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Abstract. In this work, we analyze the global convergence property of a coordinate gradient
descent with random choice of coordinates and stepsizes for nonconvex optimization problems. Under
generic assumptions, we prove that the algorithm iterate will almost surely escape strict saddle points
of the objective function. As a result, the algorithm is guaranteed to converge to local minima if
all saddle points are strict. Our proof is based on viewing the coordinate descent algorithm as
a nonlinear random dynamical system and a quantitative finite block analysis of its linearization
around saddle points.
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1. Introduction. In this paper, we analyze the global convergence of a coordi-
nate gradient descent algorithm for a smooth but nonconvex optimization problem:

(1.1) min
x\in \BbbR d

f(x).

More specifically, we consider coordinate gradient descent with random coordinate
selection and random stepsizes, as shown Algorithm 1.1.

Algorithm 1.1 Randomized coordinate gradient descent

Initialization: x0 \in \BbbR d, t = 0.
while not convergent do

Draw a coordinate it uniformly random from \{ 1,2, . . . , d\} .
Draw a stepsize \alpha t uniformly random in [\alpha min, \alpha max].
xt+1\leftarrow xt  - \alpha teit\partial itf(xt).
t\leftarrow t + 1.

end while
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714 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

The main result of this paper, Theorem 1, is that for any initial guess x0 that
is not a strict saddle point of f , under some mild conditions, with probability 1,
Algorithm 1.1 will escape any strict saddle points, and thus, under some additional
structural assumptions of f , the algorithm will globally converge to a local minimum.

In order to establish the global convergence, we view the algorithm as a random
dynamical system and carry out the analysis based on the theory of random dynamical
systems. This might be of separate interest; in particular, to the best of our knowledge,
the theory of random dynamical system has not been utilized in analyzing randomized
algorithms, while it offers a natural framework to establish long time behavior of such
algorithms. Let us now briefly explain the random dynamical system view of the
algorithm and our analysis; more details can be found in section 3.

Let (\Omega ,\scrF ,\BbbP ) be the probability space for all randomness used in the algorithm
such that each \omega \in \Omega is a sequence of coordinates and stepsizes. The iterate of
Algorithm 1.1 can be described as a random dynamical system xt = \varphi (t,\omega )x0, where
\varphi (t,\omega ) : \BbbR d\rightarrow \BbbR d is a nonlinear map for any given t\in \BbbN and \omega \in \Omega .

Consider an isolated stationary point x\ast of the dynamical system, which corre-
sponds to a critical point of f . Near x\ast , the dynamical system can be approximated
by its linearization: xt = \Phi (t,\omega )x0, where \Phi (t,\omega )\in \BbbR d\times d. The limiting behavior of the
linear dynamical system can be well understood by the celebrated multiplicative er-
godic theorem: Under some assumptions, the limit \Lambda (\omega ) = limt\rightarrow \infty (\Phi (t,\omega )\top \Phi (t,\omega ))1/2t

exists almost surely. The eigenvalues of the matrix \Lambda (\omega ), e\lambda 1(\omega ) > e\lambda 2(\omega ) > \cdot \cdot \cdot >
e\lambda p(\omega )(\omega ), characterize the long time behavior of the system. In particular, if the
largest Lyapunov exponent \lambda 1(\omega ) is strictly positive, then if x0 has some nontrivial
component in the unstable subspace, xt = \Phi (t,\omega )x0 would exponentially diverge from
x\ast . More details of the preliminaries of the linear random dynamical system can be
found in section 2.

Intuitively, one expects that the nonlinear dynamical system can be approximated
by its linearization around a critical point x\ast and would hence escape the strict saddle
point, following the linearized system. However, the approximation by the linear
dynamical system cannot hold for an infinite time horizon due to error accumulation.
Therefore, we cannot naively conclude using the multiplicative ergodic theorem and
the linear approximation. Instead, a major part of the analysis is devoted to establish
a quantitative finite block analysis of the behavior of the dynamical system over a finite
time interval. In particular, we will prove that when the iterate is in a neighborhood of
x\ast , the distance \| xt  - x\ast \| will be exponentially amplified for a duration T with high
probability. This would then be used to prove that with probability 1, the nonlinear
system will escape strict saddle points.

1.1. Related work. Coordinate gradient descent is a popular approach in opti-
mization; see e.g., the review articles [55, 46]. Advantages of the coordinate gradient
method include that compared with the full gradient descent, it allows larger stepsize
[36] and enjoys faster convergence [45], and it is also friendly for parallelization [32, 42].

The convergence of coordinate gradient descent has been analyzed in several set-
tings on the property of the objective function and on the strategy of coordinate
selection. The understanding of convergence for convex problems is quite complete:
For methods with cyclic choice of coordinates, the convergence has been established in
[4, 45, 49], and the worst-case complexity is investigated when the objective function
is convex and quadratic in [50]. For methods with random choice of coordinates, it is
shown in [36] that \BbbE f(xt) converges to f\ast = minx\in \BbbR d f(x) sublinearly in the convex
case and linearly in the strongly convex case. Convergence of objective function in
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 715

high probability has also been established in [36]. We also refer the reader to [41,
33, 32, 55] for further convergence results for random coordinate selection for convex
problems. More recently, convergence of methods with random permutation of coor-
dinates (i.e., a random permutation of the d coordinates is used for every d step of
the algorithm) have been analyzed, mostly for the case of quadratic objective func-
tions [21, 38, 15, 56]. It has been an ongoing research direction to compare various
coordinate selection strategies in various settings. In addition, in the nonconvex and
nonsmooth setting, the convergence of coordinate/alternating descent methods can be
analyzed for tame/semialgebraic functions with Kurdyka--\Lojasiewicz property (see,
e.g., [3, 2, 6, 7]).

For nonconvex objective functions, the global convergence analysis is less devel-
oped, as the situation becomes more complicated. Escaping strict saddle points has
been a focused research topic in nonconvex optimization, motivated by applications
in machine learning. It has been established that various first-order algorithms with
gradient noise or added randomness to iterates would escape strict saddle points; see,
e.g., [11, 24, 16, 18, 17, 14] for works in this direction.

Among previous works for escaping saddle points, perhaps the closest in spirit to
our current result are [23, 39, 22, 30], where algorithms without gradient or iterate
randomness are studied. It is proved in [23] that for almost every initial guess, the
trajectory of the gradient descent algorithm (without any randomness) with constant
stepsize would not converge to a strict saddle point. The result has been extended
in [22] to a broader class of deterministic first-order algorithms, including coordinate
gradient descent with cyclic choice of coordinate. The global convergence result for
cyclic coordinate gradient descent is also proved in [30] under slightly more relaxed
conditions. A similar convergence result is also obtained for the heavy-ball method
in [39]. Let us emphasize that in the case of coordinate algorithms, it is not merely a
technical question whether the algorithm can escape the strict saddle points without
randomly perturbing gradients or iterates. In fact, one simply cannot employ such
random perturbations, e.g., adding a random Gaussian vector to the iterate, since
doing so would destroy the coordinate nature of the algorithm.

The analysis in the works [23, 22, 39, 30] is based on viewing the algorithm as
a deterministic dynamical system, and applying the center-stable manifold theorem
for deterministic dynamical system [47], which characterizes the local behavior near
a stationary point of nonlinear dynamical systems. Such a framework obviously does
not work for randomized algorithms. To some extent, our analysis can be understood
as a natural generalization to the framework of random dynamical systems, which
allows us to analyze the long time behavior of randomized algorithms, in particular,
coordinate gradient descent with random coordinate selection.

Let us mention that various stable, unstable, and center manifold theorems have
been established in the literature of random dynamical systems; see, e.g., [1, 43, 44, 8,
34]. These sample-dependent random manifolds also characterize the local behavior
of random dynamical systems. However, as far as we can tell, one cannot simply apply
such ``off-the-shelf results"" for the analysis of Algorithm 1.1. Instead, for study of the
algorithm, we have to carry out a quantitative finite block analysis for the random dy-
namical system near the stationary points. Our proof technique is inspired by stability
analysis of the Lyapunov exponent of random dynamical systems, as in [20, 10].

1.2. Organization. The rest of this paper will be organized as follows. In sec-
tion 2, we review the preliminaries of random dynamical system for the convenience of
the reader. Our main result is stated in section 3. The proofs can be found in section 4.
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716 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

2. Preliminaries of random dynamical systems. In this section, we recall
basic notions and results of random dynamical systems; for more details, we refer the
reader to standard references, such as [1]. After introducing the preliminaries in this
section, we will define the random dynamical system associated with Algorithm 1.1 in
section 3.1. Let (\Omega ,\scrF ,\BbbP ) be a probability space, and let \BbbT be a semigroup with \scrB (\BbbT )
being its Borel \sigma -algebra. \BbbT serves as the notion of time. In the setting of Algorithm
1.1, we have \BbbT = \BbbN , corresponding to the one-sided discrete time setting. Other
possible examples of \BbbT include \BbbT = \BbbZ , \BbbT = \BbbR \geq 0, and \BbbT = \BbbR , with the assumption that
0\in \BbbT .

Let us first define a random dynamical system. As we have mentioned in the
introduction, the dynamics starting from x0 can be determined once a sample \omega \in \Omega 
is fixed. From the viewpoint of a random dynamical system, specifying the dynamics
of x is equivalent to specifying the dynamics of \omega : Suppose at time 0 that the dynamics
corresponds to \omega . Then to prescribe the future dynamics starting from time t, we can
specify the corresponding \theta (t)\omega \in \Omega for some map \theta (t) : \Omega \rightarrow \Omega . More precisely, we
have the following definition of dynamics on \Omega .

Definition 2.1 (metric dynamical system). A metric dynamical system on a
probability space (\Omega ,\scrF ,\BbbP ) is a family of maps \{ \theta (t) : \Omega \rightarrow \Omega \} t\in \BbbT satisfying that

(i) the mapping \BbbT \times \Omega \rightarrow \Omega , (t,\omega ) \mapsto \rightarrow \theta (t)\omega is measurable;
(ii) it holds that \theta (0) = Id\Omega and \theta (t + s) = \theta (t) \circ \theta (s) \forall s, t\in \BbbT ;

(iii) \theta (t) is \BbbP -preserving for any t \in \BbbT , where we say a map \theta : \Omega \rightarrow \Omega is \BbbP -
preserving if

\BbbP (\theta  - 1B) = \BbbP (B), \forall B \in \scrF .

The random dynamical system can then be defined as follows.

Definition 2.2 (random dynamical system). Let (X,\scrF X) be a measurable space,
and let \{ \theta (t) : \Omega \rightarrow \Omega \} t\in \BbbT be a metric dynamical system on (\Omega ,\scrF ,\BbbP ). Then a random
dynamical system on (X,\scrF X) over \{ \theta (t)\} t\in \BbbT is a measurable map

\varphi : \BbbT \times \Omega \times X\rightarrow X,

(t,\omega ,x) \mapsto \rightarrow \varphi (t,\omega ,x),

satisfying the following cocycle property: For any \omega \in \Omega , x \in X, and s, t \in \BbbT , it holds
that

\varphi (0, \omega ,x) = x

and that

(2.1) \varphi (t + s,\omega ,x) = \varphi (t, \theta (s)\omega ,\varphi (s,\omega ,x)).

The cocycle property (2.1) is a key property of a random dynamical system: After
time s, if we restart the system at xs, the future dynamic corresponds to the sample
\theta (s)\omega . Note that \varphi (t,\omega , \cdot ) is a map on X. With some ambiguity of notation, we also
use \varphi (t,\omega ) to denote this map on X and write \varphi (t,\omega )x = \varphi (t,\omega ,x). Then the cocycle
property (2.1) can be written as

\varphi (t + s,\omega ) = \varphi (t, \theta (s)\omega ) \circ \varphi (s,\omega ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 717

In this work, we will focus on the one-sided discrete time \BbbT = \BbbN and \theta (t) = \theta t,
where \theta is \BbbP -preserving and \theta t is the t-fold composition of \theta . Suppose that X = \BbbR d

and A : \Omega \rightarrow GL(d,\BbbR ) is measurable. Consider a linear random dynamical system
defined as (we use \Phi for the linear system while reserving \varphi for nonlinear dynamics
considered later)

\Phi (t,\omega ) = A(\theta t - 1\omega ) \cdot \cdot \cdot A(\theta \omega )A(\omega ),

where the right-hand side is the product of a sequences of random matrices. In this
setting, the behavior of the linear system xt = \Phi (t,\omega )x0 is well understood by the
celebrated multiplicative ergodic theorem, also known as the Oseledets theorem, which
we recall in Theorem 2.3. Such a type of result was first established by V. I. Oseledets
[37] and was further developed in many works, such as [40, 43, 52].

Theorem 2.3 (multiplicative ergodic theorem [1, Theorem 3.4.1]). Suppose that

(log \| A(\cdot )\| )+ ,
\bigl( 
log \| A(\cdot ) - 1\| 

\bigr) 
+
\in L1(\Omega ,\scrF ,\BbbP ),

where we have used the shorthand a+ := max\{ a,0\} . Then there exists an \theta -invariant\widetilde \Omega \in \scrF with \BbbP (\widetilde \Omega ) = 1 such that the following holds for any \omega \in \widetilde \Omega :
(i) It holds that the limit

(2.2) \Lambda (\omega ) = lim
t\rightarrow \infty 

\bigl( 
\Phi (t,\omega )\top \Phi (t,\omega )

\bigr) 1/2t
exists and is a positive definite matrix. Here \Phi (t,\omega )\top denotes the transposi-
tion of the matrix (as \Phi (t,\omega ) is a linear map on X).

(ii) Suppose \Lambda (\omega ) has p(\omega ) distinct eigenvalues, which are ordered as e\lambda 1(\omega ) >
e\lambda 2(\omega ) > \cdot \cdot \cdot > e\lambda p(\omega )(\omega ). Denote Vi(\omega ) the corresponding eigenspace with
dimension di(\omega ) for i = 1,2, . . . , p(\omega ). Then the functions p(\cdot ), \lambda i(\cdot ), and
di(\cdot ), i = 1,2, . . . , p(\cdot ) are all measurable and \theta -invariant on \widetilde \Omega .

(iii) Set Wi(\omega ) =
\bigoplus 

j\geq i Vj(\omega ), i = 1,2, . . . , p(\omega ), and Wp(\omega )+1(\omega ) = \{ 0\} . Then it
holds that

(2.3) lim
t\rightarrow \infty 

1

t
log \| \Phi (t,\omega )x\| = \lambda i(\omega ), \forall x\in Wi(\omega )\setminus Wi+1(\omega )

for i = 1,2, . . . , p(\omega ). The maps V (\cdot ) and W (\cdot ) from \widetilde \Omega to the Grassmannian
manifold are measurable.

(iv) It holds that

Wi(\theta \omega ) = A(\omega )Wi(\omega ).

(v) When (\Omega ,\scrF ,\BbbP , \theta ) is ergodic, i.e., every B \in \scrF with \theta  - 1B = B satisfies \BbbP (B) =
0 or \BbbP (B) = 1, the functions p(\cdot ), \lambda i(\cdot ), and di(\cdot ), i = 1,2, . . . , p(\cdot ) are constant
on \widetilde \Omega .

In Theorem 2.3, \lambda 1(\omega ) > \lambda 2(\omega ) > \cdot \cdot \cdot > \lambda p(\omega )(\omega ) are known as Lyapunov expo-
nents, and \{ 0\} \subseteq Wp(\omega )(\omega ) \subseteq \cdot \cdot \cdot \subseteq W1(\omega ) \subseteq \BbbR d is the Oseledets filtration. We can
see from the above theorem that both the Lyapunov exponents and the Oseledets
filtration are A-forward invariant.

The Lyapunov exponents describe the asymptotic growth rate of \| \Phi (t,\omega )x\| as
t\rightarrow \infty . More specifically, (2.3) implies that when x \in Wi(\omega )\setminus Wi+1(\omega ) for any \epsilon > 0,
there exists some T > 0 such that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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718 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

et(\lambda i(\omega ) - \epsilon ) \leq \| \Phi (t,\omega )x\| \leq et(\lambda i(\omega )+\epsilon )

holds for any t > T . The subspaces spanned by eigenvectors of \Lambda (\omega ) corresponding to
eigenvalues smaller than, equal to, and greater than 0 are the stable subspace, center
subspace, and unstable subspace, respectively. The stable and unstable subspaces cor-
respond to exponential convergence and exponential divergence, respectively. When
starting from the center subspace, we would get some subexponential behavior.

The multiplicative ergodic theorem also generalizes to continuous time and two-
sided time. We refer the interested reader to [1, Theorems 3.4.1 and 3.4.11] for details.

The stable, unstable, and center subspaces can be generalized to stable, unstable,
and center manifolds when considering nonlinear systems; see, e.g., [1, 43, 44, 8, 27, 34,
31, 25, 13]. These manifolds play similar roles in characterizing the local behavior of
nonlinear random dynamical systems as the subspaces for linear random dynamical
systems. In particular, the Hartman--Grobman theorem establishes the topological
conjugacy between a nonlinear system and its linearization [53]. There are also other
conjugacy results for random dynamical systems; see, e.g., [27, 26, 28, 29].

3. Main results.

3.1. Setup of the random dynamical system. Let us first specify the ran-
dom dynamical system corresponding to the Algorithm 1.1.

\bullet Probability space. For each t \in \BbbN , denote (\Omega t,\Sigma t,\BbbP t) the usual probabil-
ity space for the distribution \scrU \{ 1,2,...,n\} \times \scrU [\alpha \mathrm{m}\mathrm{i}\mathrm{n},\alpha \mathrm{m}\mathrm{a}\mathrm{x}], where \scrU \{ 1,2,...,n\} and
\scrU [\alpha \mathrm{m}\mathrm{i}\mathrm{n},\alpha \mathrm{m}\mathrm{a}\mathrm{x}] are the uniform distributions on the set \{ 1,2, . . . , n\} and inter-
val [\alpha min, \alpha max], respectively. Let (\Omega ,\scrF ,\BbbP ) be the product probability space
of all (\Omega t,\Sigma t,\BbbP t), t \in \BbbN . Denote \pi t as the projection from (\Omega ,\scrF ,\BbbP ) onto
(\Omega t,\Sigma t,\BbbP t), t \in \BbbN . Thus, a sample \omega \in \Omega can be represented as a sequence
((i0, \alpha 0), (i1, \alpha 1), . . .), where (it, \alpha t) = \pi t(\omega ), t\in \BbbN . Let \{ \scrF t\} t\in \BbbN be the filtra-
tion defined by

\scrF t = \sigma 

\left\{   (B0 \times \cdot \cdot \cdot \times Bt)\times 

\left(  \prod 
j>t

\Omega j

\right)  : Bi \in \Sigma i, i = 0,1, . . . , t

\right\}   .

\bullet Metric dynamical system. The metric dynamical system on \Omega is constructed
by the (left) shifting operator \tau : \Omega \rightarrow \Omega defined as

\tau (\omega ) = \tau (\pi 0(\omega ), \pi 1(\omega ), \cdot \cdot \cdot ) := (\pi 1(\omega ), \pi 2(\omega ), \cdot \cdot \cdot ),

which is clearly measurable and \BbbP -preserving. The metric dynamical system
is then given by \theta (t) = \tau t for t\in \BbbN .

\bullet Random dynamical system. For any \omega \in \Omega and t\in \BbbN , we define \phi (\omega ) to be a
(nonlinear) map on \BbbR d as

\phi (\omega ) : \BbbR d\rightarrow \BbbR d

x \mapsto \rightarrow x - \alpha eie
\top 
i \nabla f(x),

where (i,\alpha ) = \pi 0(\omega ) is the first pair/element in the sequence \omega , and we define
the map \varphi (t,\omega ) via

\varphi (t,\omega ) = \phi (\tau t - 1\omega ) \circ \cdot \cdot \cdot \circ \phi (\tau \omega ) \circ \phi (\omega ), for t\geq 1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 719

while \varphi (0, \omega ) is the identity operator. It is clear that \varphi (t,\omega ) satisfies the
cocycle property (2.1) and hence defines a random dynamical system on X =
\BbbR d over \{ \tau t\} t\in \BbbN . The iterate of Algorithm 1.1 follows the random dynamical
system as

xt = \phi (\tau t - 1\omega )xt - 1 = \cdot \cdot \cdot = \phi (\tau t - 1\omega ) \circ \cdot \cdot \cdot \circ \phi (\tau \omega ) \circ \phi (\omega )x0 = \varphi (t,\omega )x0.

It can be seen that \{ xt\} t\in \BbbN is \{ \scrF t\} -predictable, i.e., xt is \scrF t - 1-measurable for any
t\in \BbbN +, since xt is determined by samples (i0, \alpha 0), (i1, \alpha 1), . . . , (it - 1, \alpha t - 1).

In our analysis, we will use linearization of the dynamical system \varphi (t,\omega ) at a
critical point x\ast of f . Without loss of generality, we assume x\ast = 0; otherwise, we
consider the system with state being x  - x\ast . The resulting linear system, which
depends on H = \nabla 2f(x\ast ) = (Hij)1\leq i,j\leq d, is given by (here and in the following, we
use the superscript H to indicate dependence on the matrix)

(3.1) \Phi H(t,\omega ) = AH(\tau t - 1\omega ) \cdot \cdot \cdot AH(\tau \omega )AH(\omega ),

where

(3.2) AH(\omega ) = I  - \alpha eie
\top 
i H, (i,\alpha ) = \pi 0(\omega ).

Note that AH(\cdot ) is bounded in \Omega . We know that (log \| AH(\cdot )\| )+ is integrable. When
\alpha < 1/| Hii| , the matrix AH(\omega ) = I  - \alpha eie

\top 
i H is invertible, and the inverse is given

explicitly by applying the Sherman--Morrison formula:

AH(\omega ) - 1 =
\bigl( 
I  - \alpha eie

\top 
i H

\bigr)  - 1
= I +

\alpha eie
\top 
i H

1 - \alpha Hii
.(3.3)

In particular, we have

(3.4) \| AH(\omega ) - 1\| \leq 1 +
\alpha \| H\| 

1 - \alpha | Hii| 
.

Thus, if we take the maximal stepsize \alpha max such that \alpha max < 1/max1\leq i\leq d | Hii| ,
\| AH(\cdot ) - 1\| is bounded in \Omega , and as a result, (log \| AH(\cdot ) - 1\| )+ is also integrable.
Therefore, the assumptions of Theorem 2.3 hold. The shifting operator \tau is ergodic
on (\Omega ,\scrF ,\BbbP ) by Kolmogorov's 0--1 law. Then Theorem 2.3 applies for \theta = \tau with pH(\cdot ),
\lambda H
i (\cdot ), and dHi (\cdot ) all being a.e. constant. For any \omega \in \widetilde \Omega that is the set in Theorem

2.3 satisfying \BbbP (\widetilde \Omega ) = 1, we denote

(3.5) WH
+ (\omega ) =

\bigoplus 
\lambda i>0

V H
i (\omega ), and WH

 - (\omega ) =
\bigoplus 
\lambda i\leq 0

V H
i (\omega ).

Then the following invariant property holds:

WH
 - (\tau \omega ) = AH(\omega )WH

 - (\omega ).

Note that WH
 - (\omega ) works as a center-stable subspace. That is, for any x\in WH

 - (\omega ) and
any \epsilon > 0, it holds that \| \Phi (t,\omega )x\| \leq et\epsilon for sufficiently large t and for x /\in WH

 - (\omega ),
\| \Phi (t,\omega )x\| grows exponentially as t\rightarrow \infty with rate greater than min\lambda i>0 \lambda i - \epsilon for any
\epsilon > 0.
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720 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

3.2. Assumptions. In this section, we specify the assumptions of the objective
function f in this paper. The first is a standard smoothness assumption of f .

Assumption 3.1. f \in C2(\BbbR d) and the Hessian \nabla 2f is uniformly bounded; i.e.,
there exists M > 0 such that \| \nabla 2f(x)\| \leq M for all x\in \BbbR d.

An optimization algorithm is expected to converge, under some reasonable as-
sumptions, to a critical point of f where the gradient vanishes. Our aim is to further
characterize the possible limits of the algorithm iterates. For this purpose, we dis-
tinguish Crits(f), the set of all strict saddle points (including local maxima with the
nondegenerate Hessian) of f ,

Crits(f) := \{ x\in \BbbR d :\nabla f(x) = 0, \lambda min(\nabla 2f(x)) < 0\} ,

where we use the subscript s to emphasize that it is strict. Due to the presence of
a negative eigenvalue of Hessian, if we were considering the gradient dynamics near
the critical point, the saddle point would be an unstable equilibrium. Our first result
is that this instability also occurs in the linear random dynamical system \Phi H(t,\omega ),
where H = \nabla 2f(x\ast ). In other words, the dimension of WH

+ (\omega ) defined in (3.5) is
greater than 0. While this would mainly serve as a preliminary step for our analysis
of the nonlinear dynamics, the conclusion by itself might be of interest and is stated
as follows. The proof will be deferred to section 4.1.

Proposition 3.2. Let H have a negative eigenvalue and 0 < \alpha min < \alpha max <
1/max1\leq i\leq d | Hii| . Then the largest Lyapunov exponent of \Phi H(t,\omega ) is positive.

Our goal is to generalize such results to the nonlinear dynamics near strict saddle
points of f , for which we would require two additional assumptions as follows.

Assumption 3.3. For every x\ast \in Crits(f), \nabla 2f(x\ast ) is nondegenerate; i.e., x\ast is
a nondegenerate critical point of f in the sense that any eigenvalue of \nabla 2f(x\ast ) is
nonzero.

Assumption 3.3 is also a standard assumption, which, in particular, guarantees
that each strict saddle point is isolated due to the nondegenerate Hessian. For each
strict saddle point, Proposition 3.2 guarantees that the corresponding unstable sub-
space WH

+ (\omega ) is nontrivial (has dimension at least 1). We would in fact require a
stronger technical assumption on its structure.

Assumption 3.4. For every x\ast \in Crits(f), it holds that \scrP H
+ (\omega )ei \not = 0 for every

i \in \{ 1,2, . . . , d\} and almost every \omega \in \Omega , where \scrP H
+ (\omega ) is the orthogonal projection

onto WH
+ (\omega ) with H =\nabla 2f(x\ast ).

We expect that Assumption 3.4 holds generically. We also show in Appendix A
that Assumption 3.4 can be verified when H has no zero off-diagonal elements (and
WH

+ (\omega ) is not trivial). However, there exist cases that Assumption 3.4 might not
hold. One example is H = \nabla 2f(x\ast ) = diag(H1,H2), where H1 \in \BbbR d1\times d1 only has
positive eigenvalues and H2 \in \BbbR d2\times d2 only has negative eigenvalues, which implies
that WH

 - (\omega ) = span\{ ei : 1\leq i\leq d1\} and WH
+ (\omega ) = span\{ ei : d1 + 1\leq i\leq d\} .

We also remark that Assumption 3.1 is essential in our framework since the lin-
earized system is defined using the Hessian matrix. Analysis of the randomized co-
ordinate method for nonsmooth optimization problems requires new techniques and
deserves future research.

3.3. Main results. Given an initial guess x0, the behavior of the algorithm,
in particular, the limit of xt, depends on the particular sample \omega \in \Omega . For any
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 721

x\ast \in Crits(f), we denote the set of all \omega such that the algorithm starting at x0 would
converge to x\ast :

\Omega (x\ast , x0) :=
\Bigl\{ 
\omega \in \Omega : lim

t\rightarrow \infty 
xt = lim

t\rightarrow \infty 
\varphi (t,\omega )x0 = x\ast 

\Bigr\} 
.

We further define the set \Omega (Crits(f), x0) as the union of all \Omega (x\ast , x0) over x\ast \in 
Crits(f):

\Omega (Crits(f), x0) :=
\bigcup 

x\ast \in Crits(f)

\Omega (x\ast , x0).

Thus, if \omega /\in \Omega (Crits(f), x0), the limit limt\rightarrow \infty xt, if it exists, will not be one of the
strict saddle points. Our main result in this paper proves that the set is of measure
zero; i.e., for any initial guess x0 that is not a strict saddle point, with probability 1,
Algorithm 1.1 will not converge to a strict saddle point.

Theorem 1. Suppose that Assumptions 3.1, 3.3, and 3.4 hold and that 0 <\alpha min <
\alpha max < 1/M . Then for any x0 \in \BbbR d\setminus Crits(f), it holds that

\BbbP (\Omega (Crits(f), x0)) = 0.

The intuition behind the proof of Theorem 1 is to compare the nonlinear dynamics
around a strict saddle point x\ast \in Crits(f) with its linearization, as the linear dynamics
has nontrivial unstable subspace, thanks to Proposition 3.2. Ideally, one would hope
that the nonlinear dynamics would closely follow the linear dynamics and thus leave
the neighborhood of x\ast eventually; the obstacle for such an argument is, however,
that the approximation of the linearization is only valid for a finite time interval.
Therefore, to establish the instability behavior of the nonlinear dynamics, we would
need a much more refined and quantitative argument using the instability of the linear
system. In particular, we would need to show that over a finite interval, with high
probability, the linear system and hence the nonlinear system would drive xt away
from the strict saddle point with quantitative bounds; see Theorem 4.4 in section 4.2.
Theorem 1 then follows from an argument with a similar spirit as the law of large
numbers; see section 4.3.

Remark 3.5. The technical Assumption 3.4 and the randomness in stepsizes are
made so that the iterate xt = xt - 1 - \alpha t - 1eit - 1

e\top it - 1
\nabla f(xt - 1) would obtain some non-

trivial component in the unstable subspace, which would be further amplified within
a sufficiently long but finite time interval. When \| \scrP H

+ (\tau t\omega )eit - 1
\| and | e\top it - 1

\nabla f(xt - 1)| 
are fixed and relatively large, a random \alpha t - 1 would keep \| \scrP H

+ (\tau t\omega )xt\| away from 0
with high probability; see section 4.2 for more details. It is an interesting open ques-
tion whether it is possible to establish similar results without such assumptions. Our
conjecture is that \BbbP (\Omega s(x0)) = 0 still holds for x0 \in \BbbR d\setminus Crits(f) unless x0 is located
in a set with Lebesgue measure zero, similar to the results established in [22].

As an application of our main result (Theorem 1), we can obtain the global
convergence to stationary points with no negative Hessian eigenvalues for Algorithm
1.1. More specifically, denote by

Crit(f) := \{ x\in \BbbR d :\nabla f(x) = 0\} 

the set of all critical points of f . Then we have the following corollary, which will also
be proved in section 4.3.
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722 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

Corollary 3.6. Under the same assumptions as in Theorem 1 and assuming
further that every x\ast \in Crit(f) is an isolated critical point, for any x0 \in \BbbR d\setminus Crits(f)
with bounded level set L(x0) = \{ x \in \BbbR d : f(x)\leq f(x0)\} , with probability 1, \{ xt\} t\in \BbbN is
convergent with limit in Crit(f)\setminus Crits(f).

Remark 3.7. In Corollary 3.6, if we further assume that all saddle points of f are
strict, then the algorithm iterate converges to a local minimum with probability 1.
Let us also mention that for many nonconvex problems, saddle points are suboptimal,
while there do not exist ``bad"" local minima, e.g., phase retrieval [48], deep learning
[19, 35], and low-rank matrix problems [12]. For these problems, convergence to local
minima suffices to guarantee good performance.

Remark 3.8. In our setting, without adding noise to the gradient or iterate, we
cannot hope for good convergence rates for an arbitrary initial iterate. In fact, as
shown in [9], the convergence of a deterministic gradient descent algorithm to a local
minimum might take an exponentially long time; we expect similar behavior for the
randomized coordinate gradient descent Algorithm 1.1. Let us also remark that while
we need the random stepsize as discussed in Remark 3.5, the interval [\alpha min, \alpha max]
could be made arbitrarily small; the result holds as long as 0 <\alpha min <\alpha max < 1/M .

4. Proofs. We collect all proofs in this section.

4.1. Analysis of the linearized system. We will first study the linear dy-
namical system, for which we assume the objective function is given by

(4.1) fH(x) =
1

2
x\top Hx,

where H is a symmetric matrix in \BbbR d\times d with at least one negative eigenvalue. In this
case, the coordinate descent algorithm is given by

xt+1 =
\bigl( 
I  - \alpha teite

\top 
itH

\bigr) 
xt,

which corresponds to the linear dynamical system \Phi H(t,\omega ) with single step map
AH(\omega ), defined in (3.1) and (3.2), respectively.

Our main goal in this subsection is to prove Proposition 3.2 for this linear dynam-
ical system, which states that at least one Lyapunov exponent of \Phi H(t,\omega ) is positive.
It suffices to show that there exists some x0 such that \| xt\| grows exponentially to
infinity, which will follow from an energy argument, similar to the proof of [22, Propo-
sition 5]. Although we consider a randomized coordinate gradient descent algorithm
instead of a cyclic one, one step, i.e., Lemma 4.3, in the proof of Proposition 4.1
follows closely the proof in [22, Appendix A]. We start from x0 with fH(x0) < 0
and consider a finite time interval with length m \geq d. Proposition 4.1 establishes a
quantitative decay estimate for fH(xt+m) compared with fH(xt), which leads to our
desired result (Proposition 3.2).

Proposition 4.1. Let m \geq d be fixed. For the objective function (4.1) with
\lambda min(H) < 0, suppose that 0 < \alpha min < \alpha max < 1/max1\leq i\leq d | Hii| and that there exists
c\in (0,1) depending on m, H, \alpha min, and \alpha max such that

fH(xt+m) - fH(xt)\leq c fH(xt)

holds as long as fH(xt) < 0 and \{ 1,2, . . . , d\} = \{ it, it+1, . . . , it+m - 1\} (in the sense of
sets).
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 723

Remark 4.2. The condition \{ 1,2, . . . , d\} = \{ it, it+1, . . . , it+m - 1\} above is known as
the ``generalized Gauss--Seidel rule"" in the literature of coordinate methods [51, 54].

Proof. Without loss of generality, we assume that t = 0. Due to the choice of
\alpha max, we have the following simple nonincreasing property for any t\prime \in \BbbN :

fH(x
t
\prime 
+1

) =
1

2
x\top 
t
\prime 
+1

Hx
t
\prime 
+1

=
1

2
x\top 
t
\prime 

\biggl( 
I  - \alpha 

t
\prime ei

t
\prime e

\top 
i
t
\prime H

\biggr) \top 

H

\biggl( 
I  - \alpha 

t
\prime ei

t
\prime e

\top 
i
t
\prime H

\biggr) 
x
t
\prime 

= fH(x
t
\prime ) - \alpha 

t
\prime 

\biggl( 
e\top i

t
\prime Hx

t
\prime 

\biggr) 2

+
1

2
\alpha 2
t e

\top 
i
t
\prime Hei

t
\prime 

\biggl( 
e\top i

t
\prime Hx

t
\prime 

\biggr) 2

\leq fH(x
t
\prime ) - 

\alpha 
t
\prime 

2

\biggl( 
e\top i

t
\prime Hx

t
\prime 

\biggr) 2

.

(4.2)

Write x0 = y\ast + y0 with y\ast \in ker(H) and y0 \in ran(H). Let

(4.3) y
t
\prime 
+1

= y
t
\prime  - \alpha 

t
\prime ei

t
\prime e

\top 
i
t
\prime Hy

t
\prime , t\prime = 0,1, . . . ,m - 1.

Then x
t
\prime = y\ast + y

t
\prime holds for any t\prime = 0,1, . . . ,m. Using (4.2), to give an upper bound

for fH(xt+m) - fH(xt), we would like a nontrivial lower bound for \alpha 
t
\prime (e\top i

t
\prime Hx

t
\prime )2 =

\alpha 
t
\prime (e\top i

t
\prime Hy

t
\prime )2 for some t\prime \in \{ t, t + 1, . . . , t + m - 1\} , which is guaranteed by Lemma

4.3, whose proof will be postponed.

Lemma 4.3. Suppose that \{ 1,2, . . . , d\} = \{ i0, i1, . . . , im - 1\} . For any

(4.4) 0< \delta \leq min

\biggl\{ 
1

2m
,

\alpha min\sigma min(H)

2
\surd 
m(m\alpha max\sigma max(H) + 1)

\biggr\} 
,

where \sigma min(H) and \sigma max(H) are the smallest and largest positive singular values of
H, respectively, if 0 \not = y0 \in ran(H), then there exists T \in \{ 0,1, . . . ,m - 1\} such that
\alpha T | e\top iTHyT | \geq \delta \| yT \| , where the sequence yt is given as in (4.3).

Assuming the lemma, there exists T \in \{ 0,1, . . . ,m - 1\} such that

\alpha T

\bigm| \bigm| e\top iTHyT
\bigm| \bigm| \geq \delta \| yT \| ,

with a fixed \delta > 0 satisfying (4.4). We can further constrain that \delta 2

\alpha \mathrm{m}\mathrm{i}\mathrm{n}\sigma \mathrm{m}\mathrm{a}\mathrm{x}(H) < 1.
Thus, we have

fH(xm)\leq fH(xT+1)\leq fH(xT ) - \alpha T

2

\bigl( 
e\top iTHxT

\bigr) 2 \leq fH(xT ) - \delta 2

2\alpha T
\| yT \| 2,

which, combined with \sigma max(H)\| yT \| 2 \geq  - y\top T HyT =  - x\top 
THxT =  - 2fH(xT ), yields

that

fH(xm)\leq 
\biggl( 

1 +
\delta 2

\alpha T\sigma max(H)

\biggr) 
fH(xT )\leq 

\biggl( 
1 +

\delta 2

\alpha T\sigma max(H)

\biggr) 
fH(x0).

Set c = \delta 2

\alpha \mathrm{m}\mathrm{a}\mathrm{x}\sigma \mathrm{m}\mathrm{a}\mathrm{x}(H) , and we get that fH(xm) - fH(x0)\leq cfH(x0).

We finish the proof by establishing Lemma 4.3 below.
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724 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

Proof of Lemma 4.3. Suppose on the contrary that \alpha t| e\top itHyt| < \delta \| yt\| for any
t\in \{ 0,1, . . . ,m - 1\} . It holds that

\| y1  - y0\| = \alpha 0

\bigm| \bigm| e\top i0Hy0
\bigm| \bigm| < \delta \| y0\| < 2\delta \| y0\| .

We claim that

(4.5) \| yt  - y0\| < 2t\delta \| y0\| 

for any t = 1,2, . . . ,m - 1. By induction, assume that \| yt  - y0\| < 2t\delta \| y0\| holds for
some t\in \{ 1,2, . . . ,m - 2\} . Then

\| yt+1  - yt\| = \alpha t

\bigm| \bigm| e\top itHyt
\bigm| \bigm| < \delta \| yt\| < \delta (2t\delta + 1)\| y0\| < 2\delta \| y0\| ,

where the last inequality uses 2t\delta < 2m\delta \leq 1. It follows that \| yt+1  - y0\| \leq \| yt  - y0\| +
\| yt+1  - yt\| < 2(t + 1)\delta \| y0\| .

Using (4.5) and max1\leq i\leq d \| Hei\| \leq \sigma max(H), we have

\alpha t

\bigm| \bigm| e\top itHy0
\bigm| \bigm| \leq \alpha t

\bigm| \bigm| e\top itH(yt  - y0)
\bigm| \bigm| + \alpha t

\bigm| \bigm| e\top itHyt
\bigm| \bigm| 

<\alpha max\sigma max(H) \cdot 2t\delta \| y0\| + 2\delta \| y0\| 
< 2\delta (m\alpha max\sigma max(H) + 1)\| y0\| 

for t = 0,1, . . . ,m  - 1. Since span\{ eik : k = 0,1, . . . ,m  - 1\} = \BbbR d, noticing that
y0 \in ranH, we have

\alpha min\sigma min(H)\| y0\| \leq \alpha min\| Hy0\| \leq 

\Biggl( 
m - 1\sum 
t=0

\bigl( 
\alpha t

\bigm| \bigm| e\top itHy0
\bigm| \bigm| \bigr) 2\Biggr) 1/2

< 2\delta 
\surd 
m(m\alpha max\sigma max(H) + 1)\| y0\| ,

which contradicts the choice of \delta in (4.4).

We are now ready to prove Proposition 3.2, which states the existence of a positive
Lyapunov exponent of the linear dynamical system.

Proof of Proposition 3.2. It suffices to show that for almost every \omega \in \Omega , there
exist some x0 \in \BbbR d, \epsilon > 0, and T > 0 such that xt = \Phi (t,\omega )x0 satisfies \| xt\| \geq e\epsilon t

for any t > T . Let x0 be an eigenvector corresponding to a negative eigenvalue of H.
Then it holds that fH(x0) < 0. Consider a fixed m \geq d. For any k \in \BbbN , set Ik = 1
if \{ 1,2, . . . , d\} = \{ ikm, ikm+1, . . . , ikm+m - 1\} and Ik = 0 otherwise. We can see that
the random variables I0, I1, I2, . . . are independent and identically distributed with
\BbbE I0 = \BbbP (I0 = 1)\in (0,1). By Proposition 4.1, we obtain that

fH(x(k+1)m)\leq 

\Biggl\{ 
(1 + c)fH(xkm) if Ik = 1,

fH(xkm) if Ik = 0,

where c is the constant from Proposition 4.1. Therefore,

\lambda min(H)

2
\| xkm\| 2 \leq fH(xkm)\leq (1 + c)

\sum k - 1
j=0 IjfH(x0),

which implies that

(4.6) \| xkm\| \geq 
\biggl( 

2fH(x0)

\lambda min(H)

\biggr) 1/2

\cdot (1 + c)
1
2

\sum k - 1
j=0 Ij .
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 725

Note that \BbbE | I0| = \BbbE I0 <\infty . The strong law of large number suggests that for almost
every \omega \in \Omega , there exists some K such that for all k\geq K,

(4.7)

k - 1\sum 
j=0

Ij \geq 
\BbbE I0
2

k.

Combining (4.6) and (4.7), we arrive at

\| xkm\| \geq 
\biggl( 

2fH(x0)

\lambda min(H)

\biggr) 1/2

\cdot (1 + c)
\BbbE I0
4m \cdot km.

Noticing that (1 + c)
\BbbE I0
4m is greater than 1, \| xkm\| grows exponentially in km, and we

complete the proof.

4.2. Finite block analysis. In this subsection, we study the behavior of the
nonlinear dynamical system near a strict saddle point of f , which, without loss of
generality, can be assumed to be x\ast = 0. As mentioned above, in a small neighborhood
of x\ast , while it is not possible to control the difference between nonlinear and linear
systems for infinite time, the nonlinear system can be approximated by the linear
system during a finite time horizon.

The main conclusion of this subsection is the following theorem, which states that
after a finite time interval with length T , the distance of the iterate from x\ast = 0 will
be amplified exponentially with high probability.

Theorem 4.4. Suppose that Assumptions 3.1, 3.3, and 3.4 hold and that 0 <
\alpha min < \alpha max < 1/M . There exists \epsilon \ast \in (0,1/6) such that for any \epsilon \in (0, \epsilon \ast ), we have
T\ast = T\ast (\epsilon ) \in \BbbN +, and for any T \in \BbbN + with T \geq T\ast and any t \in \BbbN , conditioned on
\scrF t - 1, with probability at least 1 - 4\epsilon , it holds for all xt \in V that

(4.8) \| xt+T \| \geq exp

\biggl( 
6\epsilon 

1 - 6\epsilon 

\bigm| \bigm| log(1 - M\alpha max)
\bigm| \bigm| T\biggr) \| xt\| ,

where V is a neighborhood of x\ast = 0, depending on \epsilon , T , and f near x\ast .

The lower bound (4.8) quantifies the amplification of \| xt+T \| : While we always
have \| xt+T \| \geq (1  - M\alpha max)T \| xt\| (see (4.20) below), the result states that with
probability at least 1 - 4\epsilon , the amplification factor is at least the right-hand side of
(4.8), which is exponentially large in T . Hence, on average, \| xt+T \| would be much
larger than \| xt\| . This would lead to the escaping of the iterate from the neighborhood
of x\ast = 0.

To prove Theorem 4.4, we would require a more quantitative characterization
of the behavior of its linearization at x\ast . In particular, we need a high probability
estimate of the distance of the iterate from x\ast after some time interval. For this
purpose, conditioned on \scrF t - 1 with the iterate xt, we will first show in Lemma 4.8
that, after some finite time, the orthogonal projection of the iterate x\varrho t onto the
unstable subspace, where t < \varrho t \leq t + L for some constant L, is significant. The
component in the unstable subspace would then be further amplified subsequently
by \Phi H(S, \tau \varrho t\omega ), where H = \nabla 2f(x\ast ). Here the time duration S would be chosen
sufficiently large such that the distance from x\varrho t+S to x\ast is exponentially amplified.
Theorem 4.4 follows by setting T = L+S. In the second step above, we would need to
control the closeness between the linear and nonlinear systems within a time horizon
with length S.
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726 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

Such a finite block analysis approach has been used to establish the stability of
the Lyapunov exponent of random dynamical systems [20, 10], which inspired our
proof technique for Theorems 4.4 and 1.

We first set the small constant \epsilon in Theorem 4.4, which controls the failure prob-
ability of the amplification bound. Let \lambda 1 >\lambda 2 > \cdot \cdot \cdot >\lambda p be the Lyapunov exponents
of the linearized system at x\ast = 0. We set

(4.9) \lambda + = min
\lambda i>0

\lambda i and 0 <\gamma <
1

2
min

\biggl\{ 
min
1\leq i<p

| \lambda i  - \lambda i+1| , \lambda +

\biggr\} 
.

Note that \gamma < \lambda +. Let \epsilon \ast \in (0,1/6) be sufficiently small such that

(4.10) (1 - 6\epsilon )(\lambda +  - \gamma ) + 6\epsilon \cdot log(1 - M\alpha max) > 0, \forall \epsilon \in (0, \epsilon \ast ).

The reason for such choice will become clear later (see (4.23)). For the rest of the
section, we will consider a fixed \epsilon \in (0, \epsilon \ast ).

We now state and prove several lemmas for Theorem 4.4. First, in the following
Lemma 4.5, we construct a stopping time \varrho t  - 1 that is bounded almost surely, and
the component of the gradient | e\top i\varrho t - 1

\nabla f(x\varrho t - 1)| is comparable with \| \nabla f(x\varrho t - 1)\| in
amplitude with high probability.

Lemma 4.5. Let 0 < \mu \leq 1\surd 
d
be a fixed constant. There exists some constant

L > 0 such that for any t \in \BbbN , there exists a measurable \varrho t : \Omega \rightarrow \BbbN + such that
t < \varrho t \leq t + L and

(4.11) \BbbP 
\Bigl( \bigm| \bigm| e\top i\varrho t - 1

\nabla f(x\varrho t - 1)
\bigm| \bigm| \geq \mu \| \nabla f(x\varrho t - 1)\| 

\bigm| \bigm| \bigm| \scrF t - 1

\Bigr) 
\geq 1 - \epsilon .

Proof. For any t \in \BbbN , use \ell 0 to denote the smallest nonnegative integer \ell such
that

\ell 0 = arg min
\ell 

\Bigl\{ 
\ell \in \BbbN + :

\bigm| \bigm| e\top it+\ell  - 1
\nabla f(xt+\ell  - 1)

\bigm| \bigm| \geq \mu \| \nabla f(xt+\ell  - 1)\| 
\Bigr\} 
.

It is clear that \BbbP (\ell 0 > \ell | \scrF t - 1) \leq (1  - 1/d)\ell since for each step, the coordinate is
randomly chosen. Hence, there exists some L> 0 such that

\BbbP (\ell 0 \leq L | \scrF t - 1)\geq 1 - \epsilon .

We finish the proof by setting \varrho t = t + min\{ \ell 0,L\} , which has the desired property.

We now carry out the amplification part of the finite block analysis for the lin-
earized dynamics at x\ast = 0. To simplify expressions in the following, for t1 < t2, we
introduce the shorthand notation

(i,\alpha )t1:t2 - 1 =
\bigl( 
(it1 , \alpha t1), . . . , (it2 - 1, \alpha t2 - 1)

\bigr) 
\in \Omega t1 \times \cdot \cdot \cdot \times \Omega t2 - 1

and the finite time transition matrix (i.e., composition of linear maps)

\Phi H
\bigl( 
(i,\alpha )t1:t2 - 1

\bigr) 
= (I  - \alpha t2 - 1eit2 - 1

e\top it2 - 1
H) \cdot \cdot \cdot (I  - \alpha t1eit1 e

\top 
it1

H).

Recall that (\Omega t,\Sigma t,\BbbP t) is the probability space for \scrU \{ 1,2,...,d\} \times \scrU [\alpha \mathrm{m}\mathrm{i}\mathrm{n},\alpha \mathrm{m}\mathrm{a}\mathrm{x}] for t \in \BbbN .
We also denote \scrP H

+ ((i,\alpha )t1:t2 - 1) as the projection operator onto the subspace spanned
by the right singular vectors of \Phi H((i,\alpha )t1:t2 - 1) corresponding to d+ largest singular
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 727

values, where d+ =
\sum 

\lambda i>0 di and di is the dimension of the ith eigenspace as in
Theorem 2.3 (ii) for the linearized system at x\ast .

As we mentioned in the proof sketch, we want \Phi H(S, \tau \varrho t\omega ) = \Phi H((i,\alpha )\varrho t:\varrho t+S - 1)
to amplify x\varrho t

, for which we need to establish a nontrivial lower bound for the unstable
component \| \scrP H

+ ((i,\alpha )\varrho t:\varrho t+S - 1)x\varrho t
\| . This is achieved by several lemmas. We will

establish three lower bounds in the following:
\bullet \| \scrP H

+ (\tau \varrho t\omega )ei\varrho t - 1\| using Lemma 4.6;
\bullet \| \scrP H

+ ((i,\alpha )\varrho t:\varrho t+S - 1)ei\varrho t - 1
\| in Lemma 4.7; and finally the desired

\bullet \| \scrP H
+ ((i,\alpha )\varrho t:\varrho t+S - 1)x\varrho t

\| in Lemma 4.8.
Let us first control \| \scrP H

+ (\tau \varrho t\omega )ei\varrho t - 1
\| in the following lemma, which utilizes Assump-

tion 3.4. For simplicity of notation, in Lemmas 4.6 and 4.7, we state the results for
\| \scrP H

+ (\omega )ei\| and \| \scrP H
+ ((i,\alpha )0:S - 1)ej\| instead, which is slightly more general.

Lemma 4.6. Under Assumption 3.4, there exist \delta > 0 and measurable \Omega \epsilon 
1 \subset \widetilde \Omega ,

where \widetilde \Omega is from Theorem 2.3, such that \BbbP (\Omega \epsilon 
1)\geq 1 - \epsilon and

\| \scrP H
+ (\omega )ei\| \geq \delta , \forall \omega \in \Omega \epsilon 

1, i\in \{ 1,2, . . . , d\} .

Proof. Assumption 3.4 implies that

\BbbP 
\bigl( 
\{ \omega \in \widetilde \Omega : \| \scrP H

+ (\omega )ei\| > 0, \forall i\in \{ 1,2, . . . , d\} \} 
\bigr) 

= 1.

Notice that\bigl\{ 
\omega \in \widetilde \Omega : \| \scrP H

+ (\omega )ei\| > 0, \forall i\in \{ 1,2, . . . , d\} 
\bigr\} 

=
\bigcup 

n\in \BbbN +

\Bigl\{ 
\omega \in \widetilde \Omega : \| \scrP H

+ (\omega )ei\| \geq 
1

n
, \forall i\in \{ 1,2, . . . , d\} 

\Bigr\} 
.

The lemma follows from continuity of measure.

We will then be able to handle \| \scrP H
+ ((i,\alpha )0:S - 1)ej\| using Lemma 4.6 and the

closeness between (\Phi H(S,\omega )\top \Phi H(S,\omega ))1/2S with \Lambda (\omega ) as the former converges to
the latter as S \rightarrow \infty by Theorem 2.3. More precisely, denote the singular values of
X \in \BbbR d\times d by s1(X) \geq s2(X) \geq \cdot \cdot \cdot \geq sd(X). Then for S \in \BbbN + sufficiently large, we
have

(4.12)

\bigm| \bigm| \bigm| \bigm| 1S log sj
\bigl( 
\Phi H(S,\omega )

\bigr) 
 - \lambda \mu (j)

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| 1S log sj
\bigl( 
\Phi H
\bigl( 
(i,\alpha )0:S - 1

\bigr) \bigr) 
 - \lambda \mu (j)

\bigm| \bigm| \bigm| \bigm| \leq \gamma 

for every j \in \{ 1,2, . . . , d\} , where \lambda 1 >\lambda 2 > . . . > \lambda p are the Lyapunov exponents from
Theorem 2.3, \gamma is given by (4.9), and the map \mu : \{ 1,2, . . . , d\} \rightarrow \{ 1,2, . . . , p\} satisfies
that \mu (j) = i if and only if d1 + \cdot \cdot \cdot + di - 1 < j \leq d1 + \cdot \cdot \cdot + di, so \mu corresponds the
index for the singular values with that of the Lyapunov exponents. Moreover, the
convergence also implies that

\| \scrP H
+ (S,\omega ) - \scrP H

+ (\omega )\| \leq \delta 

2

for sufficiently large S, which then leads to

(4.13) \| \scrP H
+ (S,\omega )ej\| = \| \scrP H

+ ((i,\alpha )0:S - 1)ej\| \geq 
\delta 

2

for every j \in \{ 1,2, . . . , d\} , where \scrP H
+ (S,\omega ) is the projection operator onto the subspace

spanned by the right singular vectors of \Phi H(S,\omega ) corresponding to d+ largest singular
values. Let
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728 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

\Omega S =
\bigl\{ 

(i,\alpha )0:S - 1 \in \Omega 0 \times \cdot \cdot \cdot \times \Omega S - 1 : (4.12) and (4.13) hold
\bigr\} 
.(4.14)

The following lemma states that \Omega S has high probability for sufficiently large S,
where, with slight abuse of notation, we write \BbbP (\Omega S) = \BbbP (\Omega S \times (\times t\geq S

\Omega t)).

Lemma 4.7. Under the same assumptions of Lemma 4.6, there exists some S\ast > 0
such that for every S \in \BbbN +, S \geq S\ast , it holds that \BbbP (\Omega S)\geq 1 - 2\epsilon .

Proof. For a.e. \omega \in \Omega , it follows from Theorem 2.3, in particular (2.2), and
standard matrix perturbation analysis (see, e.g., [5, Theorems VI.2.1 and VII.3.1])
that

(4.15)
1

S
sj(\Phi 

H(S,\omega ))\rightarrow \lambda \mu (j), S\rightarrow \infty ,

for any j \in \{ 1,2, . . . , d\} and that

(4.16) \scrP H
+ (S,\omega )\rightarrow \scrP H

+ (\omega ), S\rightarrow \infty .

By Egorov's theorem, there exists \Omega \epsilon 
2 \subset \Omega \epsilon 

1 with \BbbP (\Omega \epsilon 
2) \geq 1  - 2\epsilon such that the

convergences in (4.15) and (4.16) are both uniform on \Omega \epsilon 
2. Here \Omega \epsilon 

1 is as in Lemma
4.6. Therefore, for some S\ast sufficiently large, we have\bigm| \bigm| \bigm| \bigm| 1S log sj

\bigl( 
\Phi H(S,\omega )

\bigr) 
 - \lambda \mu (j)

\bigm| \bigm| \bigm| \bigm| \leq \gamma , \forall j \in \{ 1,2, . . . , d\} , S \geq S\ast , \omega \in \Omega \epsilon 
2,

and

(4.17) \| \scrP H
+ (S,\omega ) - \scrP H

+ (\omega )\| \leq \delta 

2
, \forall S \geq S\ast , \omega \in \Omega \epsilon 

2.

Combining Lemma 4.6 and (4.17), we obtain that

\| \scrP H
+ (S,\omega )ei\| \geq 

\delta 

2
, \forall i\in \{ 1,2, . . . , d\} , \forall S \geq S\ast , \omega \in \Omega \epsilon 

2.

For any S \geq S\ast , by the definition of \Omega S , it holds that

\Omega \epsilon 
2 \subset \Omega S \times 

\Bigl( \times t\geq S
\Omega t

\Bigr) 
,

which implies the desired estimate

\BbbP (\Omega S) = \BbbP 
\biggl( 

\Omega S \times 
\Bigl( \times t\geq S

\Omega t

\Bigr) \biggr) 
\geq \BbbP (\Omega \epsilon 

2)\geq 1 - 2\epsilon .

Note that \alpha \varrho t - 1 \sim \scrU [\alpha \mathrm{m}\mathrm{i}\mathrm{n},\alpha \mathrm{m}\mathrm{a}\mathrm{x}] is independent of \scrF \varrho t - 2, i\varrho t - 1, and (i,\alpha )\varrho t:\varrho t+S - 1.
The next lemma shows that with high probability, the choice of \alpha \varrho t - 1 will lead to a
nontrivial orthogonal projection of x\varrho t

onto the unstable subspace of \Phi H(S, \tau \varrho t\omega ) =
\Phi H((i,\alpha )\varrho t:\varrho t+S - 1).

Lemma 4.8. For any S \in \BbbN +, x\varrho t - 1, i\varrho t - 1, and (i,\alpha )\varrho t:\varrho t+S - 1 \in \Omega S, there exists
I \subset [\alpha min, \alpha max] with m(I)\geq (1 - \epsilon )(\alpha max - \alpha min), where m(\cdot ) is the Lebesgue measure,
such that for any \alpha \varrho t - 1 \in I, it holds that

(4.18) \| \scrP H
+ ((i,\alpha )\varrho t:\varrho t+S - 1)x\varrho t

\| \geq \epsilon \delta (\alpha max  - \alpha min)

4

\bigm| \bigm| e\top i\varrho t - 1
\nabla f(x\varrho t - 1)

\bigm| \bigm| .
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 729

Proof. We assume that | e\top i\varrho t - 1
\nabla f(x\varrho t - 1)| \not = 0; otherwise, the result is trivial.

For simplicity of notation, we write

\scrP H
+ ((i,\alpha )\varrho t:\varrho t+S - 1)x\varrho t

=\scrP H
+ ((i,\alpha )\varrho t:\varrho t+S - 1)x\varrho t - 1

 - \alpha \varrho t - 1e
\top 
i\varrho t - 1
\nabla f(x\varrho t - 1)\scrP H

+ ((i,\alpha )\varrho t:\varrho t+S - 1)ei\varrho t - 1

=: y2  - \alpha \varrho t - 1y1,

where the last line defines y1 and y2. Using the shorthand notation

r =
\epsilon \delta (\alpha max  - \alpha min)

4

\bigm| \bigm| e\top i\varrho t - 1
\nabla f(x\varrho t - 1)

\bigm| \bigm| ,
we then observe that (4.18) holds if and only if \alpha \varrho t - 1y1 is not located in a ball with
radius r centered at y2.

It follows from the definition of \Omega S and (4.13) that \| \scrP H
+ ((i,\alpha )\varrho t:\varrho t+S - 1)ei\varrho t - 1

\| \geq 
\delta 
2 , which then leads to

\| y1\| \geq 
\delta 

2

\bigm| \bigm| e\top i\varrho t - 1
\nabla f(x\varrho t - 1)

\bigm| \bigm| = 2r

\epsilon (\alpha max  - \alpha min)
.

Thus, the set of \alpha \varrho t - 1 such that \alpha \varrho t - 1y1 \in \scrB r(y2) consists of an interval J in \BbbR 
with \| sup(J) \cdot y1  - inf(J) \cdot y1\| \leq 2r, as the diameter of \scrB r(y2) is 2r, which implies
that m(J) \leq 2r/\| y1\| \leq \epsilon (\alpha max  - \alpha min). The lemma is proved then by setting I =
[\alpha max  - \alpha min]\setminus J .

With Lemmas 4.5, 4.6, 4.7, and 4.8, we now prove Theorem 4.4, which relies on
approximation of the nonlinear dynamics by linearization and the amplification from
the finite block analysis for the linearized system.

Proof of Theorem 4.4. Without loss of generality, we will assume t = 0 in the
proof to simplify notation. Since H = \nabla 2f(x\ast ) is nondegenerate, we can take a
neighborhood U of x\ast = 0 and some fixed \sigma > 0 such that

(4.19) \| \nabla f(x)\| \geq \sigma \| x\| , \forall x\in U.

Assumption 3.1 implies that

\| \nabla f(x)\| = \| \nabla f(x) - \nabla f(x\ast )\| \leq M\| x - x\ast \| = M\| x\| , \forall x\in \BbbR d.

Using the above inequality and \alpha max < 1/M , it holds for every \omega \in \Omega and t\prime \in \BbbN that

\| x
t
\prime 
+1
\| = \| x

t
\prime  - \alpha 

t
\prime ei

t
\prime e

\top 
i
t
\prime \nabla f(x

t
\prime )\| 

\geq \| x
t
\prime \|  - \alpha 

t
\prime \| ei

t
\prime e

\top 
i
t
\prime \| \cdot \| \nabla f(x

t
\prime )\| 

\geq (1 - M\alpha max)\| x
t
\prime \| ,

(4.20)

and similarly that

\| x
t
\prime 
+1
\| \leq (1 + M\alpha max)\| x

t
\prime \| .

We thus define

r - := 1 - M\alpha max and r+ := 1 +M\alpha max,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

2/
23

 to
 2

02
.1

20
.2

34
.9

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



730 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

so that

(4.21) r - \| xt
\prime \| \leq \| x

t
\prime 
+1
\| \leq r+\| xt

\prime \| .

We now choose the time duration S large enough in the finite block analysis to
guarantee significant amplification. More specifically, we choose S so large that S \geq S\ast 
(S\ast defined in Lemma 4.7) and that the following two inequalities hold:

(4.22) exp(S(\lambda +  - \gamma )) \cdot \epsilon \delta \mu \sigma (r - )L - 1(\alpha max  - \alpha min)

8
\geq (r+)L

and
(4.23)

(1 - 6\epsilon )

\biggl( 
S(\lambda +  - \gamma ) + log

\epsilon \delta \mu \sigma (r - )2(L - 1)(\alpha max  - \alpha min)

8

\biggr) 
+ 6\epsilon (L + S) log r - > 0,

where L is the upper bound defined in Lemma 4.5, \mu \leq 1/
\surd 
d is a fixed constant as

in Lemma 4.5, \delta is from Lemma 4.6, and \sigma is set in (4.19). Thanks to (4.10) for our
choice of \epsilon and that \gamma < \lambda + from (4.9), (4.22) and (4.23) are satisfied for sufficiently
large S.

Next, we show that for any S sufficiently large as above, there exists a convex
neighborhood U1 \subset U of x\ast = 0 such that for any t\prime \in \BbbN , any x

t
\prime \in U1, and any

(i,\alpha )
t
\prime 
:t
\prime 
+S - 1

, it holds that

(4.24) \| x
t
\prime 
+S
\| \geq \| \Phi H

\bigl( 
(i,\alpha )

t
\prime 
:t
\prime 
+S - 1

\bigr) 
x
t
\prime \|  - \| x

t
\prime \| .

We first define a convex neighborhood U0 \subset U of x\ast = 0 such that

\| 
\bigl( 
x - \alpha eie

\top 
i \nabla f(x)

\bigr) 
 - 
\bigl( 
I  - \alpha eie

\top 
i H

\bigr) 
x\| = \| \alpha eie\top i (\nabla f(x) - Hx)\| 

= \| \alpha eie\top i
\int 1

0

(\nabla 2f(\eta x) - Hx)d\eta \| \leq 1

S(r+)S - 1
\| x\| 

for any x\in U0, any i\in \{ 1,2, . . . , d\} , and any \alpha \in [\alpha min, \alpha max]. Applying the inequality
S times for x

t
\prime \in U1 = (r+) - (S - 1)U0, we have

\| x
t
\prime 
+S
 - \Phi H

\bigl( 
(i,\alpha )

t
\prime 
:t
\prime 
+S - 1

\bigr) 
x
t
\prime \| 

\leq \| x
t
\prime 
+S
 - 
\biggl( 
I  - \alpha 

t
\prime 
+S - 1

ei
t
\prime 
+S - 1

e\top i
t
\prime 
+S - 1

H

\biggr) 
x
t
\prime 
+S - 1

\| 

+ \| I  - \alpha 
t
\prime 
+S - 1

ei
t
\prime 
+S - 1

e\top i
t
\prime 
+S - 1

H\| \cdot \| x
t
\prime 
+S - 1

 - \Phi H
\bigl( 
(i,\alpha )

t
\prime 
:t
\prime 
+S - 2

\bigr) 
x
t
\prime \| 

\leq 1

S(r+)S - 1
\| x

t
\prime 
+S - 1

\| + r+\| xt
\prime 
+S - 1

 - \Phi H
\bigl( 
(i,\alpha )

t
\prime 
:t
\prime 
+S - 2

\bigr) 
x
t
\prime \| 

\leq 1

S(r+)S - 1

\Bigl( 
\| x

t
\prime 
+S - 1

\| + r+\| xt
\prime 
+S - 2

\| + \cdot \cdot \cdot + (r+)S - 1\| x
t
\prime \| 
\Bigr) 

\leq \| x
t
\prime \| 

and hence inequality (4.24).
Setting V = (r+) - (L - 1)U1, we then have x\varrho 0 - 1 \in U for any x0 \in V , which implies

that \| \nabla f(x\varrho 0 - 1)\| \geq \sigma \| x\varrho 0 - 1\| as \varrho 0 \leq L. According to Lemmas 4.5, 4.6, 4.7, and 4.8,
for any given x0 \in V , with probability at least 1 - 4\epsilon , we have (i,\alpha )\varrho 0:\varrho 0+S - 1 \in \Omega S ,
and the following holds:
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 731\bigm| \bigm| e\top i\varrho 0 - 1
\nabla f(x\varrho 0 - 1)

\bigm| \bigm| \geq \mu \| \nabla f(x\varrho 0 - 1)\| ,(4.25)

\| \scrP H
+ ((i,\alpha )\varrho 0:\varrho 0+S - 1)x\varrho 0

\| \geq \epsilon \delta (\alpha max  - \alpha min)

4

\bigm| \bigm| e\top i\varrho 0 - 1
\nabla f(x\varrho 0 - 1)

\bigm| \bigm| ,(4.26)

where the probability is the marginal probability on (i,\alpha )0:L+S - 1 \in \Omega 0\times \cdot \cdot \cdot \times \Omega L+S - 1.
Recall \lambda + and \gamma in (4.9) and that d+ =

\sum 
\lambda i>0 di. It follows from (4.12) of the

construction of the set \Omega S that

1

S
log sj

\bigl( 
\Phi H ((i,\alpha )\varrho 0:\varrho 0+S - 1)

\bigr) 
\geq \lambda \mu (j)  - \gamma \geq \lambda +  - \gamma , \forall j \leq d+.

This is to say that the d+ largest singular values of \Phi H((i,\alpha )\varrho 0:\varrho 0+S - 1) are all greater
than or equal to exp(S(\lambda +  - \gamma )). Therefore, it holds that

\| \Phi H ((i,\alpha )\varrho 0:\varrho 0+S - 1)x\varrho 0\| \geq \| \Phi H ((i,\alpha )\varrho 0:\varrho 0+S - 1)\scrP H
+ ((i,\alpha )\varrho 0:\varrho 0+S - 1)x\varrho 0\| 

(4.26)

\geq exp(S(\lambda +  - \gamma )) \cdot \epsilon \delta (\alpha max  - \alpha min)

4

\bigm| \bigm| e\top i\varrho 0 - 1
\nabla f(x\varrho 0 - 1)

\bigm| \bigm| 
(4.25)

\geq exp(S(\lambda +  - \gamma )) \cdot \epsilon \delta \mu (\alpha max  - \alpha min)

4
\| \nabla f(x\varrho 0 - 1)\| ,

(4.27)

where the first inequality is because \Phi H((i,\alpha )\varrho 0:\varrho 0+S - 1)\scrP H
+ ((i,\alpha )\varrho 0:\varrho 0+S - 1)x\varrho 0 and

\Phi H((i,\alpha )\varrho 0:\varrho 0+S - 1)(I  - \scrP H
+ ((i,\alpha )\varrho 0:\varrho 0+S - 1))x\varrho 0

are orthogonal. Combining (4.24)
and (4.27), we obtain that

\| x\varrho 0+S\| \geq exp(S(\lambda +  - \gamma )) \cdot \epsilon \delta \mu (\alpha max  - \alpha min)

4
\| \nabla f(x\varrho 0 - 1)\|  - \| x\varrho 0

\| 
(4.21)

\geq 
\biggl( 

exp(S(\lambda +  - \gamma )) \cdot \epsilon \delta \mu \sigma (r - )L - 1(\alpha max  - \alpha min)

4
 - (r+)L

\biggr) 
\cdot \| x0\| 

(4.22)

\geq exp(S(\lambda +  - \gamma )) \cdot \epsilon \delta \mu \sigma (r - )L - 1(\alpha max  - \alpha min)

8
\cdot \| x0\| .

Therefore, it holds that

\| xL+S\| 
(4.21)

\geq (r - )L - 1\| x\varrho 0+S\| 

\geq exp(S(\lambda +  - \gamma )) \cdot \epsilon \delta \mu \sigma (r - )2(L - 1)(\alpha max  - \alpha min)

8
\cdot \| x0\| .

We finally arrive at (4.8) by setting T = L + S and combining the above with
(4.23).

4.3. Proof of main results. In this section, we first prove the following the-
orem, which relies on the local amplification with high probability established in
Theorem 4.4. The main result (Theorem 1) will follow as an immediate corollary
since Crits(f) is countable and strict saddle points are isolated.

Theorem 4.9. Suppose that Assumptions 3.1, 3.3, and 3.4 hold and that 0 <
\alpha min < \alpha max < 1/M . Then for every x\ast \in Crits(f) and every x0 \in \BbbR d\setminus \{ x\ast \} , it holds
that

\BbbP (\Omega (x\ast , x0)) = 0.
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732 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

Proof. Without loss of generality, we assume that x\ast = 0. Conditioned on \scrF t - 1

with xt \in V , where V can be assumed to be bounded, Theorem 4.4 states that with
probability at least 1 - 4\epsilon ,

\| xt+T \| \geq A\| xt\| ,

where to simplify notation we denote

A := exp

\biggl( 
6\epsilon 

1 - 6\epsilon 

\bigm| \bigm| log(1 - M\alpha max)
\bigm| \bigm| T\biggr) 

as the amplification factor appearing on the right-hand side of (4.8). Notice also that,
due to (4.21), we always have

\| xt+T \| \geq (r - )T \| xt\| .

It suffices to show that for any x0 \in V \setminus \{ x\ast \} , with probability 1, there exists some
t\in \BbbN + such that xt /\in V .

Let us consider the iterates every T steps: Denote yt = xTt and \scrG t = \scrF Tt - 1 for
t\in \BbbN . Denote stopping time

\rho = inf\{ t\in \BbbN : yt /\in V \} .

It suffices to show that \BbbP (\rho <\infty ) = 1. We define a sequence of random variables It as
follows:

It(\omega ) =

\Biggl\{ 
1 if \| yt+1\| \geq A\| yt\| ,
0 otherwise.

By the discussion in the beginning of the proof, we have

\BbbP (It = 1 | \scrG t, t < \rho )\geq 1 - 4\epsilon ,

and moreover, setting St(\omega ) =
\sum 

0\leq s<t It(\omega ), we have, for t < \rho (\omega ),

\| yt\| 
\| y0\| 

\geq ASt(\omega ) \cdot (r - )T (t - St(\omega )).

Denote R := supx\in V \| x\| <\infty . Since (1 - 5\epsilon ) logA+ 5\epsilon T log r - > 0, there exists t\ast \in \BbbN 
such that \bigl( 

A1 - 5\epsilon \cdot (r - )5\epsilon T
\bigr) t

>
R

\| y0\| 
, \forall t\geq t\ast .

Therefore, for any t\geq t\ast , it holds that

\BbbP (\rho > t) = \BbbP 
\bigl( 
\rho > t,St \leq (1 - 5\epsilon )t

\bigr) 
\leq 

\sum 
i\leq (1 - 5\epsilon )t

\biggl( 
t

i

\biggr) 
(1 - 4\epsilon )i(4\epsilon )t - i.

As we will show in the next lemma, the right-hand side of the above goes to 0 as
t\rightarrow \infty , and thus limt\rightarrow \infty \BbbP (\rho > t) = 0, which implies that \BbbP (\rho <\infty ) = 1.

Lemma 4.10. For any \epsilon \in (0,1/4), it holds that

lim
t\rightarrow \infty 

\sum 
i\leq (1 - 5\epsilon )t

\biggl( 
t

i

\biggr) 
(1 - 4\epsilon )i(4\epsilon )t - i = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 733

Proof. Let X0,X1,X2, . . . be a sequence of i.i.d. random variables with Xi be-
ing a Bernoulli random variable with expectation 1  - 4\epsilon . Denote the average \=Xt =
1
t

\sum 
0\leq s<tXs. The weak law of large numbers yields that\sum 

i\leq (1 - 5\epsilon )t

\biggl( 
t

i

\biggr) 
(1 - 4\epsilon )i(4\epsilon )t - i = \BbbP 

\bigl( 
\=Xt \leq 1 - 5\epsilon 

\bigr) 
\leq \BbbP 

\bigl( 
| \=Xt  - \BbbE X0| \geq \epsilon 

\bigr) 
\rightarrow 0

as t\rightarrow \infty .

The main theorem then follows directly from Theorem 4.9.

Proof of Theorem 1. Assumption 3.3 guarantees that, in a small neighborhood of
x\ast , the gradient \nabla f(x) = \nabla 2f(x\ast )(x - x\ast ) + o(\| x - x\ast \| ) is nonvanishing as long as
x \not = x\ast , which implies that x\ast is an isolated stationary point. Therefore, Crits(f) is
countable. Then Theorem 1 follows directly from Theorem 4.9 and the countability
of Crits(f).

We now prove the global convergence, i.e., Corollary 3.6, for which we will show
that Algorithm 1.1 converges to a critical point of f with some appropriate assump-
tions. We first show that the limit of each convergent subsequence of \{ xt\} t\in \BbbN is a
critical point of f .

Proposition 4.11. If Assumption 3.1 holds and 0 < \alpha min < \alpha max < 1/M , for
any x0 \in \BbbR d with bounded level set L(x0) = \{ x \in \BbbR d : f(x) \leq f(x0)\} , with probability
1, every accumulation point of \{ xt\} t\in \BbbN is in Crit(f).

Proof. Algorithm 1.1 is always monotone since the following holds for any t \in \BbbN 
by Taylor's expansion:

f(xt+1) = f
\bigl( 
xt  - \alpha teite

\top 
it\nabla f(xt)

\bigr) 
= f(xt) - \alpha t

\bigl( 
e\top it\nabla f(xt)

\bigr) 2
+

1

2
\alpha 2
t

\bigl( 
e\top it\nabla f(xt)

\bigr) 2 \cdot e\top it\nabla f \bigl( xt  - \theta t\alpha teite
\top 
it\nabla f(xt)

\bigr) 
eit

\leq f(xt) - 
1

2
\alpha t(e

\top 
i \nabla f(xt))

2

\leq f(xt),

(4.28)

where \theta t \in (0,1), which implies that the whole sequence \{ xt\} t\in \BbbN is contained in the
bounded level set L(x0).

Let us consider any \eta > 0 and set

L(x0, \eta ) = \{ x\in L(x0) : \| \nabla f(x)\| \geq \eta \} ,

which is either empty or compact. We claim that with probability 1, the accumulation
points of \{ xt\} t\in \BbbN will not be located in L(x0, \eta ). This is clear when L(x0, \eta ) is empty,
so it suffices to consider compact L(x0, \eta ). Set \mu \in (0,1/

\surd 
d] as a fixed constant.

For any x \in L(x0, \eta ), there exists an open neighborhood Ux of x and a coordinate
ix \in \{ 1,2, . . . , d\} such that

(4.29)
\bigm| \bigm| e\top ix\nabla f(y)

\bigm| \bigm| \geq \mu \| \nabla f(x)\| \geq \mu \eta , \forall y \in Ux,

and that

(4.30) sup
y\in Ux

f(y) - inf
y\in Ux

f(y) <
\alpha min\mu 

2\eta 2

2
.
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734 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

Noticing that L(x0, \eta )\subset 
\bigcup 

x\in L(x0,\eta )
Ux, by the compactness, there exist finitely many

points, say, x1, x2, . . . , xK , such that

L(x0, \eta )\subset 
\bigcup 

1\leq k\leq K

Uxk .

For any k \in \{ 1,2, . . . ,K\} , combining (4.28), (4.29), and (4.30), we know that for any
t, conditioned on \scrF t - 1 with xt \in Uxk , if it = ix (which has probability 1/d), then
f(xt+1) < infy\in U

xk
f(y), and thus x

t
\prime \not \in Uxk for all t\prime > t.

Therefore, the probability that there are infinitely many t \in \BbbN with xt \in Uxk

is zero, which implies that \{ xt\} t\in \BbbN does not have accumulation points in Uxk with
probability 1. We conclude that with probability 1, L(x0, \eta ) does not contain any
accumulation points of \{ xt\} t\in \BbbN , as K is finite. Since this holds for any \eta > 0, we have
for \BbbP -a.e. \omega \in \Omega that \{ xt\} t\in \BbbN has no accumulation points in

\bigcup 
n\geq 1L(x0,1/n), which

then leads to the desired result.

Proposition 4.11 implies that any accumulation point of the algorithm iterate is a
critical point. If we further assume that each critical point of f is isolated, we would
conclude that the whole sequence \{ xt\} t\in \BbbN converges and that the limit is in Crit(f).

Proposition 4.12. Under the assumptions of Proposition 4.11. If every x\ast \in 
Crit(f) is an isolated critical point of f , then with probability 1, xt converges to some
critical point of f as t\rightarrow \infty .

Proof. It follows from Proposition 4.11 that \| \nabla f(xt)\| converges to 0 as t\rightarrow \infty 
for a.e.a.e. \omega \in \Omega . In fact, if there were a subsequence \{ xtk\} k\in \BbbN and \epsilon > 0 with
\| \nabla f(xtk)\| \geq \epsilon , \forall k \in \BbbN , then by the boundedness of L(x0), \{ xtk\} k\in \BbbN would have some
accumulation point which is not a stationary point of f , which leads to a contradiction.

Moreover, Crit(f) \cap L(x0) is a finite set since otherwise Crit(f) \cap L(x0) would
have a limiting point which would be a nonisolated critical point of f , violating the
assumption.

Consider a fixed \omega \in \Omega with limt\rightarrow \infty \| \nabla f(xt)\| = 0. Select an open neighborhood
Ux\ast for every x\ast \in Crit(f)\cap L(x0) such that there exists some \delta > 0 with

dist(Ux\ast ,Uy\ast ) = inf
x\in Ux\ast ,y\in Uy\ast 

\| x - y\| > \delta , \forall x\ast , y\ast \in Crit(f).

If \{ xt\} t\in \BbbN has more than one accumulation point, there would be infinitely many
iterates located in L(x0)\setminus 

\bigcup 
x\ast \in Crit(f)\cap L(x0)

Ux\ast , which is compact. Therefore, \{ xt\} t\in \BbbN 
would have an accumulation point in L(x0)\setminus 

\bigcup 
x\ast \in Crit(f)\cap L(x0)

Ux\ast , which contradicts
Proposition 4.11.

Corollary 3.6 is now an immediate consequence.

Proof of Corollary 3.6. The result follows directly from Theorem 1 and Proposi-
tion 4.12.

Appendix A. Validity of Assumption 3.4. In this appendix, we provide
some justification of Assumption 3.4, which is expected to hold generically. In partic-
ular, the following proposition validates this assumption when the off-diagonal entries
of H are all nonzero.

Proposition A.1. Suppose that the largest Lyapunov exponent of \Phi H(t,\omega ) is
positive. Then Assumption 3.4 holds as long as 1 < \alpha min < \alpha max < 1/max1\leq i\leq d | Hii| 
and every off-diagonal entry of H is nonzero.
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 735

Proof. For any element \omega in \Omega , we take the smallest \ell such that \{ 1,2, . . . , d\} =
\{ i0, i1, . . . , i\ell  - 1\} and write

\omega = ((i0, \alpha 0), . . . , (i\ell  - 1, \alpha \ell  - 1), \omega \prime ),

where \omega \prime = \tau \ell \omega \in \Omega . We have that \ell is finite for a.e. \omega \in \Omega . Note that we can
view \ell  - 1 as a stopping time, in particular, given \ell , \omega \prime has distribution \BbbP and is
independent with \scrF \ell  - 1.

Let \{ v1\prime , v2\prime , . . . , vm\prime \} be a set of basis vectors for WH
 - (\omega \prime ) = WH

 - (\tau \ell \omega ). Then a
set of basis vectors for WH

 - (\omega ) is given by

vj =
\bigl( 
I  - \alpha 0ei0e

\top 
i0H

\bigr)  - 1 \cdot \cdot \cdot 
\bigl( 
I  - \alpha \ell  - 1ei\ell  - 1

e\top i\ell  - 1
H
\bigr)  - 1

vj
\prime , j = 1,2, . . . ,m.

Denote the matrices concatenated by the column vectors as V \prime = (v1
\prime | v2\prime | \cdot \cdot \cdot | vm\prime ) and

V = (v1| v2| \cdot \cdot \cdot | vm). If ei \in WH
 - (\omega ) = span\{ v1, v2, . . . , vm\} , then V\^\imath ,: is column-rank

deficient since the existence of a positive Lyapunov exponent implies that m\leq d - 1.
Here and for the rest of the appendix, we denote by V\^\imath ,: the (d - 1)\times m matrix obtained
via removing ith row of V \in \BbbR d\times m.

Therefore, as Assumption 3.4 is equivalent to that ei /\in WH
 - (\omega ) holds for any

i \in \{ 1,2, . . . , d\} and almost every \omega \in \Omega , it suffices to show that V\^\imath ,: has full column
rank with probability 1. The key point is that given \ell , \alpha 0, \alpha 1, . . . , \alpha \ell  - 1 are indepen-
dent with i0, i1, . . . , i\ell  - 1 and \omega \prime = \tau \ell \omega . Thus, it suffices to show that with fixed \ell ,
i0, i1, . . . , i\ell  - 1, \omega \prime = \tau \ell \omega , and v1

\prime , v2
\prime , . . . , vm

\prime , the set of all \alpha 0, \alpha 1, . . . , \alpha \ell  - 1 that yield
the rank deficiency of V\^\imath ,: is of measure zero, and without loss of generality, we can
assume i = 1. Noticing that i0, i1, \cdot \cdot \cdot , i\ell  - 1 cover all the coordinates and that every off-
diagonal entry of H is nonzero, the desired result follows directly from the following
Lemma A.2 applied repeatedly.

Lemma A.2. Suppose that X = (X1| X2| \cdot \cdot \cdot | Xd)\top and Y = (Y1| Y2| \cdot \cdot \cdot | Yd)\top are
full-column-rank d\times m matrices satisfying Y = (I - \alpha eke

\top 
k H) - 1X (we suppress in the

notation the dependence of Y on k and \alpha for simplicity). Then the following holds:
(i) If X\^1,: has full column rank, then for any k = \{ 1,2, . . . , d\} , Y\^1,: also has full

column rank for a.e. \alpha .
(ii) Suppose that X\^1,: is column-rank deficient, and let 2\leq j1 < j2 < . . . < jm - 1 \leq 

d be row indices such that

Xj \in span\{ Xj1 ,Xj2 , . . . ,Xjm - 1\} , \forall j \in \{ 2,3, . . . , d\} .

If k \in \{ 1, j1, j2, . . . , jm - 1\} , then we have with probability 1 that either Y\^1,: has
full column rank or Y\^1,: is column-rank deficient with

Yj \in span\{ Yj1 , Yj2 , . . . , Yjm - 1\} , \forall j \in \{ 2,3, . . . , d\} .

If k /\in \{ 1, j1, j2, . . . , jm - 1\} and Hk1 \not = 0, then Y\^1,: has full column rank.

Proof of Lemma A.2. By (3.3), it holds that Yj = Xj for j \not = k and that

Yk =
1

1 - \alpha Hkk

\left(  Xk + \alpha 
\sum 
j \not =k

HkjXj

\right)  .

For point (i), we notice that if k = 1, then Y\^1,: = X\^1,: has full column rank. If
k > 1, then it follows from X1 \in span\{ X2, . . . ,Xd\} that Y\^1,: also has full column rank
for a.e. \alpha .
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736 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

For point (ii), we have

span\{ X1,Xj1 ,Xj2 , . . . ,Xjm - 1
\} = \BbbR m.

If k \in \{ 1, j1, j2, . . . , jm - 1\} , then span\{ Y1, Yj1 , Yj2 , . . . , Yjm - 1\} = \BbbR m holds for a.e. \alpha .
Therefore, we obtain that Yj1 , Yj2 , . . . , Yjm - 1

are linearly independent, which implies
that either Y\^1,: has full column rank or

Yj \in span\{ Yj1 , Yj2 , . . . , Yjm - 1\} , \forall j \in \{ 2,3, . . . , n\} .

If k /\in \{ j1, j2, . . . , jm - 1\} , then Y\^1,: has full column rank since Hk1 \not = 0.

Acknowledgments. We thank Jonathan Mattingly, Zhe Wang, and Stephen J.
Wright for helpful discussions.
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