvectors directly. Nevertheless, none of them is an
orthogonalization-free method converging to eigenvectors directly.

1.2 Contribution

In this paper, a novel iterative method named triangularized orthogonalization-free method
(TriOFM) is proposed,which is orthogonalization-free and converges to eigenvectors directly.
Themethod is inspired by the unconstrained optimizationmethods (denoted asOFM through-
out this paper). In OFM, the updating direction is the gradient of the objective function,
whereas, in TriOFM, the updating direction is a triangularized version of the gradient, which
decouples earlier columns from later ones. When the gradient is triangularized in TriOFM,
the updating direction is no longer a gradient of any function. Hence the underlying dynamic
is not a conservative flow. The analysis is then very different from traditional analysis in
optimization. In this paper, we triangularize two objective functions, i.e., (Obj1) and (Obj2),
and obtain two iterative algorithms named TriOFM-(Obj1) and TriOFM-(Obj2) respectively.

The convergence analysis of TriOFM-(Obj1) is carried out in detail. First, we discuss the
stable and unstable fixed points of our algorithm.We then provide local convergence analysis
with a convergence rate. The rate is carried out through a careful analysis of the accumulated
error term. All analyses can be extended to TriOFM-(Obj2), and we state the corresponding
theorems without detailed proof. Global convergence can be also be established. We leave
the detail in a companion paper [11]. Notice that the global convergence is given without a
rate.

After the analyses, we propose a few techniques to accelerate the convergence and reduce
the computational cost. Conjugate gradient direction and linesearch strategies are proposed
to accelerate both algorithms. These two techniques were also applied in OFM which are
tailored for TriOFM in this paper. While, in OFM, the locking technique is not feasible due to
the existence of the orthogonalization step. In TriOFM, the locking technique is incorporated
to reduce the computational cost.
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Table 1 Notations

Notation Explanation

n The size of the matrix

q The number of negative eigenvalues of the matrix

p The number of desired eigenpairs and p ≤ q

A The n-by-n symmetric matrix

� A diagonal matrix with diagonal entries being eigenvalues of A in increasing ordering

λi The i-th smallest eigenvalue of A

�i The first i-by-i principal submatrix of �

U An orthogonal matrix satisfying U�AU = �

ui The eigenvector of A corresponding to λi

Ui The first i columns of U

ρ The 2-norm of A, i.e., ρ = ‖A‖2
X (t) An n-by-p matrix denoting the iteration variable at t-th iteration

x(t)
i The i-th column of X (t)

X (t)
i The first i columns of X (t)

f1(X), f2(X) The objective function in (Obj1), (Obj2)

∇ f1(X), ∇ f2(X) The gradient of f1(X), f2(X)

α The stepsize

ei The i-th standard basis vector a

a A vector of length n with one on the i-th entry and zero elsewhere

Finally, numerical examples are provided to demonstrate the effectiveness of TriOFM. All
suggested techniques are first explored on random matrices and then applied to two practical
examples, one from DFT and another one from FCI. In both practical examples, we observe
that the proposed framework achieves both the orthogonalization-free and converging to
eigenvectors properties while not losing much efficiency of the computational cost compared
with their original OFM counterparts.

1.3 Organization

In the rest of this paper, Sect. 2 provides detailed introductions to both (Obj1) and (Obj2)
with an analysis of the energy landscape. Section3 introduces TriOFM and its two iterative
algorithms, TriOFM-(Obj1) and TriOFM-(Obj2), in detail. The convergence analysis is car-
ried out in Sect. 4. Algorithmic techniques are proposed in Sect. 5. In Sect. 6, all algorithms
are numerically explored on random matrices and matrices from practice. Finally, Sect. 7
concludes the paper with a discussion on future directions.

2 Preliminary

We introduce OFM eigensolvers based on (Obj1) and (Obj2) in this section. Notations used
throughout the paper are summarized in Table 1, which would be used without further expla-
nation.
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The orthogonalization step is a key step in most traditional eigensolvers, e.g., power
method, QR iteration, Lanczos, etc. While, the orthogonalization step is difficult to be effi-
ciently parallelized on modern computer architectures, i.e., distributed-memory computers
and GPUs. OFM eigensolvers, in contrast, do not involve the orthogonalization step and only
require matrix-matrix multiplication, which is one of the most parallel efficient operations.
Hence OFM is plausible for solving large problems in a massively parallel environment.

Given that A is symmetric, A + XX� in (Obj1) is the residual of a symmetric low-rank
approximation. In [27], (Obj1) is shown to be equivalent to a trace-penalty minimization
model with a specific penalty parameter. In both [24, 27], the energy landscape of (Obj1)
has been analyzed. (Obj1) does not have any spurious local minimum, and all local minima
are global minima. We rephrase and summarize the analysis result as follows under the
aforementioned assumption that A has at least p negative eigenvalues.

Theorem 1 All stationary points of (Obj1) are of form X = Uq
√−�q SP and all local

minima are of form X = Up
√−�pQ, S ∈ R

q×q is a diagonal matrix with diagonal entries
being 0 or 1 (at most p 1s), P ∈ R

q×p and Q ∈ R
p×p are unitary matrices. Further, any

local minimum is also a global minimum.

On the other hand, when p > q , stationary points are exactly of the same form, whereas
local minima need to be updated as X = Uq

√−�q Q with Q ∈ R
q×p having orthogonal

columns. For almost all chemistry problems, the assumption p ≤ q holds in practice. Hence
we stick to this assumption for (Obj1) throughout the paper to simplify our presentation.

The intuition behind (Obj2) is more complicated. There are two ways to motivate the
objective function: the approximated inverse and the Lagrange multiplier.

A multi-column version of Rayleigh quotient admits tr
((

X�X
)−1

X�AX
)

, which could

also be an objective function option for OFM. Assuming the spectrum of X�X is bounded by
one, we have the Neumann series expansion of the inversion and the first order approximation
as,

(

X�X
)−1 =

(

I −
(

I − X�X
))−1 =

∞
∑

k=0

(

I − X�X
)k ≈ 2I − X�X .

Substituting the approximation into the multi-column Rayleigh quotient leads to (Obj2).
Another way to motivate (Obj2) is via the Lagrange multiplier method. Lagrangian func-

tion for eigenvalue problem admits

L(X , �) = tr
(

X�AX
)

− tr
(

�
(

X�X − I
))

,

where � denotes the Lagrange multiplier. The first order optimality condition leads to an
expression for the Lagrange multiplier, � = X�AX . Substituting this expression into the
Lagrangian function gives (Obj2).

Previous work [28] characterizes the energy landscape of (Obj2). (Obj2) does not have
any spurious local minimum. The theorem therein is rephrased as follows.

Theorem 2 Let A be a symmetric negative semi-definite matrix. All stationary points of
(Obj2) are of form X = USP and all local minima are of form X = UpQ, where S ∈ R

n×n

is a diagonal matrix with diagonal entries being 0 or 1 (at most p 1s), P ∈ R
n×p and

Q ∈ R
p×p are unitary matrices. Further, any local minimum is also a global minimum.

Notice that the matrix A in (Obj2) must be negative semi-definite. Otherwise, X can
be scaled eigenvectors corresponding to the positive eigenvalues, and (Obj2) is unbounded
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from below. For eigenvalue problems, the matrix can be shifted to be negative semi-definite.
Comparing to (Obj1), an extra step is needed to estimate the shift, and shifting is needed
every iteration.

Based on the analysis of the energy landscape of both (Obj1) and (Obj2), any algorithm
avoiding saddle points converges to the global minimum. Such algorithms include but are
not limited to regular gradient descent [18], conjugate gradient descent, stochastic gradient
descent [3, 22], etc. Using the notation defined in Table 1, gradients of (Obj1) and (Obj2)
are

∇ f1(X) = 4AX + 4XX�X , (2)

and

∇ f2(X) = 4AX − 2XX�AX − 2AXX�X , (3)

respectively. The gradient descent iterations are defined as,

X (t+1) = X (t) − α

(

AX (t) + X (t)
(

X (t)
)�

X (t)
)

, (4)

and

X (t+1) = X (t) − α

(

2AX (t) − X (t)
(

X (t)
)�

AX (t) − AX (t)
(

X (t)
)�

X (t)
)

, (5)

where the constant is absorbed into the stepsize. Unfortunately, the Hessian of both (Obj1)
and (Obj2) are unbounded from above. The valid set for the choice of the stepsize over the
entire domain is empty. For both (Obj1) and (Obj2), one can find a bounded domain such
that iterations are guaranteed to stay within the domain. Then Hessians are bounded over the
domain and the valid set for the stepsize is non-empty.

3 Triangularized Optimization Eigensolvers

We propose triangularized orthogonalization-free methods (TriOFM) as eigensolvers based
on (Obj1) and (Obj2), which are denoted as TriOFM-(Obj1) and TriOFM-(Obj2).

Our goal, as mentioned in Sect. 1 is to find p extreme eigenpairs with two properties:
(i). orthogonalization of X is not permitted; (ii). eigenvectors are sparse vectors. Optimizing
(Obj1) and (Obj2) almost achieves the first required property except requiring an extra step of
applying a Rayleigh-Ritz step which distinguishes eigenvectors from an eigenspace, while
the second property is not taken into consideration. Due to the existence of the arbitrary
orthogonal matrix Q, the iterations (4) and (5) converge to points with destroyed sparsity in
the original eigenvectors. Adding �1 penalty to (Obj2) [29] is proposed to achieve the sparsity
as much as possible in DFT problems, which is not likely to be applicable to FCI problems.

Another way of explicitly getting the eigenpairs rather than a point in the eigenspace is to
solve the single-column version of (Obj1) or (Obj2) recursively. For example, first, we solve
the single column version of either (Obj1) or (Obj2) for A1 = A and obtain the smallest
eigenpair λ1 and u1. Then we apply the method to A2 = A1 −λ1u1u�

1 and obtain λ2 and u2.
At k-th time, the method is applied to Ak = Ak−1 − λk−1uk−1u�

k−1 = A −∑k−1
i=1 λi ui u�

i
and λk and uk are computed. Such a recursive procedure has two drawbacks. First, single
column operations are composed of BLAS1-level and BLAS2-level operations, which are
not as efficient as BLAS3-level operations in modern computer architecture. The second
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drawback is the lack of efficient representation of the transformed matrix Ak . The sparsity in
A plays a crucial role in designing algorithms for FCI problems. While, Ak is not as sparse
as A in almost all cases.

Although the aforementioned recursive procedure is not ideal for our problems, it inspires
TriOFM-(Obj1) and TriOFM-(Obj2).Wewill first motivate and derive TriOFM-(Obj1). Then
TriOFM-(Obj2) can be derived in an analogy way.

In the above recursive procedure, the single column version of (4) is applied to Ak =
A−∑k−1

i=1 λi ui u�
i . Notice that if the column-by-column procedure is applied, the convergent

point of xi is ±√−λi ui . Hence, Ak can be viewed as the summation of A with the outer
product of convergent vector of x1, x2, …, xk−1. If we assume all columns update together,
and the single column version of (4) is applied to a closed approximation of Ak , i.e., Ak ≈
Ãk = A +∑k−1

i=1 xi x�
i , then we obtain the following iterative schemes,

x (t+1)
1 =x (t)

1 − α

(

Ax (t)
1 + x (t)

1

(

x (t)
1

)�
x (t)
1

)

,

x (t+1)
2 =x (t)

2 − α

(

Ax (t)
2 + x (t)

1

(

x (t)
1

)�
x (t)
2 + x (t)

2

(

x (t)
2

)�
x (t)
2

)

,

· · ·

x (t+1)
k =x (t)

k − α

(

Ax (t)
k +

k
∑

i=1

x (t)
i

(

x (t)
i

)�
x (t)
k

)

,

· · · .

(6)

Using matrix notations, the above iterative schemes admit the following representation,

X (t+1) = X (t) − α

(

AX (t) + X (t)triu

((

X (t)
)�

X (t)
))

, (7)

where triu (·) denote the upper triangular part of a given matrix. The key difference between
(4) and (7) is that the gradient is modified as,

g1(X) = AX + X triu
(

X�X
)

. (8)

Unfortunately, g1 in (8) is not a gradient of any energy function. Hence, instead of ana-
lyzing the stationary points of the energy function, we analyze the fixed points of (7) in
Theorem 3.

Theorem 3 All fixed points of (7) are of form X = Uq
√−�q PS, where

√· is applied
entry-wise, P ∈ R

q×p is the first p columns of an arbitrary q-by-q permutation matrix, and
S ∈ R

p×p is a diagonal matrix with diagonal entries being 0 or ±1. Within these points all
stable fixed points are of form X = Up

√−�pD, where D ∈ R
p×p is a diagonal matrix

with diagonal entries being ±1. Others are unstable fixed points.

Proof All fixed points of (7) satisfy g1(X) = 0 with g1(X) being a n-by-p matrix. We
prove the theorem by induction. Here we introduce notations in addition to that in Table 1:
Pi ∈ R

q×i is the first i columns of an arbitrary q-by-q permutation matrix, Si ∈ R
i×i is a

diagonal matrix with diagonal entries being 0 or ±1, and Di ∈ R
i×i is a diagonal matrix

with diagonal entries being ±1.
Consider the first column of g1(X) = 0,

Ax1 + x1x
�
1 x1 = 0, (9)
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where x�
1 x1 is a non-negative scalar. When x1 = 0, (9) naturally holds. When x1 �= 0, x1

must be a scalar multiple of an eigenvector of A and x�
1 x1 is the negative of the corresponding

eigenvalue, which must be negative. Hence X1 = x1 is of the form, X1 = Uq
√−�q P1S1.

Now assume the first i columns of X obeys Xi = Uq
√−�q Pi Si . Then the (i + 1)-th

column of g1(X) = 0 obeys

0 = Axi+1 + Xi X
�
i xi+1 + xi+1x

�
i+1xi+1 = Ãxi+1 + xi+1x

�
i+1xi+1, (10)

where Ã = A + Xi X�
i = A + Uq

√−�q Pi S2i P
�
i

√−�qU�
q . Ã is the original matrix A

zeroing out a few eigenvalues corresponding to the selected columns in Pi with ±1 in Si .
Applying the similar analysis as in the case of (9) to (10), we conclude that Xi+1 is of the
form, Xi+1 = Uq

√−�q Pi+1Si+1.
Since q ≥ p, we have a sufficient number of negative eigenpairs to be added to X . The

induction can be processed until i = p, and we obtain the expression for all fixed points as
in the theorem.

The stabilities of fixed points are determined by the spectrum of their Jacobian matrices
of g1, i.e., Dg1(X). Since both g1(X) and X are matrices, the Jacobian is a 4-way tensor,
which is unfolded as a matrix here. In order to avoid over complicated index in subscripts,
we denote the matrix g1(X) as G. Notation Gi j and xi j denote the ( j, i)-th element of G
and X respectively. Then the Jacobian matrix is written as a p-by-p block matrix,

Dg1(X) = DG =
⎛

⎜
⎝

J11 · · · J1p
...

. . .
...

Jp1 · · · Jpp

⎞

⎟
⎠ , (11)

with block Ji j being,

Ji j =

⎛

⎜
⎜
⎝

∂Gi1
∂x j1

· · · ∂Gin
∂x j1

...
. . .

...
∂Gi1
∂x jn

· · · ∂Gin
∂x jn

⎞

⎟
⎟
⎠

. (12)

Notice that the i-th column of G, Gi = Axi + Xi X�
i xi , is independent of xi+1, . . . xp ,

which means Ji j = 0 for i < j . Dg1(X) is a block upper triangular matrix. The spectrum of
Dg1(X) is determined by the spectrum of Jii for i = 1, 2, . . . , p. Through a multivariable
calculus, we obtain the explicit expression for Jii ,

Jii = A + Xi X
�
i + x�

i xi I + xi x
�
i . (13)

We first show the stability of the fixed points of form X = Up
√−�pD. Substituting

these points into (13), we have,

Jii = A −Ui�iU
�
i − λi I − uiλi u

�
i . (14)

Sinceλi is negative and strictly smaller than all eigenvalues of A−Ui�iU�
i , Jii is strictly pos-

itive definite for all i = 1, 2, . . . , p. Therefore we have all eigenvalues of Dg1
(

Up
√−�pD

)

are strictly positive and X = Up
√−�pD are stable fixed points.

Next, we show the instability of the rest fixed points. If X is a fixed points but not of the
form Up

√−�pD, then there exist indices s such that x�
s us = 0. Denote s as the first such

index. Substituting this point into Jss and computing the bilinear form of Jss with respect to
us , we have,

u�
s Jssus = λs − x�

s xs < 0, (15)
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where the inequality comes from the fact that xs is zero or corresponds to eigenvalues greater
than λs . Hence the Jacobian matrix has negative eigenvalues. Hence these points are unstable
fixed points. �

Algorithm TriOFM-(Obj1) is the pseudocode for (7). The choice of the stepsize is unspec-
ified, which will be revealed in later sections.

Algorithm 1 TriOFM-(Obj1)/TriOFM-(Obj2)

Input: a symmetric matrix A, an initial point X (0)

t = 0
while not converged do

g(t) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

AX (t) + X (t)triu

((

X (t)
)�

X (t)
)

2AX (t) − AX (t)triu

((

X (t)
)�

X (t)
)

− X (t)triu

((

X (t)
)�

AX (t)
)

(TriOFM-(Obj1))

(TriOFM-(Obj2))

Choose a stepsize α(t)

X (t+1) = X (t) − α(t)g(t)

t = t + 1

There is another way to understand the iterative scheme. The column with a smaller index
is decoupled from columns with larger indices. For example, the iterative scheme of x1 is
independent of all later columns. For the second column x2, the iterative scheme on x2 is
the same as the second column in the 2-column version of (Obj1). Recursively applying the
idea, we also reach Algorithm TriOFM-(Obj1).

Similar idea can be applied to solve (Obj2) as well. We notice that there are two terms

in (5) coupling columns together, i.e., AX (t)
(

X (t)
)�

X (t) and X (t)
(

X (t)
)�

AX (t). Using the

decoupling idea, we can replace the
(

X (t)
)�

X (t) and
(

X (t)
)�

AX (t) by their upper triangular
parts and result the following iterative scheme,

X (t+1) = X (t) − α

(

2AX (t) − AX (t)triu

((

X (t)
)�

X (t)
)

− X (t)triu

((

X (t)
)�

AX (t)
))

.

(16)

Comparing to (5), the gradient is modified as,

g2(X) = 2AX − AX triu
(

X�X
)

− X triu
(

X�AX
)

. (17)

The fixed points of (16) can be analyzed in a similar way. We summarize the properties
in Theorem 4 and leave the proof in Appendix A.

Theorem 4 Let A be a negative definite matrix. All fixed points of (16) are of form X = U PS
and all stable fixed points are of form X = UpD, where P ∈ R

n×p is the first p columns
of an arbitrary n-by-n permutation matrix, S ∈ R

p×p is a diagonal matrix with diagonal
entries being 0 or ±1, and D ∈ R

p×p is a diagonal matrix with diagonal entries being ±1.

Algorithm TriOFM-(Obj2) illustrates the pseudocode for (16) and the choice of the step-
size is also deferred to later sections.
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We claim a few advantages of Algorithm TriOFM-(Obj1) and Algorithm TriOFM-(Obj2)
over other related methods. First, both algorithms converge to the eigenvectors or their scaled
ones without mixing them. Hence the sparsity of the eigenvectors is preserved. Although we
do not benefit from the sparsity during the iteration in Algorithm TriOFM-(Obj1) and Algo-
rithm TriOFM-(Obj2) directly, we expect that the coordinate descent methods would benefit
from the sparsity and achieve fast convergence and small memory cost for FCI problems.
Second, the orthogonalization step is totally removed, which makes the algorithm friendly
to parallel computing. Third, all cubic scaling operations can be processed through BLAS3-
level routines. Algorithms, therefore, benefit from thememory hierarchy ofmodern computer
architecture.

Althoughwe only proposeAlgorithmTriOFM-(Obj1) andAlgorithmTriOFM-(Obj2) and
analyze their convergence in this paper, the idea of TriOFM can be applied to a wide range
of algorithms to remove the redundancy introduced by the rotation invariance. The key point
here is decoupling each column from later columns while ensuring that the iterative scheme
for a column remains the same as solving the multicolumn version of the objective function.
The question of where and how TriOFM can be applied is open.

4 Convergence Analysis

In this section, we focus on the local convergence of the proposed TriOFM-(Obj1). A similar
result holds for TriOFM-(Obj2) as well. We denote the set of stable fixed points as X ∗ and a
stable fixed point as X∗ ∈ X ∗. Further, x∗

i denotes the i-th column of X∗ and X∗
i denotes the

first i columns of X∗. The conclusion of the local convergence to X∗ is given in Theorem 5,
whereas Lemmas 1 and 2 provide per-iteration bound on the residual of the first column and
later columns, respectively. Finally, the rate of local convergence is given in Corollary 1.

Lemma 1 Assume the stepsize α satisfies α < min1≤ j≤p

{
1
4ρ , 1

λ j+1−λ j

}

. Let ε
(t)
1 be the

error of the first column after the t-th iteration, ε
(t)
1 = x (t)

1 − x∗
1 . If

∥
∥
∥ε

(t)
1

∥
∥
∥ ≤ λ2−λ1

8
√−λ1

, then
∥
∥
∥ε

(t+1)
1

∥
∥
∥ ≤

(

1 − α λ2−λ1
2

) ∥
∥
∥ε

(t)
1

∥
∥
∥.

Proof Without loss of generality, we assume that A is a diagonal matrix. For simplicity, we
drop the iteration index superscript and use x1 = x (t)

1 , ε1 = ε
(t)
1 , x̃1 = x (t+1)

1 and ε̃1 = ε
(t+1)
1

instead. Further we denote the first column of X∗ as v1 = x∗
1 . From Theorem 3, we have

v�
1 v1 = −λ1 and v1v

�
1 = −λ1u1u�

1 = −λ1e1e�
1 .

Based on the iterative scheme on the first column, i.e., x̃1 = x1 − αAx1 − αx�
1 x1x1, we

have,

ε̃1 = x̃1 − v1 = ε1 − αA(v1 + ε1) − α (v1 + ε1)
� (v1 + ε1) (v1 + ε1)

=
(

(1 + αλ1)I − αA − 2αv1v
�
1

)

ε1 − αv1 ‖ε1‖2 − 2αv�
1 ε1ε1 − α ‖ε1‖2 ε1.

(18)

The assumption on α implies that 1 + αλ1 ± αλi > 0 holds for all i . Hence, the 2-norm of
the diagonal matrix (1 + αλ1)I − αA − 2αv1v

�
1 admits

∥
∥
∥(1 + αλ1)I − αA − 2αv1v

�
1

∥
∥
∥ = 1 + αλ1 − αλ2. (19)
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The norm of ε̃1 is bounded as,

‖̃ε1‖ ≤ (1 + αλ1 − αλ2) ‖ε1‖ + 3α
√−λ1 ‖ε1‖2 + α ‖ε1‖3 ≤

(

1 − α
λ2 − λ1

2

)

‖ε1‖ ,

(20)

where the second inequality adopts the fact ‖ε1‖ ≤ λ2−λ1
8
√−λ1

. �

In Lemma 1, we prove that the error of x1 converges linearly in a neighborhood of the
stable fixed point. Nowwemove on to the multicolumn case. For the i-th column xi , we have
the following lemma.

Lemma 2 Assume the stepsize α satisfies α < min1≤ j≤p

{
1
4ρ , 1

λ j+1−λ j

}

. Let ε(t)
i be the error

of the i-th column after the t-th iteration, ε(t)
i = x (t)

i − x∗
i . If

∥
∥
∥ε

(t)
j

∥
∥
∥ ≤ λ j+1−λ j

8
√−λ j

for all j ≤ i ,

then we have
∥
∥
∥ε

(t+1)
i

∥
∥
∥ ≤

(

1 − α
λi+1−λi

2

) ∥
∥
∥ε

(t)
i

∥
∥
∥+ α

∑i−1
j=1

2‖A‖2√
λ jλi

∥
∥
∥ε

(t)
j

∥
∥
∥.

Proof Similarly, we drop the superscript in the proof. We denote the i-th column of X∗ as
vi = x∗

i . From Theorem 3, we have v�
i vi = −λi and viv

�
i = −λi ui u�

i for i = 1, . . . , p.

Based on the iterative scheme, x̃i = xi − αAxi − α
∑i

j=1 x j x
�
j xi , there is

ε̃i = x̃i − vi =εi − αA (vi + εi ) − α

i
∑

j=1

(

v jv
�
j + ε jε

�
j + v jε

�
j + ε jv

�
j

)

(vi + εi )

=
⎛

⎝(1 + αλi ) I − αA − αviv
�
i − α

i
∑

j=1

v jv
�
j

⎞

⎠ εi − α

i−1
∑

j=1

v jv
�
i ε j

− α

i
∑

j=1

ε jε
�
j vi − α

i
∑

j=1

(

v jε
�
j + ε jv

�
j

)

εi − α

i
∑

j=1

ε jε
�
j εi .

(21)

The norm of the prefactor of εi can be bounded as,
∥
∥
∥
∥
∥
∥

(1 + αλi ) I − αA − αviv
�
i − α

i
∑

j=1

v jv
�
j

∥
∥
∥
∥
∥
∥

≤ 1 + αλi − αλi+1. (22)

The norm of (21) is bounded as,

‖̃εi‖ ≤ (1 + αλi − αλi+1) ‖εi‖ + α

i−1
∑

j=1

√

λiλ j
∥
∥ε j
∥
∥+ α

√−λi

i
∑

j=1

∥
∥ε j
∥
∥2

+ 2α
i
∑

j=1

√−λ j
∥
∥ε j
∥
∥ ‖εi‖ + α

i
∑

j=1

∥
∥ε j
∥
∥
2 ‖εi‖

= (1 − αλi+1 + αλi ) ‖εi‖ + 3α
√−λi ‖εi‖2 + α ‖εi‖3

+ α

i−1
∑

j=1

[√

λiλ j
∥
∥ε j
∥
∥+√−λi

∥
∥ε j
∥
∥
2 + 2

√−λ j
∥
∥ε j
∥
∥ ‖εi‖ + ∥∥ε j

∥
∥
2 ‖εi‖

]

.

(23)
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Denote 
 j = λ j+1 − λ j as the j-th eigengap. Using the assumption
∥
∥ε j
∥
∥ ≤ 
 j

8
√−λ j

for all

1 ≤ j ≤ i , we have

‖̃εi‖ ≤
(

1 − α

i

2

)

‖εi‖ + α

i−1
∑

j=1

(

√

λiλ j +√−λi

 j

8
√−λ j

+√λ j

i

4
√−λi

+ 
i
 j

64
√

λiλ j

)

∥
∥ε j
∥
∥ , (24)

where the first term
(

1 − α

i
2

)

‖εi‖ is bounded in the same way as that in Lemma 1. The

second term can further be controlled recursively,

‖̃εi‖ ≤
(

1 − α

i

2

)

‖εi‖ + α

i−1
∑

j=1

64λiλ j − 8λi
 j − 16λ j
i + 
i
 j

64
√

λiλ j

∥
∥ε j
∥
∥

≤
(

1 − α

i

2

)

‖εi‖ + α

i−1
∑

j=1

116 ‖A‖2
64
√

λiλ j

∥
∥ε j
∥
∥

≤
(

1 − α

i

2

)

‖εi‖ + α

i−1
∑

j=1

2 ‖A‖2
√

λiλ j

∥
∥ε j
∥
∥ .

(25)

Here ‖A‖ is adopted to simplify the final bound since all λs are controlled by ‖A‖. �
Lemma 1 is a linear convergence result directly whereas Lemma 2 is slightly different

from the standard linear convergence result. In Theorem 5 we investigate the extra term

2α ‖A‖2√
λ jλi

∥
∥ε j
∥
∥ and find out that the overall local convergence is linear.

Theorem 5 Assume the stepsize α satisfies α < min j∈[1,p]
{

1
4ρ , 1

λ j+1−λ j

}

. Let ε
(t)
i be the

error of the i-th column after the t-th iteration, ε(t)
i = x (t)

i − x∗
i . If

∥
∥
∥ε

(0)
j

∥
∥
∥ ≤ λ j+1−λ j

8
√−λ j

for all

j ≤ i , then for any i = 1, . . . , p there exists a polynomial Ci (t) of degree i − 1 such that
∥
∥
∥ε

(t)
i

∥
∥
∥ ≤ Ci (t)r

t
i . (26)

where ri = 1 − α
2 min j∈[1,i]{λ j+1 − λ j }.

Proof The theorem is proved by induction. First, Lemma 1 shows that
∥
∥
∥ε

(t)
1

∥
∥
∥ satisfies (26)

for C1 =
∥
∥
∥ε

(0)
1

∥
∥
∥. Given i ≤ p, we assume that the theorem holds for all j < i . We further

assume that all polynomials in the theorem are non-decreasing. Denoting a j = α
2‖A‖2√

λ jλi
, the

inequality in Lemma 2 can be further bounded as,

∥
∥
∥ε

(t)
i

∥
∥
∥ ≤ ri

∥
∥
∥ε

(t−1)
i

∥
∥
∥+

i−1
∑

j=1

a j

∥
∥
∥ε

(t−1)
j

∥
∥
∥ ≤ ri

∥
∥
∥ε

(t−1)
i

∥
∥
∥+ Cmax (t)r

t−1
i−1 , (27)

where Cmax (t) = ∑i−1
j=1 a jC j (t) and the relationship r1 ≤ · · · ≤ ri−1 is used so that all

r j s are bounded by ri−1. Notice that for each j , a j is positive and C j (t) is a non-decreasing
polynomial of degree j − 1. Cmax (t) is then a non-decreasing polynomial of degree i − 2.

123



Journal of Scientific Computing            (2022) 93:63 Page 13 of 28    63 

Since the inequality above holds for all t ≥ 1, we apply it repeatedly and obtain,

∥
∥
∥ε

(t)
i

∥
∥
∥ ≤ r ti

∥
∥
∥ε

(0)
i

∥
∥
∥+

t−1
∑

k=0

r t−1−k
i Cmax (k)r

k
i−1 ≤

(∥
∥
∥ε

(0)
i

∥
∥
∥+ t

ri
Cmax (t)

)

r ti = Ci (t)r
t
i ,

(28)

where Ci (t) =
∥
∥
∥ε

(0)
i

∥
∥
∥ + t

ri
Cmax (t) is a non-decreasing polynomial of degree i − 1. Hence

the theorem is proved. �
Theorem 3 states that there is a set of stable fixed points of TriOFM-(Obj1). Next

Corollary 1 shows that the iterative scheme TriOFM-(Obj1) locally has linear conver-
gence to the set of stable fixed points. We define the distance from a point to a set as,
‖X − X ∗‖F = minX∗∈X ∗ ‖X − X∗‖F.

Corollary 1 Assume the stepsize α satisfies α < min j∈[1,p]
{

1
4ρ , 1

λ j+1−λ j

}

. Let δ(t) be the

distance from the stable fixed points after the t-th iteration, δ(t) = ∥∥X (t) − X ∗∥∥
F. If δ(0) ≤

min j∈[1,p]
λ j+1−λ j

8
√−λ j

, then there exists a polynomial C(t) of degree p − 1 such that δ(t) ≤
C(t)r t , where r = 1 − α

2 min j∈[1,p]{λ j+1 − λ j }.
Proof We first notice that for any two distinct points in X ∗, the smallest distance in F-norm
is 2
√−λp , which is greater than twice initial error δ(0) ≤ min j∈[1,p]

λ j+1−λ j

8
√−λ j

. Hence for any

initial point, it can only be attracted by one stable fixed point. By the definition of δ(t) and
Theorem 5, we have,

δ(t) =
√
√
√
√

p
∑

i=1

∥
∥
∥ε

(t)
i

∥
∥
∥

2 ≤
√
√
√
√

p
∑

i=1

(

Ci (t)r ti
)2 ≤

p
∑

i=1

Ci (t)r
t
p = C(t)r t (29)

where C(t) =∑p
i=1 Ci (t) is a polynomial of degree p − 1 and the second inequality is due

to the non-negativity of Ci (t). �

We shall notice that the estimation δ(t) ≤ C(t)r t satisfies limt→∞ C(t+1)r t+1

C(t)r t =
r limt→∞ C(t+1)

C(t) = r , which is the definition of linear convergence. Hence we claim the
iterative scheme TriOFM-(Obj1) locally converges linearly to stable fixed points. A similar
proof procedure can be applied to show the local linear convergence for TriOFM-(Obj2).

Remark 1 When deriving the exponential term r t in Theorem 5, as in (20) and (24) we
sacrifice half of constant in the leading term in the convergence rate to have a control on
the higher order terms of ε. Hence we achieve the rate ri = 1 − α

2 min j∈[1,i]{λ j+1 − λ j } in
Theorem 5. However, if we adopt a smaller portion of the leading term to control the higher
order term, which asymptotically could be viewed as igonring the higer order term, we are
able to get an asymptotic convergence rate as fast as ri ≈ 1 − αmin j∈[1,i]{λ j+1 − λ j }.
The drawback is that such a bound also asymptotically shrink the local convergence domain
size to zero. From our numerical resutls as in Sect. 6.1.1, we observed that the asymptotic
convergence rate agrees well with estimated empirical convergence rate.

Remark 2 We noticed that, for general eigensolvers, the convergence rate of each eigenvector
is shift-invariant because it only relies on the spectrum gap. However, things are different for
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the objective functions in this paper, since the spectrum of (4) and (5) can be regarded as the
spectrum of A combined with an extra 0. So, if we shift the spectrum of A far away from 0,
the algorithms in our paper would converge slower.

In addition to local convergence, TriOFM-(Obj1) and TriOFM-(Obj2) also converge glob-
ally. In our companion paper [11], the global convergence of TriOFM-(Obj1) and is proved
in detail, which is rephrased in Theorem 6. Similar global and local convergence results of
TriOFM-(Obj2) [26] have been proved in [26], following the idea in [11] and this paper. Both
results rely on the stable manifold theorem for discrete dynamical systems.

Theorem 6 If the initial point X (0) =
(

x (0)
1 x (0)

2 · · · x (0)
p

)

satisfies
∥
∥
∥x (0)

i

∥
∥
∥ ≤ Ri for all

1 ≤ i ≤ p, where Ri = 2i−1√3ρ and the stepsize satisfies α ≤ 1
10R2

p
, then the fixed stepsize

version of Algorithm TriOFM-(Obj1) converges to X ∗ for all initial points besides a set of
measure zero.

Comparing the local and global convergence, as in Corollary 1 and Theorem 6, the restric-
tions on stepsizes are different, i.e., the stepsize of global convergence is much smaller. Such
a small stepsize is needed in global convergence to overcome the unbounded Lipschitz con-
stant of the underlying objective function but would be more flexible in practice, especially
when the stepsize is chosen in a sophisticated way, as stated in Sect. 5.2.

5 Implementation Details

In previous sections, we introduce TriOFM algorithms based on the gradient descent method
with a constant stepsize and prove their convergence properties. TriOFM can be regarded as
a modified gradient descent method. In this section, we explore traditional accelerating tech-
niques for gradient methods and adapt them to TriOFM. Such techniques include momentum
acceleration, stepsize choices, and column locking.

5.1 Momentum Acceleration

Momentum is a widely-used technique to accelerate gradient descent methods. In traditional
gradient descent methods, with the help of momentum, the oscillatory trajectory could be
smoothed, and the convergence rate depends on the square root of the condition number
rather than the condition number.

Momentum method, instead of moving along the gradient direction directly, moves along
with an accumulation of gradient directions with a discounting parameter β ∈ (0, 1], i.e.,

V (t) = βg
(

X (t)
)

+ (1 − β)V (t−1), (30)

where V (t) denotes the accumulated direction and g is the gradient. Then the iteration moves
along V (t) with a stepsize α, i.e., X (t+1) = X (t) − αV (t). Since V is a linear combination of
gradient directions, an explicit way to generalize it to the triangularized method is to replace
the gradient g by our triangularized direction function either g1 or g2. Then we obtain the
momentum accelerated algorithms for TriOFM-(Obj1) and TriOFM-(Obj2).

Importantly, such a modification will not change the dependency among columns of X ,
where ‘dependency’ describes generating one column x (t+1)

i from x (t)
i depends on another
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column x (t)
j or not. In TriOFM, previous columns should be independent of later columns,

and we require such property to be maintained in enhanced algorithms based on TriOFM.
With this momentum enabled, the first i columns remain the same as the algorithm applied
on X = (x1 x2 · · · xi

)

. Any column of X still depends only on columns on its left throughout
the iterations. However, for momentummethods, choosing an efficient momentum parameter
β is an art.

Similarly, we can adopt the idea of conjugate gradient (CG) [12] to triangularized algo-
rithms as well. CG is a momentum method with adaptive momentum parameters and hence
choosing β is avoided. CG is widely applied to solve both linear and nonlinear problems. The
success of nonlinear CG in solving eigenvalue problems have already been demonstrated in
OMM [5]. A typical non-linear CG method is the Polak-Reeves CG (PR-CG) [34], which
adopts the following steps per iteration in a single-vector setting:

β(t) =
(

g
(

x (t)
)− g

(

x (t−1)
))�

g
(

x (t)
)

g
(

x (t−1)
)�

g
(

x (t−1)
) ,

v(t) = − g
(

x (t)
)

+ β(t)v(t−1),

x (t+1) =x (t) + αv(t).

(31)

In a multi-vector setting, i.e., the iteration variable is a matrix, the formula for β(t) could be
extended. However, the multi-vector version for β(t) mixes all columns together and destroys
the column dependency of TriOFM.

Amore favorable choice of β(t) for TriOFM is to use different β(t)s for different columns,
which is called the columnwise CG throughout this paper. The parameter for the i-th column,
denoted as β

(t)
i , is calculated as the single-vector setting with x (t)

i and applied to update x (t)
i .

The corresponding algorithm for TriOFM is summarized as Algorithm 2. In Algorithm 2,
g(t)
i and v

(t)
i denote the i-th column of G(t) and V (t) respectively.

Algorithm 2 Columnwise CG for TriOFM

Input: symmetric matrix A, initial point X (0), stepsize α

G(0) = g(X (0))
V (0) = −G(0)

X (1) = X (0) + αV (0)

t = 1
while not converged do

G(t) = g(X (t))
for i = 1, 2, . . . , p do

β
(t)
i =

(

g(t)
i −g(t−1)

i

)�
g(t)
i

(

g(t−1)
i

)�
g(t−1)
i

v
(t)
i = −g(t)

i + β
(t)
i v

(t)
i−1

X (t+1) = X (t) + αV (t)

t = t + 1

As a remark, there is another way in computing the parameter β
(t)
i s, i.e., β(t)

i is calculated

using the multi-vector version of (31) with X (t)
i . The dependencies among columns are

preserved. However, the calculation must be conducted carefully to avoid increasing the
computational cost.
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5.2 Stepsizes

In previous sections, we describe algorithmswith a constant stepsize to simplify the presenta-
tion. However, we find that a linesearch strategy could significantly outperform the constant
stepsize. In this section, we introduce an exact linesearch strategy as the suggested stepsize
strategy.

Since both (Obj1) and (Obj2) are quartic polynomials of X , the exact linesearch can be
calculated through minimizing quartic polynomials. Minimizing a quartic polynomial with
a positive leading coefficient is equivalent to solve a cubic polynomial. Taking (Obj1) as an
example, the cubic polynomial is,

d

dα
f1 (X + αV ) =tr

(

V�∇ f1 (X + αV )
)

=α3tr

((

V�V
)2
)

+ 3α2tr
(

V�V X�V
)

+ αtr

(

V�AV +
(

V�X
)2 + V�XX�V + V�V X�X

)

+ tr
(

V�AX
)

+ tr
(

V�XX�X
)

.

(32)

Solving the expression above would give possibly one, two, or three real roots. The best
stepsize can be selected among real roots through a basic analysis [24]. Similar calculation
and analysis can also be carried out for (Obj2). We omit the details here.

However, the stepsize in (32) does notwork for TriOFM.Consider such a case for example.
If X is in the space spanned by the smallest eigenpairs but not the stable fixed point, i.e.,
X = Up

√−�pQ for Q being a non-diagonal unitary matrix, then X is already a global
minimum of (Obj1), so minimizing f1(X) from any direction V with stepsize α, as in (32),
results in α = 0. But such X is not the eigenvector we want throughout this paper. This
example shows that the above linesearch strategy is not working properly for TriOFM and
we need to find a different strategy for the stepsize.

Notice that the exact linesearch solves tr
(

V�∇ f (X + αV )
) = 0 for the stepsize α.

However, TriOFM adopts g1 or g2 rather than ∇ f1 or ∇ f2, which means the iteration is
not consistency with the linesearch (32). The columnwise stepsize strategy is as follows.
First, consider the stepsize for x1. We solve two identical equations, v�

1 g(x1 + αv1) = 0
and v�

1 ∇ f (x1 + αv1) = 0, to obtain the stepsize. Now we consider the stepsize αi for xi .
We can solve either tr

(

V�
i ∇ f (Xi + αi Vi )

) = 0 or tr
(

V�
i g(Xi + αi Vi )

) = 0 for αi . The
former is the same as (32) with X and V replaced by Xi and Vi respectively. The later can
be expressed as again a cubic polynomial of αi ,

p(αi ) = α3
i tr
(

V�
i Vi triu

(

V�
i Vi

))

+α2
i tr
(

V�
i Vi triu

(

X�
i Vi
)

+ V�
i Vi triu

(

V�
i Xi

)

+ V�
i Xi triu

(

V�
i Vi

))

+αi tr
(

V�
i AVi + V�

i Xi triu
(

V�
i Xi

)

+ V�
i Xi triu

(

X�
i Vi
)

+V�
i Vi triu

(

X�
i Xi

))

+ tr
(

V�
i AXi + V�

i Xi triu
(

X�
i Xi

))

. (33)

Using either equation, we are able to avoid αi = 0 if Xi stays in the space spanned by
eigenvectors while Xi is not any stable fixed point. The local convergences for both choices
of stepsize can be proved in a similar way as in Sect. 4. Regarding the computational cost,
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since all trace terms can be computed in an accumulative way, the computational cost for
getting coefficients in (33) and (32) remains the same for all i .

According to our numerical experiments, the columnwise stepsize strategy based on the
linesearch significantly outperforms the fixed stepsize, while there is not much difference
between solving tr

(

V�
i g (Xi + αVi )

) = 0 and tr
(

V�
i ∇ f (Xi + αVi )

) = 0. Throughout the
rest paper, we solve tr

(

V�
i g
) = 0 for stepsize.

5.3 Column Locking

In Sect. 4wenotice that each columnhas its own convergence rate, and later columns converge
slower than earlier ones in terms of the analysis. A similar conclusion is observed numerically.
It wastes computation resources if all columns are updated throughout iterations. Hence in
addition to the overall stopping criterion of TriOFMmethods,

∥
∥g
(

X (t)
)∥
∥
F < ε, we introduce

a column locking technique to allow early stopping for converged columns.
The column locking has beenwidely adopted inmany traditional eigensolvers.However, in

orthogonalization-free eigensolvers [5, 24, 39], the locking technique is not applicable since
all columns are coupled together throughout iterations. TriOFM, differently, can adopt the
column locking in a specific ordering. Since the earlier columns in TriOFM are independent
of later columns, as long as they have converged, we could lock these columns.

The column locking strategy depends on the error propagation among columns. Lemma 2
hints the error propagation. However, we find that the error estimation in Lemma 2 is pes-
simistic. Here we give an intuitive but helpful discussion on the error propagation, where

higher order terms in the error vector are ignored. Let ε(t)
i =

(

ε
(t)
i,1, · · · , ε

(t)
i,n

)�
be the error

of x (t)
i projected to eigenvectors of A, i.e., ε(t)

i = U�
(

x (t)
i − x∗

i

)

. The projected error ε
(t)
i

here is consistent with the notations in Sect. 4, where A is assumed to be diagonal. The error
in i-th column of TriOFM-(Obj1), without higher order terms of ε, admits,

ε
(t+1)
i =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1 + αλi )ε
(t)
i,1 − α

√
λ1λiε

(t)
1,i

...

(1 + αλi )ε
(t)
i,i−1 − α

√
λi−1λiε

(t)
i−1,i

(1 + 2αλi )ε
(t)
i,i

(1 + α(λi+1 − λi ))ε
(t)
i,i+1

...

(1 + α(λn − λi ))ε
(t)
i,n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (34)

The Eq. (34) implies that the lower triangular part of
(

ε
(t)
1 , · · · , ε

(t)
p

)

does not depend on

other error vectors and thus is able to converge to zero as t goes to infinity even if other
columns are locked. For the strict upper triangular part, we consider the case where columns
earlier than i are locked with fixed errors. Taking the j-th row ( j < i) for example, when

ε
(t)
j,i is fixed, ε

(t+1)
i, j = (1 + αλi ) ε

(t)
i, j − α

√

λ jλiε
(t)
j,i has the fixed point εi, j =

√
λ j
λi

ε j,i as t
goes to infinity. Notice that each entry in the upper triangular part is only influenced by an
error term in the lower triangular part. Through a detailed derivation by induction, we have
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an estimation on the norms of error vectors for TriOFM-(Obj1) as t → ∞,

‖ε1‖ ∼ ε, ‖ε2‖ ∼
√

λ1

λ2
ε, · · · ,

∥
∥εp
∥
∥ ∼

√

λ1

λp
ε. (35)

The estimation above shows that there is a uniform upper bound on
√−λi ‖εi‖ for all 1 ≤

i ≤ p.
Further analysis on g1

(

X (t)
)

in the stopping criterion shows that the norms of columns
of g1

(

X (t)
)

admit the same scaling as that of ‖ε1‖ , . . . ,
∥
∥εp
∥
∥. Hence we could include

an additional term with scaling
√−λi for the i-th column. A good choice is ‖Axi‖ 1

3 . The
recommended locking criterion for TriOFM-(Obj1) is

∥
∥
∥g1
(

x (t)
i

)∥
∥
∥

∥
∥
∥Ax

(t)
i

∥
∥
∥

1
3

< ε. (36)

An analog estimation can be carried out for TriOFM-(Obj2) as well. The unified locking
criterion for TriOFM-(Obj2) is

∥
∥
∥g2
(

x (t)
i

)∥
∥
∥ ‖Axi‖ < ε. (37)

6 Numerical Results

In this section, we show the efficiency of TriOFM applying to three different groups of
matrices, i.e., random matrices with different eigenvalue distributions, a synthetic matrix
from DFT, and a matrix of Hubbard model under FCI framework.

In Sect. 6.1, we first show that TriOFM with a constant stepsize locally has linear con-
vergence rate on random matrices with different eigenvalue distributions, which agrees with
our analysis in Sect. 4. Further, accelerating techniques introduced in Sect. 5 are adopted and
compared. Then we apply TriOFMwith these techniques to two matrices from DFT and FCI
in Sects. 6.2 and 6.3 respectively. In both examples, TriOFMconverges to sparse eigenvectors,
whereas traditional orthogonalization-free methods fail to recover the sparsity. Regarding the
computational cost, TriOFM is, in general, comparable to its non-triangularized counterpart.

For a fair comparison reason, we adopt the same stopping criterion for both TriOFM
and OFM: the relative residual is smaller than a tolerance ε, i.e., ‖AXQ−XQ�X ‖F‖AXQ‖F < ε,
where Q and the diagonal matrix �X come from solving a generalized eigenvalue problem,
(

X�AX
)

Q = (X�X
)

Q�X . Such a stopping criterion is not applicable in practice. For the
illustration purpose, it is adopted in this section for a fair comparison. If the column locking
is enabled in TriOFM, the algorithm could stop if all columns are locked. Twomeasurements
of accuracies are used. The first one measures the accuracy of eigenvectors,

evec = min
X∗∈X ∗

‖X − X∗‖F
‖X∗‖F , (38)

whereX ∗ denotes the set of all possible stable fixed points of the used algorithm. The second
measures the accuracy of eigenvalues,

eval =
∣
∣
∣tr
((

X�X
)−1

X�AX
)

−∑p
i=1 λi

∣
∣
∣

∣
∣
∑p

i=1 λi
∣
∣

. (39)
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Fig. 1 Convergence behavior of TriOFM-(Obj1) applying to Auni (left), Alog (middle), and Aushape (right)
with fixed stepsize α = 0.4 and column locking

We also define twomeasurements for computational costs. Since all of our codes are imple-
mented in MATLAB, which favors matrix operations over vector operations, the runtime
comparison is not fair. Hence we introduce number of iterations and number of matrix–
vector multiplications. Without column locking, the number of matrix–vector multiplications
is simply the number of iterations multiplying the number of columns in X (t). When col-
umn locking is enabled, it is the summation of the number of unlocked columns throughout
iterations.

6.1 RandomMatrices

In this section, we apply different TriOFM algorithms to random matrices and compare the
performance against their OFM counterparts. We generate randommatrices of size n = 500.
The number of desired eigenpairs is p = 5 and p = 10 in Sects. 6.1.1 and 6.1.2 respectively.
Random matrices are generated of the form

A = U��U , (40)

whereU is a random orthogonal matrix generated by a QR factorization of a random matrix
with entries sampled from a standard normal distribution independently. Here � denotes a
diagonal matrix with its elements {λi }ni=1 generated from three different ways,

1. (Uniform) λi = i−1
500 − 1 for 1 ≤ i ≤ n;

2. (Logarithm) λi = − 210
500

1
2i

for 1 ≤ i ≤ n;

3. (U-Shape) λ1 = − 14
16 , λ2 = − 10

16 , λ3 = − 8
16 , λ4 = − 7

16 , λ5 = − 5
16 , λi = − 1

16 for all
6 ≤ i ≤ n.

In the U-shape case, the first 5 eigengaps are 4
16 ,

2
16 ,

1
16 ,

2
16 ,

4
16 , which decays exponentially

first and then grows exponentially. We denote these three random matrices as Auni , Alog ,
and Aushape. The eigengaps of Auni and Alog are two typical cases for many applications.
While, Aushape is constructed to reveal the difference between TriOFM and OFM.

6.1.1 Local Convergence Rate

We first numerically validate the convergence rate proved in Sect. 4. The stepsize is fixed,
α = 0.4. Initial state X (0) ∈ R

n×p is a random matrix with unit column lengths. Column
locking technique is applied, whereas momentum techniques are disabled.

Figure 1 shows the convergence behaviors of TriOFM-(Obj1) applied to three random
matrices. Nonlinear convergence is observed in all three figures for the first few iterations.
Linear convergence is then observed until convergence. This agrees with our analysis.
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Table 2 Local convergence rate of TriOFM-(Obj1) applying to Alog

Matrix Convergence rate
λ1 λ2 λ3 λ4 λ5

Alog Reference rate 0.7952 0.8976 0.9488 0.9744 0.9872

Numerical rate 0.7952 0.8976 0.9488 0.9744 0.9872

Difference 2.4 × 10−7 4.0 × 10−8 4.4 × 10−7 3.4 × 10−7 2.6 × 10−7

Fig. 2 Convergence behavior of TriOFM-(Obj1) applying to Auni (left), Alog (middle), and Aushape (right)
with CG, linesearch, and column locking

In Fig. 1 left, all curves are parallel to each other, and their convergence rates are the same,
which agrees with our analysis since Auni has all equal eigengaps. In Fig. 1 middle, curves
have different slopes and hence different convergence rates. Here we provide a quantitative
comparison of the convergence rates for Alog in Table 2. We fit the slopes of curves and use
them as numerical rates, whereas reference rates are computed as the asymptotic convergence
rate in Remark 1. The absolute difference between these two rates are listed in the third row.
Table 2 shows that numerical rates agree with reference rates up to seven digits. Hence we
claim that the rate in Theorem 5 is tight. In Fig. 1 right, the first four curves have conver-
gence rates that agree with our theoretical results, whereas the last one converges faster than
expected. Its convergence rate is theoretically upper bounded by that of previous columns but
numerically is faster. Through these numerical results, we claim that our theoretical analysis
of the local convergence rate provides a tight upper bound for practice.

In Sect. 4, we prove the local convergence column by column, i.e., the convergence of
later column is proved if all earlier columns are close to their stable fixed points. An interest-
ing numerical observation from Fig. 1 is that the linear convergences of columns may have
some overlapping iterations, e.g., there are a lot of iterations that all curves converge lin-
early parallelly for matrix Auni . Such overlapping leads to faster convergence for the overall
algorithm.

6.1.2 Accelerating Techniques

In this section, we investigate the accelerating techniques. The convergence behaviors of
TriOFM-(Obj1) are included in Fig. 2. Overall, the convergence of TriOFM-(Obj1) with
accelerating techniques aremuch faster than that of vanilla TriOFM-(Obj1). Next, we provide
more quantitative comparisons for column locking and momentum accelerations for both
TriOFM-(Obj1) and TriOFM-(Obj2).

Specifically, in this section, the tolerance ε used for stopping criteria and column locking
is 10−8. And each experiment is repeated 500 times, with randommatrices and initial values.
For the number of iterations (Iter Num) and the number of matrix–vector multiplications
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Table 3 Performance comparison of TriOFM-(Obj1) applied to Auni with and without column locking. CG
and exact linesearch are enabled

Method Iter num. Mat-Vec num.
Mean Max Min Mean Max Min

TriOFM-(Obj1) + CG +locking 642.2 800 554 4990.2 6905 4353

TriOFM-(Obj1) + CG 643.1 832 518 6431.4 8320 5180

(Mat-Vec Num), we report the mean, max, and min among 500 random tests. In all tests, the
linesearch is always enabled.

First, we show the advantage of column locking. Table 3 list the results for TriOFM-(Obj1)
applied to Auni with and without column locking. We observe that the numbers of iterations
remain the samewith andwithout the column locking. However, the number ofmatrix–vector
multiplication is significantly reduced with column locking, and hence the computational
cost is reduced. Similar results are observed for TriOFM-(Obj1) on other matrices and
TriOFM-(Obj2) as well. We omit those results for the sake of brevity.

Then we explore the advantages of momentum and CG techniques. For algorithms with
vanilla momentum acceleration, the coefficients are chosen as β = 0.9 for (Obj1) and
β = 0.95 for (Obj2). Several different values of β have been tested for both objective
functions and we pick these βs for objective functions with the fastest convergence.

Numerical results are summarized in Table 4 for Alog . In all cases, TriOFMs converge in
less number of iterations and less number of matrix–vector multiplications. There are two
reasons behind the results. First, the convergences of earlier columns in TriOFM are faster
than that of the last column, whereas the convergences of all columns in OFM are the same
as the last column in TriOFM. Second, in TriOFM, different linesearch stepsizes are applied
to different columns, whereas OFM uses a single stepsize for all columns, which is impacted
by the smallest eigengap. Overall, the computational costs of TriOFM and OFM depend on

Table 4 Performance comparison of TriOFM and OFMwith and without momentum accelerating techniques
for Alog . Here GD stands for the vanilla gradient descent method. Exact linesearch is enabled for all algorithms
and column locking is enabled for TriOFM

Objective Ffunction Method Iter num Mat-Vec num
Mean Max Min Mean Max Min

(Obj1) TriOFM+CG 49.0 59 40 414.7 519 334

OFM+CG 616.1 1881 333 6161.4 18810 3330

TriOFM+Momentum 46.4 58 38 401.4 510 335

OFM+Momentum 963.6 1468 614 9635.6 14680 6140

TriOFM+GD 52.1 67 42 492.0 635 415

OFM+GD 11460.7 17124 4591 114607.2 171240 75910

(Obj2) TriOFM+CG 279.0 553 193 1071.0 1499 882

OFM+CG 953.2 2500 550 9532.2 25000 5500

TriOFM+Momentum 701.4 997 504 2217.0 2588 1840

OFM+Momentum 1275.3 2033 738 12752.8 20330 7380

TriOFM+GD 5150.7 9280 2663 12168.2 16500 7214

OFM+GD 21222.2 30462 14156 212221.9 304620 141560
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Fig. 3 Left figure plots the ground truth eigenvectors associated with four low-lying eigenvalues of problem
(41); middle figure plots scaled four convergent columns from TriOFM-(Obj1); and right figure plots scaled
four convergent columns from the OFM-(Obj1)

Table 5 Performance comparison of TriOFM-(Obj1) and OFM-(Obj1) applied to (41)

Method Iter num Mat-Vec num NNZ evec eval

TriOFM+CG 567.5 5134.2 1328 8.26 × 10−8 2.00 × 10−15

OFM+CG 413.6 4135.7 4974.0 – 2.50 × 10−15

the eigengap distribution of the matrix. For Alog-like matrices, TriOFM outperforms OFM.
Further, algorithms with CG converge faster or equally fast as their momentum accelerated
versions with carefully chosen parameter βs. Hence we recommend CG as the momentum
acceleration since it is hyper-parameter free.

Through all these tests, our best choice is to use TriOFM with CG, exact linesearch, and
column locking. As in the later sections, this configuration will be the default TriOFM, and
we will focus on the sparsity of eigenvectors.

6.2 Synthetic Density Functional Theory

In this section, we perform TriOFM on a synthetic example from DFT computation. The
example is a second-order differential operator on the domain [0, 1] with periodic boundary
condition,

H(x) = −
 + V (x), (41)

where −
 is the Laplace operator denoting the kinetic term and V (x) is a local potential
with four Gaussian potential wells,

V (x) = −
4
∑

i=1

αi e
− (x−�i )

2

2σ2 . (42)

The centers of these wells locate at �i = 2i−1
8 , the depths of the wells are αi =

850 + 50 × mod(i, 4), and the constant width of these wells is σ = 0.1. This second
order differential operator, (41), can be viewed as the linear operator in a self-consistent field
iteration in DFT computation, simulating four different atoms located periodically on a line.
In this example, we are interested in computing the low-lying four eigenpairs. The associated
matrix is obtained via discretizing the problem on a uniform grid with n = 500 points, where
the Laplace operator is discretized using the central difference scheme. In Fig. 3 left, we plot
the four eigenvectors corresponding to smallest four eigenvalues. Due to the localized poten-
tial and periodicity, the eigenvectors associated with low-lying eigenvalues have localized
property, which means that these eigenvectors are sparse.
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Numerical results are demonstrated in Fig. 3 and Table 5. The tolerance is 10−8, and
each algorithm is perform 100 times with random initial states. Figure3 middle plots the
scaled four convergent columns from TriOFM-(Obj1) and the right figure plots scaled four
convergent columns from the non-triangularized counterpart. Table 5 includes the number
of iterations, the number of matrix–vector multiplications, the number of nonzeros (NNZ)
of the converged point X , and the accuracies. In Table 5, the NNZ is the number of entries
with absolute values greater than 10−5. The NNZ of the ground truth eigenvectors is 1328.
Since OFM-(Obj1) does not provide eigenvectors without an extra orthogonalization step,
the accuracy of eigenvectors is not available.

According to Fig. 3, the convergent columns of TriOFM-(Obj1) recover the eigenvectors
up to a sign difference. While the convergent columns of OFM-(Obj1) mix all four eigenvec-
tors and have nonzeros near all four Gaussian centers. Hence the sparsity of eigenvectors is
destroyed. Overall, TriOFM-(Obj1) achieves 75% saving in NNZ comparing to that of OFM-
(Obj1). Since the memory cost is a key bottleneck in many DFT computations, such a saving
is important. Meanwhile, regarding the number of iterations and the number of matrix–vector
multiplications, TriOFM-(Obj1) is slightly more expensive than OFM-(Obj1). Hence there
is a trade-off between time and space. If the parallelizability of TriOFM is further taken into
account, then TriOFM would be a valuable alternative eigensolver for DFT.

6.3 Full Configuration Interaction

This section solves the low-lying eigenpairs for a two-dimensional Hubbard model under
the FCI framework. The Hubbard model is widely used in solid-state physics, which only
considers the neighboring hopping and on-site interaction. Under the FCI framework, the
matrix size scales factorially with respect to the problem size and the number of electrons.
The eigenvectors associated with low-lying eigenvalues are sparse. FCI problems are the
most important applications of TriOFM.

The Hamiltonian operator in the second quantization notation is,

Ĥ = −t
∑

〈r ,r ′〉,σ
â†r ,σ âr ′,σ +U

∑

r

â†r ,↑âr ,↑â
†
r ,↓âr ,↓ (43)

where t is the hopping strength, U is the interaction strength, r , r ′ are lattice index, 〈r , r ′〉
means that r and r ′ are neighbors on the lattice, â†r ,σ and âr ,σ denotes the creation and
annihilation operator of an electron with spin σ on r . The matrix in this section is generated
from the Hubbard model in momentum space. The Fourier transform of the creation and
annihilation operator is âk,σ = 1√

Nsite

∑

r e
ık·r âr ,σ , where k is the wave number and Nsite

is the number of lattice sites. The Hamiltonian operator in momentum space is,

Ĥ = t
∑

k,σ

−2(cos k1 + cos k2)â
†
k,σ âk,σ + U

Nsite

∑

k,p,q

â†p−q,↑â
†
k+q,↓âk,↓âp,↑ (44)

for k = (k1, k2).
We adopt a 2D Hubbard model on a lattice of size 4 × 4 with 8 electrons (4 spin-up

and 4 spin-down). The strength of hopping and interaction are t = 1 and U = 0.25Nsite

respectively. The FCI matrix has diagonal entries between −20 and 20 and off-diagonal
entries being ±0.25. The matrix size is about (2 · 105) × (2 · 105). We compute the smallest
p = 10 eigenpairs. TriOFM-(Obj1) and OFM-(Obj1) are applied to address this problem.
The tolerance is 10−10. For each algorithm, we perform 100 times with random initial states.
The mean of the number of iterations, the number of matrix–vector multiplications, NNZ,
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Table 6 Performance comparison of TriOFM-(Obj1) and OFM-(Obj1) on (44)

Method Iter num Mat-Vec num NNZ evec eval

TriOFM+CG 1253.0 7708.6 1.115 × 106 3.308 × 10−8 5.597 × 10−12

OFM+CG 1381.7 13817.2 1.508 × 106 – 5.197 × 10−12

and accuracies are reported in Table 6. Similarly, the NNZ is the number of entries with a
magnitude greater than 10−5.

According to Table 6, TriOFM-(Obj1) requires less number of iterations and matrix–
vector multiplications than OFM-(Obj1). In FCI problems, the number of matrix–vector
multiplications is proportional to the actual runtime. Hence we expect that TriOFM-(Obj1)
would achieve better runtime than OFM-(Obj1) on FCI problems. Notice that the multiplicity
of some eigenvalues in our FCI matrix is not one. Hence the stable fixed points are subspaces.
NNZ for TriOFM-(Obj1) varies over 100 executions andTable 6 reports itsmean. On average,
TriOFM-(Obj1) achieves better sparsity compared to OFM-(Obj1). Through our numerical
results, TriOFM-(Obj1) outperforms OFM-(Obj1) on the FCI problem.

Remark 3 Solving practical FCI problems is the major target in designing TriOFM. In FCI
problems, low-lying eigenvalues and the associated eigenvectors are computed as the ground
state and low-lying excited states. Almost all traditional eigensolvers are not applicable to
FCI problems. OFM with coordinate-wise descent method is an option to obtain the sparse
eigenvectors. While the arbitrary rotation would significantly increase the memory cost.
Hence, we design TriOFM converging to the sparse eigenvectors directly. According to our
numerical result of the FCI problem, TriOFM outperforms OFM and is a more promising
method to address FCI problems. This paper is the first step toward computing the FCI excited
states. Coupling TriOFM together with a parallelized coordinate-wise descent method, we
would be able to address FCI problems for transition metals of interest.

7 Conclusion and Discussion

In this work, we introduce a novel TriOFM for solving extreme eigenvalue problems. Using
TriOFM, the eigenpairs are directly solved via orthogonalization-free iterative methods,
where the orthogonalization-free feature is crucial for large-scale eigenvalue problems with
sparse eigenvectors. Two specific algorithms, namely TriOFM-(Obj1) and TriOFM-(Obj2),
are proposed for (Obj1) and (Obj2). Global convergences are guaranteed for almost all ini-
tial states [11]. Locally, we prove that, in neighbors of stable fixed points, TriOFM-(Obj1)
converges linearly. The convergence proof can be adapted to show the linear convergence
of TriOFM-(Obj2) as well. Although the proposed algorithms are different from general
gradient-based algorithms, acceleration techniques, including momentum, linesearch, and
column locking, still work effectively. According to numerical results on both synthetic
examples and the example from practice, TriOFM-(Obj1) and TriOFM-(Obj2) converge effi-
ciently and obtain the sparse eigenvectors without any orthogonalization step.

There are many future directions. As has been mentioned before, TriOFM is applicable to
many other objective functions beyond (Obj1) and (Obj2).Wewould like to apply TriOFM to
other objective functions and obtain powerful algorithms. Moreover, we claim the advantage
of TriOFM in keeping sparsity towards convergent. It is an interesting future direction to
explore truncation techniques and coordinate-wise methods so that the sparsity is preserved
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throughout iterations. The application to FCI problems would be of great interest to many
other communities, including computational physics, chemistry, and material science, etc.
In addition to the above two directions, orthogonalization-free algorithms are friendly to
parallel computing. Hence the parallelization of these proposed algorithms is another future
direction.
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A Proof of Theorem 4

Proof of Theorem 4 All fixed points of (16) satisfy g2(X) = 0. We first analyze the fixed
points for a single column case and then complete the proof by induction. Notations used in
this proof are the same as those in the proof of Theorem 3.

We denote the single column X as x . Obviously, when x = 0, we have g2(x) = 0. Now,
consider the nontrivial case x �= 0. The equality g2(x) = 0 can be expanded as,

((

2 − x�x
)

A − x�Ax I
)

x = 0. (45)

According to (45), for nonzero x , the matrix B = (

2 − x�x
)

A − x�Ax I must has a zero
eigenvalue and x lies in its corresponding eigenspace. When x�x = 2, the matrix B =
x�Ax I does not have zero eigenvalue due to the negativity assumption on A. Hence x is
parallel to one of A’s eigenvector, i.e., Ax = λx . Substituting this into (45), we obtain,

2(1 − x�x)λx = 0. (46)

Since λ < 0 and x �= 0, we have x�x = 1. Hence we conclude that for g2(x) = 0, x is either
a zero vector or an eigenvector of A.

Now we consider multicolumn case. The first column of g2(X) = 0 is the same as (45).
Hence X1 = U P1S1.

Assume the first i columns of X obey Xi = U Pi Si . Then the (i + 1)-th column of
g2(X) = 0 is

2Axi+1 − Axi+1x
�
i+1xi+1 − xi+1x

�
i+1Axi+1 − AXi X

�
i xi+1 − Xi X

�
i Axi+1 = 0. (47)

Obviously, if xi+1 = 0, then (47) holds. When xi+1 �= 0, we left multiply (47) with X�
i ,

adopt the commuting property of diagonal matrices, and obtain,

0 =Si P
�
i

(

2� − x�
i+1xi+1� − x�

i+1Axi+1 I − �Pi P
�
i − �

)

U�xi+1

= − Si P
�
i

(

x�
i+1xi+1� + x�

i+1Axi+1 I
)

U�xi+1

(48)
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where the second equality adopts the fact that P�
i �Pi P�

i = P�
i �. Due to the negativity

of A, we notice that x�
i+1xi+1� + x�

i+1Axi+1 I is a diagonal matrix with strictly negative
diagonal entries. Hence the equality (48) is equivalent to

Si P
�
i U�xi+1 = 0. (49)

As long as (49) holds, we have X�
i xi+1 = 0 and X�

i Axi+1 = 0. Therefore, solving (47) can
be addressed via solving

2Axi+1 − Axi+1x
�
i+1xi+1 − xi+1x

�
i+1Axi+1 = 0. (50)

Hence xi+1 satisfies (49). Combining the solution of the single column case (45) and the
constraint (49), we conclude that Xi+1 is of the form U Pi+1Si+1.

The stabilities of fixed points should also be analyzed through the spectrum properties
of their Jacobian matrices. The Jacobian matrix Dg2(X), again, can be written as a p-by-p
blockmatrix. And using the similar argument as in the proof of Theorem 3, Dg2(X) = DG is
a block upper triangular matrix whose spectrum is determined by the spectrum of its diagonal
blocks. Through a multivariable calculus, we obtain the expression for Jii as,

Jii = 2A − AXi X
�
i − Xi X

�
i A − Axi x

�
i − x�

i xi A − x�
i Axi I − xi x

�
i A. (51)

We first show the stability of the fixed points of form X = UpD. Substituting these points
into (51), we have,

Jii = A − 2Ui�iU
�
i − 2λi ui u

�
i − λi I . (52)

Since λi is smaller than all eigenvalues of A − Ui�iU�
i , A − Ui�iU�

i − λi I is strictly
positive definite. The rest part of (51) is, obviously, positive definite. Hence Jii is strictly
positive definite for all i = 1, 2, . . . , p and fixed points of the form X = UpD are stable
fixed points.

Next we show the rest fixed points are not stable. For a fixed point X , we denote the first
index s such that x�

s us = 0. Then we estimate u�
s Jssus as,

u�
s Jii us = 2λs − x�

s xsλs − x�
s Axs < 0, (53)

since x�
s xs ≤ 1 and A is negative definite. Therefore, the rest fixed points are not stable. �
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