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Abstract. Most quantum gate errors can be characterized by two error models, namely

the probabilistic error model and the Kraus error model. We proved that for a quantum

circuit with either of those two models or a mix of both, the propagation error in terms

of Frobenius norm is upper bounded by 2(1 − (1 − r)m), where 0 ≤ r < 1 is a constant

independent of the qubit number and circuit depth, and m is the number of gates in the

circuit. Numerical experiments of synthetic quantum circuits and quantum Fourier transform

circuits are performed on the simulator of the IBM Vigo quantum computer to verify our

analytical results, which show that our upper bound is tight.

1. Introduction

Quantum computing has been developing rapidly in recent years. It has been shown that for

some specific tasks, quantum algorithms are faster than their classical counterparts, including

Deutsch-Jozsa algorithm [6], Simon algorithm [16], Schor algorithm [14], Grover algorithm [10],

etc. However, limited by the current quantum hardware technology, quantum computers suf-

fer from loads of noise and errors, e.g., depolarization, decoherence, readout error, etc. For

quantum circuits with large depths, the results are not reliable. The current status of quantum

computing is known as the noisy intermediate-scale quantum (NISQ) era [8], which could last

for many more years.

There are various errors in executing a quantum algorithm on a quantum computer. We

group them into three categories: quantum algorithm approximation error, quantum sampling

error, and quantum machine error. Quantum algorithm approximation error is due to the

approximation in representing the original models or problems in the algorithm design. One

typical example is the Trotter error in the quantum phase estimation algorithm. Quantum

sampling error is due to the population mean in approximating the underlying wavefunction

coefficients. Quantum machine error is due to imperfect hardware, where the major source is

caused by the interaction of the quantum computer with its surrounding environment. Through-

out this paper, we refer to the quantum machine error as the quantum error and discuss its

propagation behavior.

Numerous methods have been proposed to mitigate quantum error. We group these methods

into two categories: quantum error correction and quantum algorithm design. Quantum error

correction adopts quantum syndrome measurement to provide information about whether and

in what ways a qubit has been corrupted without destroying the quantum state of this logical

qubit. Different quantum error correction codes have been brought forward, including Shor

code [15], Calderbank-Shor-Steane (CSS) code [3, 17], additive codes [2, 4, 9], etc. From a
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quantum algorithm design perspective, the noisy terms could be summed together, and by the

central limit theorem, the summed error would be mitigated. For example, variational quantum

eigensolver is found to be relatively robust to quantum noises [13, 18]. A similar phenomenon

is observed in its closely related excited state eigensolver [1]. For all aforementioned methods

mitigating quantum errors, none of them eliminates the errors. The propagation error of a

noisy quantum circuit guides experiments on how large a quantum circuit is permitted given a

fixed error level. For quantum error correction, the propagation error could indicate which type

of error has a stronger impact on the final results. Hence, it is essential to study the cumulation

and propagation of the quantum error and give a theoretical upper bound.

The propagation of quantum error has been studied under various scenarios. In [11], the

convergence of continuous-time depolarizing channels was investigated in terms of relative en-

tropy. Deshpande et al. [5] gave tight bounds on the convergence of noisy random circuits.

From one perspective, noisy random circuits can be viewed as the propagation of a sequence

of noisy identity gates. Flannigan et al. [7] numerically explored the propagation of quantum

errors in simulating the Hubbard model and transverse field Ising model. Very differently, in

this work, we study the propagation of quantum error with the Kraus and probabilistic error

model.

Any quantum algorithm is first compiled into a sequence of quantum circuits and then

executed on a quantum computer or quantum simulator. The execution of a quantum circuit

is equivalent to applying a sequence of quantum gates on an initial density matrix. Quantum

gates are unitary matrices, and applying a gate on a density matrix admits UρU†, where ρ

denotes the density matrix and U is the unitary matrix associated with the quantum gate.

The application of a noisy quantum gate admits UρU† + E , where E denotes the error. For

various types of quantum errors, E admits different properties. When a trace-preserving error

is considered, E has trace zero, i.e., tr (E) = 0. Alternatively, we could also represent quantum

error as E
(
UρU†

)
, where E(·) is abused as a linear error operator. For more details on the

quantum error model, please refer to Section 2.

In traditional numerical analysis, e.g., numerical ordinary differential equation error analysis,

the global error in terms of matrix norm grows exponentially with the number of matrices, where

the matrix spectrum is assumed to be greater than one. In quantum computing, all matrices

are unitary with spectrums precisely being one, and we could easily give an error bound growing

linearly instead. While linear growing bound is not consistent with numerical experiments.

Figure 1 illustrates the quantum error of a Quantum Fourier Transform circuit on a quantum

simulator. Instead of growing linearly, the error saturated and hit a plateau towards the end.

Based on this observation, we aim to give a bound on quantum error propagation, revealing

such a growing behavior.

In this paper, we analyzed the two error models: the probabilistic error model and Kraus

error model, and proved their bounds of error propagation in terms of matrix Frobenius norm.

Both bounds characterize the error growth behavior as in Figure 1. Then, we combined two

results together and proved the following main theorem for the mixed error model.
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Figure 1. Propagated error for Quantum Fourier Transform (QFT). 3-, 4-, and 5-

qubit QFT circuits are simulated repeatedly using the FakeVigo backend provided

by IBM Quantum Experience. The propagated error of the circuit is described by

E ‖ρ̃− ρ‖2F, where ρ represents the ideal resulting density matrix, and ρ̃ represents the

actual resulting density matrix of the noisy circuit. Here the expectation is estimated

by the empirical mean of 8192 executions of the truncated circuits.

Theorem 1.1. Given a quantum circuit with a sequence of single-qubit or double-qubit gates

G1, · · · , Gm starting with an initial density matrix ρ0. Each gate Gk is implemented with a

probabilistic error Pk with error probability pk ∈ [0, 1), or a Kraus error in the form of (3) or

(5). Then the expected error propagation is bounded as,

E ‖ρ̃m − ρm‖2F ≤ 2(1− (1− r)m),

where r is a constant, 0 ≤ r < 1, independent of the number of qubits.

In addition to the theoretical bound, we verify our analysis bound using numerical exper-

iments on quantum simulators, including a simulator of IBM Vigo quantum computer. Nu-

merical results for the Kraus and probabilistic models are performed on quantum simulators

to demonstrate the tightness of our bounds. Also, numerical examples of QFT with various

numbers of qubits are included to verify our analytical results.

The rest paper is organized as follows. In Section 2, two types of error models are included

and explained in detail. A formal statement of the linearly growing quantum error bound is

given. The refined analysis of the error bounds for Kraus and probabilistic models are given

in Section 3 and Section 4, respectively. In Section 4, we also give a bound on the mixed

error model, i.e., prove Theorem 1.1. Section 5 shows the numerical experiments verifying our

bounds and demonstrates the tightness. Finally, we conclude our paper in Section 6 with a

discussion on future work.
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2. Quantum Error Models and Linear Error Propagation

The basic unit of quantum computing is quantum bits, or qubits, which is the quantum

counterpart of bits in classical computers. A qubit is a two-state quantum-mechanical system.

Different from a classical bit, a qubit can be in a coherent superposition of both states simul-

taneously. Mathematically, the possible states of an n-qubit system form an N -dimensional

Hilbert space, where N = 2n, and therefore can be described by an N -dimensional complex

vector. Such a state is called a pure state.

When quantum errors are included, the quantum system is no longer isolated from the

environment and interacts with the surrounding environment. Then the system cannot be

described as a pure state. Instead, it can be described as a probabilistic mixture of a set of

pure states. Therefore, density matrices should be used to describe such a mixed state. For an

n-qubit quantum system, the state of the system can be described as an N ×N density matrix

ρ. A density matrix is a semi-positive definite Hermitian matrix with trace being 1. A useful

property is that ‖ρ‖F ≤ 1, and ‖ρ‖F = 1 if and only if ρ represents a pure state.

A quantum algorithm in quantum computing is modeled and compiled into a quantum

circuit, where the quantum circuit is composed of a sequence of quantum gates. Basic single-

qubit quantum gates include Pauli gates (X,Y, Z), Hadamard gate (H), phase gate (S), etc.

Double-qubit gates include controlled not gate (CNOT ), controlled Z (CZ), etc. A single-qubit

and a double-qubit gate can be described as a two-dimensional and a four-dimensional unitary

matrix, respectively. For an n-qubit quantum circuit, a single-qubit operator U acting on the

j-th qubit can be described as an N -dimensional unitary matrix admitting a tensor product

form I ⊗ · · · ⊗ I ⊗U ⊗ I ⊗ · · · ⊗ I, where I is a two-dimensional identity matrix and U appears

at the j-th position. Double-qubit operators on n-qubit circuit admit a similar tensor product

form with two positions replaced by the 4-dimensional submatrix. Therefore, each gate acting

on an n-qubit quantum circuit can be described as a unitary matrix U ∈ U(N), where U(N)

denotes the set of all unitary matrices of size N by N . Therefore, applying a quantum gate G

on a quantum state ρ leads to a new state UρU†, where U is the underlying unitary matrix of

G.

2.1. Quantum error models. There are two widely adopted mathematical models describing

quantum errors, namely the probabilistic error model and the Kraus error model. Under the

probabilistic error model, after a gate G is applied on some qubits, there is a nonzero probability

p > 0 that another error operator is applied on the same qubits. The error operator could be

X,Y, Z, reset, or other operators. We define the probabilistic error operator as

(1) P (ρ) =

ρ, with probability 1− p

another state, with probability p
.

Throughout this paper, the probabilistic error model is used with a set of error operators, i.e.,

bit flip (X error), phase flip (Z error), bit-phase flip (Y error), reset error, and depolarizing

error.
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Under the Kraus error model, after a gate G is applied, a Kraus operator will be applied

afterward, where the Kraus operator admits,

K(ρ) = V1ρV
†
1 + · · ·+ VKρV

†
K ,

for

(2)

K∑
k=1

V †k Vk = I.

Here {Vk}Kk=1 are gate G dependent. Two Kraus error examples are amplitude damping and

phase damping. Both errors work as E(ρ) = V1ρV
†
1 + V2ρV

†
2 , with

V1 =

(
1 0

0
√

1− γ

)
, V2 =

(
0
√
γ

0 0

)
,

for amplitude damping, and

V1 =

(
1 0

0
√

1− λ

)
, V2 =

(
0 0

0
√
λ

)
,

for phase damping, where γ and λ are parameters in amplitude damping and phase damping,

respectively.

The probabilistic error model and Kraus error model appear in quite different forms, but

they are deeply related. In fact, the probabilistic error model can be equivalently written in

the Kraus format. A few typical examples are included in Appendix A.

As we mentioned earlier, quantum gates are applied to one or two qubits. Both the proba-

bilistic error model and Kraus error model we discuss in this work are associated with quantum

gates and are applied to the same qubits after the gate operation. The probabilistic error mod-

els on one or two qubits are the same as (1). For Kraus error models, we focus on specific forms

for single-qubit and double-qubit systems, which are widely adopted in quantum simulators

and cover a wide range of quantum errors. The Kraus error model for single-qubit systems

admits,

(3) Ksq (ρ) = V1ρV
†
1 + V2ρV

†
2 + V3ρV

†
3 + V4ρV

†
4 ,

where

(4) V1 =

(
a1 0

0 b1

)
, V2 =

(
a2 0

0 b2

)
, V3 =

(
0 0

a3 0

)
, V4 =

(
0 b3

0 0

)
,

satisfying V †1 V1 + V †2 V2 + V †3 V3 + V †4 V4 = I. The equality constraint on Vis is equivalent to

a21 + a22 + a23 = 1 and b21 + b22 + b23 = 1.

Without loss of generality, we assume that det

{(
a1 a2

b1 b2

)}
6= 0.

For a double-qubit system, if both qubits have Kraus errors in the form of (3) being

K1(ρ) = V11ρV
†
11 + V12ρV

†
12 + V13ρV

†
13 + V14ρV

†
14,

K2(ρ) = V21ρV
†
21 + V22ρV

†
22 + V23ρV

†
23 + V24ρV

†
24,



6 ZIANG YU AND YINGZHOU LI

then the effect on the double-qubit system can be written as a Kraus model

(5) Kdq (ρ) = (K1 ⊗K2)(ρ) =

16∑
j=1

VjρV
†
j ,

where ρ ∈ C4×4 represents the density matrix of the double-qubit systems, and matrices are

tensor products {Vj}16j=1 = {V1i ⊗ V2j}4i,j=1. The patterns of {Vj}16j=1 can be found in Appen-

dix B.

The Kraus error models as in (3) and (5) are closed under composition operation, i.e.,

the composition of two Kraus error models in the form of (3) can be represented as a new

Kraus error model, also in the form of (3). Lemma 2.1 and Lemma 2.2 shows the composition

properties of single-qubit and double-qubit Kraus error model, respectively.

Lemma 2.1. Suppose two single-qubit Kraus errors K1 and K2 are in the form of (3) with

matrices and coefficients being denoted as {Vji}4i=1 and {aji, bji}3i=1 respectively for j = 1, 2.

We further assume that

(6) a213 + a223 ≤ 1, b213 + b223 ≤ 1.

Then the composition of K1 and K2, K = K2 ◦K1, is another Kraus error in the form of (3).

Lemma 2.2. Suppose two double-qubit Kraus errors K1 = K11 ⊗ K21 and K2 = K12 ⊗ K22

are in the form of (5). We further assume that the parameters for both pairs K11,K12, and

K21,K22 satisfy (6). Then the composition of K1 and K2, K = K2 ◦ K1, is another Kraus

error in the form of (5).

Proofs of Lemma 2.1 and Lemma 2.2 can be found in Appendix C. In Kraus error models

as (3) and (5), Vj for j ≥ 2 terms are viewed as errors, and hence, the parameters ai and bi for

i ≥ 2 are close to 0. Thus the assumptions of ai and bi are found reasonable in practice.

Other than the gate error models discussed above, the thermal relaxation error model, which

describes how errors may occur as time goes by, can also be expressed in either the probabilistic

error model or the Kraus error model. Suppose a thermal relaxation channel is parametrized by

relaxation time constant T1, T2, gate time t, and excited state thermal population p1. If T1 < T2,

then the thermal relaxation channel can be expressed as a Kraus channel E(ρ) =
∑4
j=1 VjρV

†
j ,

with

V1 =

(
1− p1preset 0

0 e−t/T2

)
, V2 =

(
e−t/T2 0

0 1− p0preset

)
,

V3 =

(
0 0

p0preset 0

)
, V4 =

(
0 p1preset

0 0

)
,

where p0 = 1 − p1 and preset = 1 − e−t/T1 . If T1 > T2, then the channel is equivalent to a

probabilistic model, with pR0 = p0preset, pR1 = p1preset, pZ = (1−preset)
2

(
1− e

(
−t( 1

T2
− 1

T1
)
))

,

and pI = 1− pR0− pR1− pZ , where R0 and R1 represent the reset transformation to |0〉〈0| and

|1〉〈1|, respectively.
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In Lemma 2.3, we show that some quantum errors, which are introduced as probabilistic

errors, could be represented as Kraus errors as well.

Lemma 2.3. Assume the probabilities of X error and Y error are equal, i.e., pX = pY , then

any combination of X error, Y error, Z error, reset to |0〉〈0|, reset to |1〉〈1|, and depolarizing

error can be written as a Kraus error in the form of (3).

Proof of Lemma 2.3 can be found in Appendix C.

All mentioned errors can be described by either the Kraus error model (3) or the probabilistic

error model. We summarize the error models and various types of errors in Table 1.

Error type Probabilistic error model Kraus error model (3)

X ! %

Y ! %

Z ! !

Reset to |0〉〈0| ! !

Reset to |0〉〈0| ! !

Depolarizing ! !

Amplitude damping % !

Phase damping % !

Thermal relaxation % !

Combination % Conditioned

Table 1. The errors each error model can describe respectively. The combination

of errors can be described by the Kraus error model in the form of (3) under the

condition that the probabilities of X error and Y error are equal, i.e. pX = pY .

2.2. Linear growing error analysis. We consider a quantum circuit with a sequence of m

quantum gates G1, · · · , Gm and their corresponding unitary matrices being U1, · · · , Um. We

further denote ρ0 as the initial density matrix, and ρk as the error-free density matrix after k

gates have been implemented, i.e.,

(7) ρk = Uk · · ·U1ρ0U
†
1 · · ·U

†
k .

The actual density matrix with quantum error after k gates is denoted as ρ̃k, i.e.,

ρ̃0 =ρ0,

ρ̃1 =E1

(
U1ρ̃0U

†
1

)
,

· · ·

ρ̃m =Em
(
Umρ̃m−1U

†
m

)
,

where Ei is either a probabilistic error operator P , a Kraus error operator K, or their compo-

sition. Notice that ρ̃k has randomness if there are probabilistic errors.
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A linearly growing bound for both Kraus error and probabilistic error can be proved easily.

We first give Lemma 2.4 and Lemma 2.5 for Kraus error model and probabilistic error model

respectively. Then, Lemma 2.6 gives the linear growing bound for mixed errors.

Lemma 2.4. Given a quantum circuit with a sequence of quantum gates G1, · · · , Gm starting

with an initial density matrix ρ0. Each gate Gk is implemented with a Kraus error Kk. Suppose

there is a constant γ1 > 0 such that

(8) ‖Kk(ρ)− ρ‖F ≤ γ1,

for any density matrix ρ and k = 1, · · · ,m. Then the error of density matrix grows at most

linearly,

(9) ‖ρ̃m − ρm‖F ≤ γ1m.

Notice that Lemma 2.4 shows the error growing for the general Kraus error model. A

probabilistic error P with probability p can be expressed as a general Kraus error,

(10) P (ρ) = pρ+ (1− p)RρR† = V1ρV
†
1 + V2ρV

†
2 ,

where V1 =
√
pI, V2 =

√
1− pR, and unitary R maps ρ to another state. Therefore, we have

the following results, which could be viewed as corollaries of Lemma 2.4.

Lemma 2.5. Given a quantum circuit with a sequence of quantum gates G1, · · · , Gm starting

with an initial density matrix ρ0. Each gate Gk is implemented with a probabilistic error Pk

with probability 0 < pk ≤ 1. Then there is a constant γ2 > 0 such that

(11) E ‖ρ̃m − ρm‖F ≤ γ2m.

Lemma 2.6. Given a quantum circuit with a sequence of quantum gates G1, · · · , Gm starting

with an initial density matrix ρ0. Each gate Gk is implemented with either a probabilistic error

with probability 0 < pk ≤ 1, a Kraus error satisfying (8), or a mix of both. Then there is a

constant γ ≥ 0 independent of the number of qubits, such that

E ‖ρ̃m − ρm‖F ≤ γm.

The proofs of Lemma 2.4 and Lemma 2.5 are given in Appendix D. Lemma 2.6 could be

viewed as a simple composition of Lemma 2.4 and Lemma 2.5, and is stated without detailed

proof.

However, a linear growing upper bound does not agree well with experimental results in

Figure 1. A simple inequality for the Frobenius norm of the difference between two density

matrices indicates that the quantum error should be upper bounded by a constant, i.e.,

(12) ‖ρ̃− ρ‖2F = ‖ρ̃‖2F + ‖ρ‖2F − 2tr (ρ̃ρ) ≤ 2,

for any density matrices ρ̃ and ρ, where the last inequality is based on the fact that the product

of two semi-definite matrices has non-negative trace [12]. Therefore, the linear growing bound

cannot characterize the error propagates as the number of gates increases. A tighter bound for

quantum error propagations is desired.
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3. Analysis of Kraus Error Propagation

In this section, we focus on the analysis of quantum error propagation for quantum circuits

with Kraus error as in the form of (3) and (5) only. The setting could be fairly similar to

that in Lemma 2.4. But conclusions are dramatically different. In this section, we show that

the error propagation would scale as 1 − (1 − q)m, where m is the depth and q is a constant,

0 ≤ q < 1, depending on Kraus error parameters. The major result of this section is given in

Theorem 3.1. Lemma 3.1, Lemma 3.2, and Lemma 3.3 are proposed and proved to facilitate

the proof of Theorem 3.1.

Theorem 3.1. Given a quantum circuit with a sequence of single-qubit or double-qubit gates

G1, · · · , Gm starting with an initial density matrix ρ0. Each gate Gk is implemented with a

Kraus error Kk as in form (3) or (5). Then the error propagation is bounded as,

(13) ‖ρ̃m − ρm‖2F ≤ 2(1− (1− q)m),

where q is a constant, 0 ≤ q < 1, independent of the number of qubits.

Before giving precise proof of Theorem 3.1, we first sketch the key ideas therein. The basic

idea is to find a constant q ∈ [0, 1), for q as small as possible, such that

(14) ‖ρ̃k − ρk‖2F ≤ (1− q) ‖ρ̃k−1 − ρk−1‖2F + 2q,

where ρ̃k and ρk are noisy and noiseless density matrix after acting k gates, respectively. Then,

we could recursively apply (14), and obtain,

‖ρ̃m − ρm‖2F ≤ (1− q) ‖ρ̃m−1 − ρm−1‖2F + 2q

≤ (1− q)
(

(1− q) ‖ρ̃m−2 − ρm−2‖2F + 2q
)

+ 2q

≤ · · ·

≤ 2q
(
1 + (1− q) + · · ·+ (1− q)m−1

)
= 2(1− (1− q)m),

(15)

which is the conclusion of Theorem 3.1. Substituting the gate and quantum error action in the

matrix form, (14) is equivalent to∥∥∥Kk

(
Ukρ̃k−1U

†
k

)
− Ukρk−1U†k

∥∥∥2
F
≤ (1− q) ‖ρ̃k−1 − ρk−1‖2F + 2q

= (1− q)
∥∥∥Ukρ̃k−1U†k − Ukρk−1U†k∥∥∥2

F
+ 2q.

(16)

Denoting ρ̃ = Ukρ̃k−1U
†
k and ρ = Ukρk−1U

†
k , (16) can, then, be written as

(17) ‖Kk (ρ̃)− ρ‖2F ≤ (1− q) ‖ρ̃− ρ‖2F + 2q.

We define a function F of Kraus error K, density matrices ρ̃ and ρ as

(18) F (K; ρ̃, ρ) =


‖K(ρ̃)−ρ‖2F−‖ρ̃−ρ‖

2
F

2−‖ρ̃−ρ‖2F
, ‖ρ̃− ρ‖2F < 2

limρ̃′→ρ̃,ρ′→ρ F (K; ρ̃′, ρ′), ‖ρ̃− ρ‖2F = 2
.
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Then, finding a constant q, as small as possible, satisfying (17) could be addressed by finding

an upper bound of F (K; ρ̃, ρ), i.e.,

(19) q = sup
ρ̃,ρ

F (K; ρ̃, ρ).

Since ‖K (ρ̃)− ρ‖2F ≤ 2 (see (26)), it always holds F (K; ρ̃, ρ) ≤ 1. However, this is not sufficient

for us to estimate a tighter upper bound for F . To achieve our goal, we need F (K; ρ̃, ρ) to be

strictly less than 1 for all ρ̃ and ρ, which is guaranteed by the following lemmas.

Lemma 3.1. Suppose Ksq is a single-qubit Kraus operator in the form of (3). Then there exist

a constant δ > 0 independent of n, such that

‖Ksq(ρ)‖2F ≤ 1− δ

for any n-qubit density matrix ρ ∈ CN×N .

Lemma 3.2. Suppose Kdq is a double-qubit Kraus operator in the form of (5). Then there is

a constant δ > 0 independent of n, such that

‖Kdq(ρ)‖2F ≤ 1− δ

for any n-qubit density matrix ρ ∈ CN×N .

In both Lemma 3.1 and Lemma 3.2, we do not have explicit expressions for δ. We only

prove the existence of δ satisfying δ > 0. Both proofs of Lemma 3.1 and Lemma 3.2 obey

the following flow. First, by triangle inequality, it can be proved that ‖K(ρ)‖F ≤ 1. Then we

illustrate that the equality condition cannot hold for Ksq and Kdq, i.e., ‖K (ρ)‖F < 1 for both

Ksq and Kdq. Moreover, since K is a continuous function of density matrix ρ, which is defined

on a compact set, the maximum of this function can be achieved. Therefore, the upper bound

of ‖K (ρ)‖F is strictly less than 1, for both Ksq and Kdq. Appendix F proves Lemma 3.1 and

Lemma 3.2 in detail.

With Lemma 3.1 and Lemma 3.2, we then have the following lemma.

Lemma 3.3. Suppose K is a single-qubit Kraus operator in the form of (3) or a double-qubit

Kraus operator in the form of (5). There is a constant 0 ≤ q < 1, such that

(20) F (K; ρ̃, ρ) ≤ q,

for any density matrices ρ̃ and ρ.

Proof. According to Lemma 3.1 or Lemma 3.2, there is a constant δ > 0 such that ‖K(ρ)‖2F ≤
1− δ for any density matrix ρ. Therefore, it holds

‖K(ρ̃)− ρ‖2F = ‖K(ρ̃)‖2F + ‖ρ‖2F − 2tr (K(ρ̃)ρ) ≤ 2− δ,

where the second inequality adopts the positivity of K(ρ̃) and Ruhe’s trace inequality. Thus,

for any density matrices ρ̃ and ρ such that ‖ρ̃− ρ‖2F 6= 2, it holds

F (K; ρ̃, ρ) =
‖K(ρ̃)− ρ‖2F − ‖ρ̃− ρ‖

2
F

2− ‖ρ̃− ρ‖2F
≤ 2− δ

2
.
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When ‖ρ̃− ρ‖2F = 2, it holds

F (K; ρ̃, ρ) = lim
ρ̃′→ρ̃,ρ′→ρ

F (K; ρ̃′, ρ′) ≤ 2− δ
2

.

Setting q = 2−δ
2 < 1, we have (20).

�

Finally, we prove Theorem 3.1 using Lemma 3.3.

Proof of Theorem 3.1. For each Kraus operator Kk, according to Lemma 3.3, there is a con-

stant 0 ≤ qk < 1 such that F (Kk; ρ̃, ρ) ≤ qk, for any density matrices ρ̃ and ρ. Let q =

max {q1, · · · , qm} < 1. Following the derivations from (14) to (19), (13) is proved.

�

4. Analysis of Mixed Error Propagation

Following the flow in Section 2, we first prove the expected error propagation for a quantum

circuit with only probabilistic errors, as in Theorem 4.1. Then, we combine the results of

Theorem 3.1 and Theorem 4.1 to show that the error propagation of a quantum circuit with

both Kraus errors and probabilistic errors can be bounded by 2(1− (1− r)m), where m is the

number of gates and r is a constant in [0, 1) independent of m. The combined result is known

as the error propagation of mixed error models, which is formally stated in Theorem 1.1.

4.1. Analysis of Probabilistic Error Propagation. For a quantum circuit with only prob-

abilistic errors, we could write the expected error propagation into two parts: at least one error

occurs and no error occurs. Since the difference between any two density matrices is bounded

by a constant, the “at least one error occurs” part is bounded by its probability, which scales

as (1− (1− p)m). The “no error occurs” part does not contribute to the error propagation and

is omitted directly. Put two together, we obtain the Theorem 4.1 for the quantum circuit with

probabilistic error only.

Theorem 4.1. Given a quantum circuit with a sequence of single-qubit or double-qubit gates

G1, · · · , Gm starting with an initial density matrix ρ0. Each gate Gk is implemented with a

probabilistic error Pk with error probability pk ∈ [0, 1). Then the expected error propagation is

bounded as,

E ‖ρ̃m − ρm‖2F ≤ 2(1− (1− p)m),

where p is a constant, 0 ≤ p < 1, independent of the number of qubits.

Proof. If at least one error occurs in applyingG1, · · · , Gm, then we use (12) to bound ‖ρ̃m − ρm‖2F ≤
2. Denote p = max1≤k≤m pk. Then expected error propagation can be bounded as,

E ‖ρ̃m − ρm‖2F ≤ 2 · P(at least one error occurs) + ‖ρm − ρm‖2F · P(no error)

= 2

(
1−

m∏
k=1

(1− pk)

)
≤ 2 (1− (1− p)m) ,
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where the probability of no error is
∏m
k=1 (1− pk), and that at least one error occurs is 1 −∏m

k=1 (1− pk).

�

4.2. Proof of Mixed Error Propagation. Combining Theorem 3.1 and Theorem 4.1 to-

gether, we can then prove Theorem 1.1, which characterizes the expected error propagation of

mixed error. The proof flow can also be adapted to prove Lemma 2.6.

Proof of Theorem 1.1. Suppose there are mK gates with Kraus errors and mP gates with prob-

abilistic errors, with error probability being p1, · · · , pmP
. If no probabilistic error occurs, of

which the probability is P(no error) =
∏mP

k=1 (1− pk), then the system is reduced to a circuit

with only Kraus errors. By Theorem 3.1, there is a constant q ∈ [0, 1) such that,

‖ρ̃m − ρm‖2F ≤ 2 (1− (1− q)mK ) .

We then adopt the decomposition as in the proof of Theorem 4.1. The expected error

propagation is bounded as,

E ‖ρ̃m − ρm‖2F ≤ 2 · P(at least one error occurs) + ‖ρ̃m − ρm‖2F · P(no error)

≤ 2

(
1−

mP∏
k=1

(1− pk)

)
+ 2 (1− (1− q)mK )

mP∏
k=1

(1− pk)

= 2

(
1− (1− q)mK

mP∏
k=1

(1− pk)

)
≤ 2 (1− (1− r)m) ,

where r = max {p1, · · · , pmP
, q} < 1.

�

5. Numerical Experiments

In this section, we simulate quantum circuits using the quantum device backends provided by

IBM Quantum Experience. In these quantum device backends, both the Kraus error model and

the probabilistic error model are adopted to represent different types of quantum errors. Hence,

these backend simulators are well characterized by our mixed error models as in Theorem 1.1.

We also simulate quantum circuits to validate Theorem 3.1 for the Kraus errors and Theorem 4.1

for probabilistic errors separately with each of these error models.

Kraus Error. We first simulate a single-qubit circuit consisting of identity gates with only

Kraus error in the form of (3) with parameters being a2 = b2 = 0.001, a3 = 0.08, b3 = 0.008,

a1 =
√

1− a22 − a23 ≈ 0.9968, and b1 =
√

1− b22 − b23 = 0.99997. We simulate the setup with

various circuit depths from 100 to 2000. The Frobenius norm of the density matrix difference

is measured every 100 gate, demonstrating the error propagation. We plot both the empirical

error propagation as well as the upper bound given in Theorem 4.1 in Figure 2. The constant

q in Theorem 4.1 is not explicitly given. For the above Kraus error model setup, we estimate

q by random sampling 108 pairs of density matrices ρ̃ and ρ and find the maximum value of

F (K; ρ̃, ρ). The matrices are generated by RΛRT , where R is a rotation matrix with uniformly
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sampled rotation angle, and Λ is uniformly sampled positive semi-definite diagonal matrix with

trace being 1. The estimated constant q is 5.620× 10−3. The result is shown in Figure 2.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of gates

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

||
||2 F

Theoretical bound
Numerical results

Figure 2. Numerical experiments for identity circuit with Kraus errors only. A

quantum circuit consisting of single-qubit identity gates is simulated using ’qasm’

backend. Each gate is implemented with a Kraus error. The resulting density matrix

is measured for every 100 gate.

Theorem 3.1 provides an upper bound for the error propagation. As shown in Figure 2, with

the estimated q, the numerical errors are bounded by our theoretical bound, and the two curves

are fairly close to each other. Since our result is a worst-case upper bound, from Figure 2, we

are confident that our analysis provides a fairly tight upper bound.

Probabilistic Error. We then simulate a single-qubit circuit consisting of identity gates with

only probabilistic error using ‘qasm’ backend. For each gate, there is a probability p = 0.005

for reset-to-|1〉〈1| error. Similarly, we simulate the setup with various circuit depths from

100 to 2000. The Frobenius norm of the density matrix difference is measured every 100

gate, demonstrating the error propagation. Each circuit is repeatedly executed 8192 times to

approximate the expectation value of the error. We plot both the empirical expected error

propagation as well as the upper bound given in Theorem 4.1 in Figure 3.

Our analysis results in Theorem 4.1 provides an upper bound for the error expectation value,

which is not necessarily an upper bound for the sample mean of the error. While, as shown in

Figure 3, the numerical errors are tightly bounded by our theoretical bound.

Mixed Error. Finally, we simulate a multi-qubit circuit with both Kraus error and proba-

bilistic errors. The base circuit is chosen to be the same as that in Figure 1, i.e., 3-, 4-, and

5-qubit QFT circuits. The quantum simulator used in this case is the FakeVigo backend, which

is configured to simulate IBM Vigo quantum computer. For the purpose of verifying our the-

oretical bound, we turn off the readout error and measurement error, and only keep the gate

errors. The constant in Theorem 4.1 is read from the configuration, p = 1.076 × 10−2. The

constants for various Kraus errors in Theorem 3.1 are estimated separately in the same way as

that in the Kraus error numerical part, and the overall constant is found to be q ≈ 4.769×10−3.
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Figure 3. Numerical experiments for single-qubit identity circuit with probabilistic

errors only. Each gate is implemented with a reset-to-|1〉〈1| error with probability

p = 0.005. Each circuit is repeatedly executed for 8192 to approximate the error

expectation value.

Thus, the constant r in Theorem 1.1 is set to be r = max{p, q} = 1.076 × 10−2. Since the

resulting upper bound in Theorem 1.1 is independent of the number of qubits, we plot the

theoretical upper bound for all three multi-qubit circuits as the black curve in Figure 4.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Numerical results for n = 3
Numerical results for n = 4
Numerical results for n = 5

Figure 4. Numerical experiments for repeated 3, 4, and 5-qubit QFT circuits on

FakeVigo backend with only gate errors. Each circuit is repeatedly executed for 8192

to approximate the error expectation value.

According to Figure 4, we find that our analysis result in Theorem 1.1 is indeed an upper

bound for all three quantum circuits on 3-, 4-, and 5-qubit systems. Vigo is a 5-qubit quantum

computer. Different qubits in Vigo actually have different error profiles. If we bind the quantum

circuit to specific qubits and estimate the constant separately, we could have three different

theoretical upper bounds. In this experiment, we simply estimate the constant for all 5 qubits
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together and obtain an upper bound for all quantum circuits on Vigo. As we observe from

Figure 4, quantum circuits with a larger number of qubits lead to larger errors. Further, in the

current quantum computers, even for quantum computers with a small number of qubits, the

error quickly grows to a non-negligible level. Quantum circuits with tens to hundreds of depths

would be the limit on Vigo. For quantum computers with a larger number of quantum qubits,

numerically simulating the density matrix error results is not possible due to the exponentially

increasing size of the density matrix. However, our theoretical upper bound could still be

calculated and provide a fairly good estimation on the error growth.

6. Conclusion

Quantum computing is becoming a promising tool for computational tasks. While the quan-

tum hardware is not perfect and is expected to bear with large noise for a long time. The

performance of quantum computers nowadays is limited by quantum gate errors and sampling

errors. Therefore, we aim to characterize the quantum error that grows with the number of

gates in a quantum circuit.

In this work, we first use traditional numerical analysis methods to prove that quantum error

grows linearly with the depth of a circuit. However, a simple calculation of the density matrices

suggests that the error could not grow linearly but hit a plateau towards the end instead.

We, therefore, provided a more carefully analyzed upper bound that better characterizes the

growth of the quantum error with the depth of a circuit. To be more specific, we analyzed the

probabilistic error model, the Kraus error model, and the mix of both. For all three cases, the

error grows as ∼ (1− (1− c)m), where c is a constant independent of qubit number and circuit

depth (c is different for different error models), and m is the number of quantum gates in the

circuit. Finally, we did numerical experiments on the simulator of the Vigo quantum computer

provided by IBM Quantum Experience. Numerical results for identity quantum circuits and

QFT circuits suggested that our theoretical bound is tight. The errors of QFT circuits are well

controlled by our bound.

An immediate future direction is to explore different metrics of the quantum error propaga-

tions. We know that all metrics in a finite-dimensional Hilbert space are equivalent. Hence,

our results could be directly extended to other metrics with an extra dimension dependent

constant. A more careful analysis could reduce such a constant. Another future direction is to

obtain a qualititive estimation of the constant q, p, and r in Theorem 3.1, Theorem 4.1, and

Theorem 1.1 respectively.
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Appendix Appendix A. Probabilistic error model in Kraus form

Kraus formulations of typical probabilistic errors are listed below.

• Bit flip with probability pX :

V1 =
√
pXI =

√
pX

(
1 0

0 1

)
, V2 =

√
1− pXX =

√
1− pX

(
0 1

1 0

)
.

• Phase flip with probability pZ :

V1 =
√
pZI =

√
pZ

(
1 0

0 1

)
, V2 =

√
1− pZZ =

√
1− pZ

(
1 0

0 −1

)
.

https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1996.0136
https://onlinelibrary.wiley.com/doi/pdf/10.1002/que2.77
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• Bit-phase flip with probability pY :

V1 =
√
pY I =

√
pY

(
1 0

0 1

)
, V2 =

√
1− pY Y =

√
1− pY

(
0 −ı
ı 0

)
.

• Reset to |0〉〈0| with probability pR0:

V1 =
√
pR0

(
1 0

0 1

)
, V2 =

√
1− pR0

(
1 0

0 0

)
, V3 =

√
1− pR0

(
0 1

0 0

)
.

• Reset to |1〉〈1| with probability pR1:

V1 =
√
pR1

(
1 0

0 1

)
, V2 =

√
1− pR1

(
1 0

0 0

)
, V3 =

√
1− pR1

(
0 0

1 0

)
.

• Depolarizing with probability pD:

V1 =

√
1− 3pD

4
I, V2 =

√
pD

2
X,V3 =

√
pD

2
Y, V4 =

√
pD

2
Z.
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Appendix Appendix B. Double-qubit Kraus error model

The detailed expressions of Vjs in (5) are of forms,

V1 =


a1 0 0 0

0 b1 0 0

0 0 c1 0

0 0 0 d1

 , V2 =


a2 0 0 0

0 b2 0 0

0 0 c2 0

0 0 0 d2

 , V3 =


a3 0 0 0

0 b3 0 0

0 0 c3 0

0 0 0 d3

 ,

V4 =


a4 0 0 0

0 b4 0 0

0 0 c4 0

0 0 0 d4

 , V5 =


0 0 0 0

0 0 0 0

a5 0 0 0

0 b5 0 0

 , V6 =


0 0 0 0

0 0 0 0

a6 0 0 0

0 b6 0 0

 ,

V7 =


0 0 0 0

a7 0 0 0

0 0 0 0

0 0 c7 0

 , V8 =


0 0 0 0

a8 0 0 0

0 0 0 0

0 0 c8 0

 , V9 =


0 b7 0 0

0 0 0 0

0 0 0 d7

0 0 0 0

 ,

V10 =


0 b8 0 0

0 0 0 0

0 0 0 d8

0 0 0 0

 , V11 =


0 0 c5 0

0 0 0 d5

0 0 0 0

0 0 0 0

 , V12 =


0 0 c6 0

0 0 0 d6

0 0 0 0

0 0 0 0

 ,

V13 =


0 0 0 0

0 0 0 0

0 0 0 0

a9 0 0 0

 , V14 =


0 0 0 0

0 0 0 0

0 b9 0 0

0 0 0 0

 , V15 =


0 0 0 0

0 0 c9 0

0 0 0 0

0 0 0 0

 ,

V16 =


0 0 0 d9

0 0 0 0

0 0 0 0

0 0 0 0


The matrices Vj obey normalization condition (2), which is equivalent to

9∑
j=1

a2j = 1,

9∑
j=1

b2j = 1,

9∑
j=1

c2j = 1,

9∑
j=1

d2j = 1.

Similar to the single-qubit Kraus error model, V1 is close to an identity matrix, while others

are close to zero matrices, i.e., a1, b1, c1, d1 are close to 1, and other parameters are close to 0.

Also, the parameters aj , bj , cj , dj in (B) admits,

det



a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4


 6= 0.
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Appendix Appendix C. Proof of error model composition lemmas

We first prove Lemma C.1 to pave the path to the proofs of other lemmas.

Lemma C.1. There exist a solution a1, a2, b1, b2 for a system of equations,

(21)


a21 + a22 = s

b21 + b22 = t

a1b1 + a2b2 = r

where 0 ≤ s, t ≤ 1, and st ≥ r2.

Proof. Due to the fact that 0 ≤ s, t ≤ 1, we could parametrize a1, a2, b1, b2 as

a1 =
√
s cos θ, a2 =

√
s sin θ,

b1 =
√
t cosφ, b2 =

√
t sinφ.

The last equation in (21) then admits,
√
st cos(θ − φ) = r.

Since st ≥ r2, we have −1 ≤ r√
st
≤ 1. Hence, there is a unique solution for θ − φ. Therefore,

the system of equations (21) has infinitely many solutions.

�

Proof of Lemma 2.1. We denote

Aj = 1− a2j3 − b2j3,

Bj = b2j3,

Cj = aj1bj1 + aj2bj2,

for j = 1, 2. The Kraus error model (3) then could be written as

Kj(ρ) =

(
Ajr11 +Bj Cjr12

Cjr21 1−Ajr11 −Bj

)
,

where

ρ =

(
r11 r12

r21 r22

)
,

and tr (ρ) = 1. The composition of K1 and K2 admits,

K2(K1(ρ)) =

(
A1A2r11 +B1A2 +B2 C1C2r12

C1C2r21 1−A1A2r11 −B1A2 −B2

)
.

Therefore, by requiring the parameters a1, b1, a2, b2, a3, b3 satisfying

(22)


A1A2 = 1− a23 − b23 = a21 + a22 + b21 + b22 − 1

B1A2 +B2 = b23 = 1− b21 − b22
C1C2 = a1b1 + a2b2

,
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we are sure that the Kraus error is in the form of (4) and satisfies K = K2 ◦K1. We rearrange

(22) and obtain, 
a21 + a22 = A1A2 +B1A2 +B2

b21 + b22 = 1−B1A2 −B2

a1b1 + a2b2 = C1C2

.

We first notice that

A1A2 +B1A2 +B2 = 1− (1− a213)a223 − (1− b223)a213 ≤ 1,

and

A1A2 +B1A2 +B2 ≥ a213a223 + a213b
2
23 ≥ 0,

where the second inequality adopts the assumption a213 + a223 ≤ 1.

We also have,

1−B1A2 −B2 = 1− b213(1− a223)− b223(1− b213) ≤ 1,

and

1−B1A2 −B2 ≥ b213a223 + b213b
2
23 ≥ 0,

where the second inequality adopts the assumption b213 + b223 ≤ 1.

Using the Cauchy inequality, we obtain

(C1C2)
2 ≤

(
a211 + a212

) (
b211 + b212

) (
a221 + a222

) (
b221 + b222

)
=
(
1− a213

) (
1− b213

) (
1− a223

) (
1− b223

)
,

and, hence,

(A1A2 +B1A2 +B2) (1−B1A2 −B2)− (C1C2)
2

≥a213b223
(
1− b213 − b223

)
+ a223b

2
13

(
1− a213 − a223

)
+ a213b

2
13

(
a423 + a223b

2
23 + b423

)
≥ 0.

Finally, by Lemma C.1, we know that (22) has solutions and K2 ◦K1 can be in the form of (4).

�

Proof of Lemma 2.2. We simply have

(23) K2 ◦K1 = (K11 ⊗K21) ◦ (K12 ⊗K22) = (K11 ◦K12)⊗ (K21 ◦K22),

which is a double-qubit Kraus model in the form of (5). �

Proof of Lemma 2.3. The X,Y, Z errors work on a density matrix

ρ =

(
r11 r12

r21 r22

)
as

XρX =

(
r22 r21

r12 r11

)
, Y ρY =

(
r22 −r21
−r12 r11

)
, ZρZ =

(
r11 −r12
−r21 r22

)
.
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Thus, the density matrix with errors is

ρ̃ =pIρ+ pXXρX + pY Y ρY + pZZρZ + pR0 |0〉〈0|+ pR1 |1〉〈1|+
pDI

2

=

(
(pI + pZ)r11 + (pX + pY )r22 + pR0 + pD

2 (pX − pY )r21 + (pI − pZ)r12

(pX − pY )r12 + (pI − pZ)r21 (pI + pZ)r22 + (pX + pY )r11 + pR1 + pD
2

)

=

(
(pI + pZ − pX − pY )r11 + pX + pY + pR0 + pD

2 (pI − pZ)r12

(pI − pZ)r21
pD
2 − (pI + pZ − pX − pY )r11 + pI + pZ + pR1

)
.

The last equality makes use of pX = pY and r11 + r22 = tr (ρ) = 1. On the other hand, the

Kraus error (3) works as

Ksq(ρ) =

(
(a21 + a22 + b21 + b22 − 1)r11 + 1− b21 − b22 (a1b1 + a2b2)r12

(a1b1 + a2b2)r21 −(a21 + a22 + b21 + b22 − 1)r11 + b21 + b22

)
.

Therefore, as long as it holds

(24)


a21 + a22 = pI + pZ + pR0 + pD

2

b21 + b22 = pI + pZ + pR1 + pD
2

a1b1 + a2b2 = pI − pZ

,

the probabilistic error is equivalent to the Kraus error. By construction, we have

0 ≤ pI + pZ + pR0 +
pD
2
≤ 1,

0 ≤ pI + pZ + pR1 +
pD
2
≤ 1.

In addition, we have,(
pI + pZ + pR0 +

pD
2

)(
pI + pZ + pR1 +

pD
2

)
≥ p2I + p2Z ≥ (pI − pZ)2.

Finally, by Lemma C.1, we know that (24) has solutions and probabilistic error can be in the

form of (4).

�

Appendix Appendix D. Linear growing error bound

Proof of Lemma 2.4. Suppose the corresponding unitary matrix of gate Gk is Uk, then error-

free density matrices are shown in (7), while the actual states can also be written explicitly

as

ρ̃0 = ρ0,

ρ̃1 = K1

(
U1ρ̃0U

†
1

)
,

· · ·

ρ̃m = Km

(
Umρ̃m−1U

†
m

)
.
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By the assumption (8), we have

‖ρ̃k − ρk‖F =
∥∥∥Kk

(
Ukρ̃k−1U

†
k

)
− Ukρk−1U†k

∥∥∥
F

=
∥∥∥Kk

(
Ukρ̃k−1U

†
k

)
− Ukρ̃k−1U†k + Ukρ̃k−1U

†
k − Ukρk−1U

†
k

∥∥∥
F

≤
∥∥∥Kk

(
Ukρ̃k−1U

†
k

)
− Ukρ̃k−1U†k

∥∥∥
F

+
∥∥∥Ukρ̃k−1U†k − Ukρk−1U†k∥∥∥

F

≤γ1 + ‖ρ̃k−1 − ρk−1‖F .

(25)

Recursively applying (25), we obtain,

‖ρ̃m − ρm‖F ≤ γ1 + ‖ρ̃m−1 − ρm−1‖F ≤ 2γ1 + ‖ρ̃m−2 − ρm−2‖F ≤ · · · ≤ mγ1.

�

Proof. For general probabilistic model (10), it holds

‖P (ρ)− ρ‖F =
∥∥pρ+ (1− p)RρR† − ρ

∥∥
F

≤ (1− p)
(
‖ρ‖F +

∥∥RρR†∥∥
F

)
≤ 2(1− p).

Choosing γ2 = 2 − 2 min{p1, · · · , pm} and applying similar derivations as in the proof of

Lemma 2.4, we have (11).

�

Appendix Appendix E. Supporting Inequalities

We prove a few inequalities in this section, which are widely used throughout this paper.

Given two density matrices, ρ̃ and ρ, we have,

‖ρ̃− ρ‖2F = ‖ρ̃‖2F + ‖ρ‖2F − 2tr (ρ̃ρ) ≤ 1 + 1− 2tr (ρ̃ρ) ≤ 2,

where the first inequality is due to the property of density matrix, and the second inequality is

due to Ruhe’s trace inequality.

Given two density matrices, ρ̃ and ρ, and a Kraus operator K, we have,

(26) ‖K(ρ̃)− ρ‖2F = ‖K(ρ̃)‖2F + ‖ρ‖2F − 2tr (K(ρ̃)ρ) ≤ 1 + 1− 2tr (K(ρ̃)ρ) ≤ 2,

where the first inequality is partially due to the property of density matrix, and the second

inequality is due to Ruhe’s trace inequality. Since the Kraus operator preserves the trace and

the semi-positivity of the matrix, we could show that ‖K(ρ̃)‖2F ≤ 1, which is used in the first

inequality in (26).

Appendix Appendix F. Kraus error model lemmas

For both Lemma 3.1 and Lemma 3.2, we would focus on the proof for density matrices of

pure state and then adopt the inequality (27) to achieve the final inequalities. Given a density

matrix ρ, we could always rewrite it as an eigenvalue decomposition,

ρ =

N∑
i=1

λiuiu
†
i ,
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where uis are orthonormal vectors and λis are all non-negative. Further, we know that the

density matrix is of trace one, i.e., tr (ρ) = 1, which is equivalent to
∑
i λi = 1. By the linearity

of Kraus operator and the triangle inequality of Frobenius norm, we have,

(27) ‖K(ρ)‖F =

∥∥∥∥∥
N∑
i=1

λiK(uiu
†
i )

∥∥∥∥∥
F

≤
N∑
i=1

λi

∥∥∥K(uiu
†
i )
∥∥∥
F
≤ max

i

∥∥∥K(uiu
†
i )
∥∥∥
F
.

Hence, it is sufficient to show that Lemma 3.1 and Lemma 3.2 holds for the density matrices

of pure state.

Firstly, we prove a lemma for n-qubit pure state density matrixs.

Lemma F.1. We consider an n-qubit density matrix of a pure state

(28) ρ =


r11 r12 · · · r1N

r21 r22 · · · r2N
...

...
. . .

...

rN1 rN2 · · · rNN

 =

(
R11 R12

R21 R22

)
=

(
R1R

†
1 R1R

†
2

R2R
†
1 R2R

†
2

)
,

where R11, R12, R21, R22 ∈ CN
2 ×

N
2 , and R1, R2 ∈ CN

2 form the state of the pure state. The

matrix

(29) ρ′ =

(
‖R11‖F ‖R12‖F
‖R21‖F ‖R22‖F

)
is a single-qubit density matrix of a pure state.

Proof. Both R11 = R1R
†
1 and R22 = R2R

†
2 are symmetric positive semi-definite matrices and

of rank no greater than 1. Therefore, it holds

tr (ρ′) = ‖R11‖F + ‖R22‖F = tr (R11) + tr (R22) = tr (ρ) = 1.

We also have

‖ρ′‖2F = ‖R11‖2F + ‖R12‖2F + ‖R21‖2F + ‖R22‖2F = ‖ρ‖2F = 1.

By the construction of R12 and R21, we know that ρ′ is a symmetric matrix. Let the two real

eigenvalues of ρ′ be λ1 and λ2 (λ1 ≥ λ2). The above equations are equivalent to,

λ1 + λ2 = 1, λ21 + λ22 = 1,

whose solution is λ1 = 1 and λ2 = 0. Hence, ρ′ is a single-qubit density matrix of a pure state.

�

Now we prove Lemma 3.1.

Proof of Lemma 3.1. We first prove that Lemma 3.1 holds for single-qubit density matrix.

Denote ρ = uu†, where u = [u1, u2]> ∈ C2 and ‖u‖2 = 1. Substituting the expression of

Ksq

(
uu†
)

as in (3),

Ksq

(
uu†
)

= V1uu
†V †1 + V2uu

†V †2 + V3uu
†V †3 + V4uu

†V †4

= x1x
†
1 + x2x

†
2 + x3x

†
3 + x4x

†
4,
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where xk = Vku for k = 1, 2, 3, 4, i.e.

x1 =

(
a1u1

b1u2

)
, x2 =

(
a2u1

b2u2

)
, x3 =

(
0

a3u1

)
, x4 =

(
b3u2

0

)
,

satisfying

‖x1‖2 + ‖x2‖2 + ‖x3‖2 + ‖x4‖2 = u†
(
V †1 V1 + V †2 V2 + V †3 V3 + V †4 V4

)
u = 1.

By the triangle inequality, we have

(30)
∥∥Ksq

(
uu†
)∥∥

F
≤
∥∥∥x1x†1∥∥∥

F
+
∥∥∥x2x†2∥∥∥

F
+
∥∥∥x3x†3∥∥∥

F
+
∥∥∥x4x†4∥∥∥

F
= 1.

Next, we would like to show that the equality in the inequality (30) cannot be achieved, i.e.∥∥Ksq

(
uu†
)∥∥

F
is strictly less than 1 for any u. Let us consider the above triangle inequality for

a pair xi and xj . The triangle inequality could be simplified as the Cauchy-Schwarz inequality,

(31)
∥∥∥xix†i + xjx

†
j

∥∥∥
F
≤
∥∥∥xix†i∥∥∥

F
+
∥∥∥xjx†j∥∥∥

F
⇔
∣∣∣x†ixj∣∣∣ ≤ |xi|2 |xj |2

where the equality is achieved if and only if xi and xj are linearly dependent. Further, the

equality in (30) holds if and only if the equality in (31) holds for any pair xi and xj .

Recall that det

{(
a1 a2

b1 b2

)}
6= 0 as in (3). When u1 = 0, by the normality of u, we know

that |u2| = 1. x1, x2 and x4 cannot be linearly dependent unless b1 = b2 = b3 = 0, which

violates the assumption. When u2 = 0, similar analysis leads to a1 = a2 = a3 = 0, which also

violates the assumption. When u1 6= 0 and u2 6= 0, by the linear dependency of x3 and x4,

we know that a3 = b3 = 0. In this case, the linear dependency of x1 and x2 contradicts the

nonzero determinant assumption. Therefore,
∥∥Ksq

(
uu†
)∥∥

F
is strictly less than 1.

Since
∥∥Ksq

(
uu†
)∥∥

F
is a continuous function of u1 and u2, which are defined on a compact

domain |u1|2 + |u2|2 = 1, the supremum of
∥∥Ksq

(
uu†
)∥∥

F
is achievable and is strictly less

than 1. Thus, there is a δ′ > 0, such that
∥∥Ksq

(
uu†
)∥∥2

F
≤ 1 − δ′ for pure state single-qubit

density matrix ρ = uu†. Via the inequality (27), we know that there exists a δ > 0, such that

Ksq (ρ) ≤ 1− δ for all single-qubit density matrix ρ.

Now we consider an n-qubit pure state density matrix in the form of (28). Without loss of

generality, we assume that the Kraus operator is acted on the first qubit, then

Ksq (ρ) =

4∑
j=1

(Vj ⊗ I) ρ
(
V †j ⊗ I

)

=

(
b23R22 +

(
a21 + a22

)
R11 (a1b1 + a2b2)R12

(a1b1 + a2b2)R21 a23R11 +
(
b21 + b22

)
R22

)
.
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Using triangle inequality, we have

‖Ksq (ρ)‖2F =
∥∥b23R22 +

(
a21 + a22

)
R11

∥∥2
F

+ ‖(a1b1 + a2b2)R12‖2F

+
∥∥a23R11 +

(
b21 + b22

)
R22

∥∥2
F

+ ‖(a1b1 + a2b2)R21‖2F

≤
(
b23 ‖R22‖F +

(
a21 + a22

)
‖R11‖F

)2
+ (a1b1 + a2b2)

2 ‖R12‖2F

+
(
a23 ‖R11‖F +

(
b21 + b22

)
‖R22‖F

)2
+ (a1b1 + a2b2)

2 ‖R21‖2F
= ‖Ksq (ρ′)‖2F ,

where

ρ′ =

(
‖R11‖F ‖R12‖F
‖R21‖F ‖R22‖F

)
,

and we abuse notation Ksq (ρ′) denoting Ksq acting on ρ′. According to Lemma F.1, ρ′ is a

single-qubit pure state density matrix. Therefore, it holds ‖Ksq (ρ)‖2F ≤ ‖Ksq (ρ′)‖2F ≤ 1 − δ′

for some constant δ′. Again, via the inequality (27), we know that there exists a δ > 0, such

that Ksq (ρ) ≤ 1− δ for all density matrix ρ.

�

Lemma 3.2 can be proved in the same way as that of Lemma 2.1. For the sake of space, we

omit the detailed proof.
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