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Abstract

We propose a state-averaged orbital optimiza-
tion scheme for improving the accuracy of ex-
cited states of the electronic structure Hamil-
tonian for use on near-term quantum comput-
ers. Through extensive benchmarking of the
method on various small molecular systems, we
find that the method is capable of producing
more accurate results than fixed basis FCI while
simultaneously using fewer qubits. In particu-
lar, we show that for H2, the method is capable
of matching the accuracy of FCI in the cc-pVTZ
basis (56 qubits) while only using 14 qubits.
Additionally, we outline a method for preparing
configuration interaction singles (CIS) states on
a quantum computer in the Jordan-Wigner en-
coding, which may be of independent interest
for the purpose of initializing quantum eigen-
solvers such as QPE and VQE.

1 Introduction

One of the early applications for quantum com-
puters is expected to be the electronic structure
problem,1 however, the error stemming from
the basis set truncation in the second quan-
tization formulation will likely present a ma-
jor obstacle for realizing accurate solutions for
academically and industrially relevant chemi-

cal systems.2–4 If no resource reduction tech-
niques are employed, one qubit is needed for
each spin-orbital. As a result of the limited
number of qubits on current hardware, ex-
perimental demonstrations have been limited
to small molecules represented by small basis
sets.5–8 Several methods have been developed
for more compact basis set representations in
both the classical and quantum settings. Ex-
plicitly correlated methods9–12 apply a similiar-
ity transformation to the problem Hamiltonian
that has an explicit dependence on the coor-
dinates of the electrons. The intuition behind
this is that such basis sets may be able to ef-
ficiently capture effects from electron-electron
interactions which are often the cause of the in-
efficiency of fixed single-particle basis set rep-
resentations.13,14 Downfolded effective Hamilto-
nian techniques15–19 take a full orbital space
Hamiltonian, unitarily transform it according
to an excitation operator that includes exci-
tations outside of a given active space, then
project it onto the active space. Through this
process, an effective Hamiltonian is produced
which includes correlation effects from outside
the active space, but which is low-dimensional
and acts only on the active space. Orbital op-
timization methods20–26 introduce the elements
of a similarity transformation to be optimized
in conjunction with the parameters of an eigen-
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solver minimization problem. These two min-
imization problems are typically solved in an
alternating fashion until some stopping criteria
are reached. Orbital optimization schemes such
as quantum CASSCF25 operate by first choos-
ing an active space from a full orbital space,
then unitarily transforming the orbitals accord-
ing to a coupled-cluster style ansatz. In this
work we extend OptOrbVQE,20 which finds the
ground state in an optimized basis, to the prob-
lem of finding excited states of electronic struc-
ture Hamiltonians. The main differences be-
tween OptOrbVQE and other orbital optimiza-
tion ground state solvers are that 1. the or-
bital rotation does not take the form of a pa-
rameterized ansatz and 2. the selection of an
active space is not required. Instead, the or-
bital transformation takes the form of a partial
unitary matrix. Thus no chemical intuition or
selection of orbitals based on energy is required
to choose an active space and we can optimize
over a more general set of rotations.

2 Excited States Quantum

Eigensolvers

Hybrid quantum-classical variational methods
for finding eigenvalues of chemical Hamiltoni-
ans operate by classically minimizing an objec-
tive function constructed from quantities mea-
sured on a quantum computer. For example, to
find the ground state of a Hamiltonian Ĥ we
would first prepare a parametrized state |ψ(θθθ)〉
on the quantum computer, measure the expec-
tation value of Ĥ , and carry out the minimiza-
tion problem:

min
θθθ
〈ψ(θθθ)| Ĥ |ψ(θθθ)〉 (1)

classically. This is the original formulation
of the variational quantum eigensolver27,28

(VQE). In order to extend this method to
low-lying excited states, the mutual orthogo-
nality of these states must be accounted for.
Several methods have been proposed that ac-
complish this. SSVQE29 and MCVQE30 are
state-averaged approaches which apply a pa-
rameterized circuit Û(θθθ) to a set of mutually

orthogonal initial states {|ψi〉}, then minimize
an objective function of the form:

f(θθθ) =
∑

i

wi 〈ψi| Û
†(θθθ)ĤÛ(θθθ) |ψi〉 (2)

where {wi} is a set of positive, real-valued
weights. The main difference between MCVQE
and SSVQE is that MCVQE chooses the
weights {wi} to be equal, whereas SSVQE
chooses them to not be equal. At first glance
this difference seems trivial, however it should
be noted that unequal weights corresponds to
a global minimum comprised of the low-lying
eigenvectors, whereas an equal weighting corre-
sponds to a global minimum comprised of states
which span the low-lying eigenspace. MCVQE
adds a classical post-processing step which di-
agonalizes these states in this low-dimensional
eigenspace to acquire the low-lying eigenvec-
tors. It is unclear which of these approaches is
advantageous or if their convergence is equiv-
alent in practice. Other excited states meth-
ods such as qOMM31 and VQD32 take overlap-
based approaches to enforcing the mutual or-
thogonality of the solution by including penalty
terms in the objective function which vanish
when pairs of states are orthogonal. Thus, the
orthogonality is enforced only at the global min-
imum rather than at every point in the cost
function landscape.

3 State-Averaged Orbital

Optimization

In OptOrbVQE we take the electronic struc-
ture Hamiltonian in its fermionic second-
quantization representation:

Ĥ =
M
∑

p,q=1

hpqâ
†
pâq+

1

2

M
∑

p,q,r,s=1

vpqrsâ
†
pâ

†
qâsâr, (3)

and rotate the set of M orbitals {ψ1, ψ2, ..., ψM}
according to the partial unitary transformation
V̂ :

ψ̃i =
M
∑

j

V̂jiψj (4)
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resulting in a new set of N < M orbitals
{ψ̃1, ψ̃2, . . . , ψ̃N}. This is equivalent to trans-
forming the Hamiltonian as:

H̃(V̂ ) =

N
∑

p′,q′=1

M
∑

p,q=1

hpqV̂pp′V̂qq′ ã
†
p′ ãq′

+
1

2

N
∑

p′,q′,r′,s′=1

M
∑

p,q,r,s=1

vpqrsV̂pp′V̂qq′ V̂ss′V̂rr′ ã
†
p′ ã

†
q′ ãs′ ãr′.

(5)

The orbital optimization then corresponds to
minimizing the expectation value of this Hamil-
tonian with respect to a fixed quantum state
Û(θθθ) |ψref〉 provided by a quantum eigensolver.
The total minimization problem is then given
by:

min
θθθ

V̂ ∈U(M,N)

〈ψref| Û
†(θθθ)H̃(V̂ )Û(θθθ) |ψref〉 (6)

where U(M,N) is the set of M ×N real partial
unitary matrices. The simplest way to gener-
alize this problem is to consider Eq. 2 to be a
function of both θθθ and V̂ :

f(θθθ, V̂ ) =
∑

i

wi 〈ψref,i| Û
†(θθθ)H̃(V̂ )Û(θθθ) |ψref,i〉

(7)
and minimize the resulting state-averaged ana-
log problem of Eq. 6:

min
θθθ

V̂ ∈U(M,N)

f(θθθ, V̂ ). (8)

Such state-averaged analogs of other orbital op-
timization schemes21,26 have previously been
explored in the literature. Thus, we expect a
state-averaged analog of OptOrbVQE to also
perform well. It is worth noting that an overlap-
based orbital optimization objective function
has been proposed in the classical literature,33

which allows for a separate optimal basis to be
computed for each excited state. The authors
claim that this allows for more accurate exci-
tation energies to be computed. The method
assumes the availability of the CI coefficients
found by the eigensolver, which would require
exponentially-expensive full state tomography
to acquire in the quantum computing setting.

The total minimization problem Eq. 8 is di-
vided into two subproblems: minimization with
respect to the ansatz parameters θθθ and mini-
mization with respect to V̂ . These two sub-
problems are solved in an alternating fashion,
where one is fixed while the other is varied.
The optimal parameters for one subproblem are
then used for the initialization of the next run
of the other until some global stopping criteria
are met. For example, for a given optimal V̂ we
can compute H̃(V̂ ) and carry out a quantum
excited states solver to find an optimal θθθ in the
rotated basis. For a given θθθ found by a quantum
excited states solver, we can compute the 1 and
2-RDMs with respect to each state in the set
of computed excited states {Û(θθθ) |ψref,i〉}, then
vary Eq. 8 with respect to V̂ . As was done for
OptOrbVQE, we explicitly state the super and
subscript notation used for the total problem to
avoid confusion:

• The subscript l will index the itera-
tion number in the minimization problem
where V̂ is varied.

• The subscript m will index the itera-
tion number in the minimization problem
where θθθ is varied.

• The subscript n will index a global “outer
loop” iteration number that characterizes
how many times both subproblems have
been carried out.

• The superscript opt will denote the opti-
mal parameter found in each subproblem
for a given outer loop iteration number.

We now give an explicit step-by-step procedure
for the total problem:

1. Set n = 0. Choose an initial partial uni-
tary V̂n=0,l=0, an initial set of ansatz pa-
rameters θθθn=0,m=0, and a stopping thresh-
old ǫ.

2. Calculate H̃(V̂ ) on a classical computer
and run a quantum eigensolver algorithm
to obtain θθθoptn .
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3. If |f(θθθoptn , V̂
opt
n−1)− f(θθθ

opt
n−1, V̂

opt
n−2)| < ǫ, halt

the algorithm. Else, continue to the next
step.

4. Measure the 1 and 2-RDMs with respect
to the set of states {Û(θθθoptn ) |ψref,i〉} on a
quantum computer.

5. Using the 1 and 2-RDMs from the previ-
ous step, minimize Eq. 8 with respect to
V̂n to obtain V̂ opt

n .

6. Set n = n + 1, V̂n+1,l=0 = V̂ opt
n , and

θθθn+1,m=0 = θθθoptn . Optionally, a small ran-
dom perturbation can be added to the lat-
ter two quantities. Repeat steps 2-6.

Step 5 requires the use of a classical optimizer
which constrains V̂ to be a partial unitary.
Several methods which do this exist,34–37 but
in our work we use an orthogonal projection
method.38 In general, θθθ and V̂n+1,l=0 could be
any real vector and real partial unitary, respec-
tively, however it is intuitive to use information
from the nth outer loop iteration to inform this
choice. In our work we choose θθθn+1,l=0 = θθθoptn

and V̂n+1,l=0 = V̂ opt
n +orth(Rand(M,N)), where

orth(A) = AQΛ− 1

2Q† (9)

and Rand(M,N) is an M ×N matrix whose el-
ements are sampled from a normal distribution
with average 0 and standard deviation 0.01. In
Eq. 9, Q is a matrix whose columns are the
eigenvectors of A†A and Λ is a diagonal matrix
whose entries are the eigenvalues of A†A. Ad-
ditionally, although Eq. 8 is written as a state-
averaged function of θθθ, step 2 does not necessar-
ily need to be carried out using a state-average
quantum eigensolver. The only requirement is
that the solver returns solution states to be used
for the calculation of 1 and 2-RDMs. Overlap-
based methods such as qOMM31 and VQD32

could be used, however for our work we test
MCVQE30 and SSVQE.29

4 Numerical Results

The code used for our numerical simulations is
an extension of the functionality provided by

the open source package Qiskit.39 Qiskit pro-
vides an implementation of VQE,27,28 which
we have modified to produce implementations
of SSVQE29 and MCVQE.30 The code for the
state-averaged orbital optimization is a modifi-
cation of the code used in our ground state or-
bital optimization work,20 with the main mod-
ification being the objective function to be
minimized. The Qiskit package versions used
are Qiskit-Aer 0.12.0, Qiskit-Nature 0.4.5, and
Qiskit-Terra 0.23.2. The 1 and 2-body integrals
are obtained through the PySCF40 electronic
structure driver in Qiskit, which uses PySCF
to perform a restricted Hartree-Fock problem
to obtain the un-optimized molecular integrals.
Configuration interaction circuits are obtained
in two steps. First, the truncated Hamiltoni-
ans are constructed from the 1 and 2-body in-
tegrals using the Slater-Condon rules,1 which
are then exactly diagonalized using NumPy.41

The reasons why we do not use PyCSF’s con-
figuration interaction implementation are two-
fold: (1) PySCF does not have an CIS imple-
mentation and (2) We have found that PySCF’s
CISD implementation does not always produce
orthogonal CI wavefunctions, with fidelity be-
tween two states being as large as on the or-
der of 10−1, even in the case where the corre-
sponding eigenvalues are not degenerate. This
is problematic for quantum algorithms such as
SSVQE and MCVQE which require that the
initial states be mutually orthogonal.

This statevector can then be used to initial-
ize a circuit using Qiskit’s arbitrary statevector
initialization implementation. We note that al-
though this particular implementation requires
the storage of an exponentially large statevec-
tor in classical memory, in principle configura-
tion interaction state preparation on a quan-
tum computer could be done in a completely
sparse manner with resources scaling polyno-
mially with the number of qubits. For ex-
ample, it has been shown that Givens rota-
tions are universal for preparing chemically-
motivated states with the Jordan-Wigner map-
ping.42 The authors also give a general proce-
dure for preparing an arbitrary statevector. In
Appendix B we give an explicit example of how
the particular case of arbitrary CIS statevec-
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tors can be prepared on a quantum computer,
which may be of independent interest. Whether
or not an efficient analogous procedure can be
developed for CISD states is not discussed here,
however in our simulations we include CISD ini-
tializations to investigate whether or not doing
so would lead to further improvement. We also
utilize an "excited Hartree-Fock" initialization
that consists of the Hartree-Fock state and the
lowest energy singly-excited states from it. In
this paper, we will refer to this initialization as
just "Hartree-Fock" or "HF".

In Qiskit, one can use any ansatz circuit as a
base pattern to be repeated n times, increasing
the circuit depth and number of parameters by
a factor of n. In our simulations we use Qiskit’s
implementation of the UCCSD ansatz43 as a
circuit block pattern to be repeated for various
values of n. We denote this as n-UCCSD. The
classical optimizer used for all test instances is
L-BFGS-B.44 The FCI reference values are cal-
culated using CDFCI.45 All orbital-optimized
tests are run using Qiskit’s AerSimulator in
noiseless statevector mode.

4.1 H2

We begin with our results for the simplest
model tested, H2 at the near-equilibrium bond
distance 0.735 Å, which are given in Fig. 1. We
use cc-pVQZ (120 spin-orbitals) as the start-
ing basis and reduce the active space for even
numbers of spin-orbitals from 4 to 14 using the
proposed orbital optimization scheme. The dif-
ference between the average orbital optimized
energy and that of FCI (over the ground and ex-
cited states) in the cc-pVTZ basis is plotted as
a function of the outer loop iteration. Tests us-
ing both 2 and 3-UCCSD are included to inves-
tigate the effect of increasing the ansatz expres-
siveness in the algorithm. Both eigensolvers are
initialized with configuration interaction singles
(CIS) states. SSVQE is additionally tested us-
ing the Hartree-Fock initialization.

It is evident that orbital optimization has
the potential to achieve more accurate aver-
age energies than FCI in the cc-pVDZ basis
(20 spin-orbitals) and can even approach cc-
pVTZ quality values, but this highly depends

on the choice of eigensolver, ansatz, and num-
ber of optimized spin-orbitals. A minimum of
8 spin-orbitals are needed to achieve a higher
accuracy than cc-pVDZ. At this point, Op-
tOrbMCVQE can do this for both 2 and 3-
UCCSD, although OptOrbSSVQE cannot. Us-
ing 10 spin-orbitals, both eigensolvers surpass
cc-pVDZ for both 2 and 3-UCCSD, although
MCVQE offers roughly a 5 milli-Hartree im-
provement over SSVQE for 2-UCCSD. When
3-UCCSD is used, MCVQE offers a measur-
able but negligible improvement over SSVQE.
At 14 spin-orbitals, cc-pVTZ quality results are
achievable. Also notable is the effect that in-
creasing the active space has on not only the
quality of convergence, but its rate of conver-
gence. Note that for 8 and 10 spin-orbitals,
the convergence appears to plateau, hovering
just above cc-pVDZ accuracy for several iter-
ations before rapidly surpassing it. This be-
havior is not present at 12 and 14 spin-obitals,
with the energy quickly converging to near or
at cc-pVTZ accuracy for the majority of tests
run. As a sidenote, we note that the 14 spin-
orbital tests using 3-UCCSD with a CIS initial-
ization were stopped manually at iterations 10
and 13 for SSVQE and MCVQE, respectively
as the runtime for these simulations proved to
be the longest among these tests. However, we
note that given that nearly all of the energy
convergence occurred within the first 2 or 3 it-
erations, allowing the simulations to continue
would likely not have resulted in further im-
provement.

4.2 H4

We now present the results for H4, a toy sys-
tem comprised of four hydrogen atoms arranged
in a square with a nearest-neighbor distance of
1.23 Å. The starting basis set is cc-pVQZ (240
spin-orbitals) and an active space of 8 optimized
spin-orbitals is used. Both 2 and 3-UCCSD are
tested as ansatzes and both CIS and CISD are
tested as initializations. SSVQE is addition-
ally tested using the Hartree-Fock initialization.
The results are given in Fig. 2.

We can see that for this system, orbital opti-
mization can be used to achieve a more accurate
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Figure 1: Convergence of orbital optimization methods for H2 using various numbers of spin-orbitals
(taken from the cc-pVQZ basis) as a function of the outer loop iteration. ∆E is the difference
between the average energy and that of FCI in the cc-pVTZ basis (56 spin-orbitals).

average energy than the 6-31G basis (16 spin-
orbitals), despite the fact that it is utilizing half
the number of spin-orbitals. Convergence ap-
proaching FCI cc-pVDZ (40 spin-orbitals) ac-
curacy was not observed in our testing. Be-
tween the three different algorithmic choices
considered (the eigensolver, the initialization,
and the ansatz), increasing the ansatz expres-
siveness from 2-UCCSD to 3-UCCSD had the
most significant effect on the converged accu-
racy. Changing the initialization from CIS to
CISD offered a clear improvement when used

with the 3-UCCSD ansatz, however the same
is not true for 2-UCCSD. With 2-UCCSD, Op-
tOrbSSVQE using CISD converges quickly to
a local minimum, whereas OptOrbSSVQE us-
ing CIS converges (albeit comparatively slowly)
to a more accurate average energy. The fi-
nal converged values for OptOrbMCVQE are
similar between CIS and CISD when using 2-
UCCSD. Note also that for instances using the
same ansatz and initialization, using MCVQE
as the eigensolver typically offers an improve-
ment over SSVQE. The one exception to this
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Figure 2: Convergence of orbital optimization
methods for H4 using 8 optimized spin-orbitals
(taken from the cc-pVQZ basis) as a function of
the outer loop iteration. ∆E is the difference
between the average energy and that of FCI in
the 6-31G basis (16 spin-orbitals).

is using CISD with 3-UCCSD, where the dif-
ference between these two converged values is
negligible.

4.3 LiH

We now present the results for the first two en-
ergy levels of LiH at the near-equilibrium in-
teratomic distance of 1.595 Å. The starting ba-
sis set is cc-pVTZ (88 spin-orbitals) and an ac-
tive space of 12 optimized spin-orbitals is used.
Both 1 and 2-UCCSD are used to assess the
effect of ansatz expressiveness. CIS and CISD
initializations are tested for MCVQE whereas
SSVQE additionally tests the Hartree-Fock ini-
tialization. The results are shown in Fig. 3.

The most notable feature of this plot is that
orbital-optimized solvers can achieve more ac-
curate results than FCI using much larger basis
sets. For example, most tests run for this sys-
tem outperform FCI 6-31G (22 spin-orbitals)
while using only 12 spin-orbitals. Depending on
the choice of solver, ansatz, and initialization,
some instances also outperform FCI cc-pVDZ
(36 spin-orbitals). The second notable feature
is that ansatz expressiveness (typically) has a
greater influence on the final accuracy than the
choice of initialization. The 1 and 2-UCCSD

Figure 3: Convergence of orbital optimiza-
tion methods for LiH using 12 optimized spin-
orbitals as a function of the outer loop itera-
tion. ∆E is the difference between the average
energy and that of FCI in the cc-pVDZ basis
(36 spin-orbitals).

tests almost form two cleanly separated accu-
racy tiers, except for OptOrbMCVQE using
1-UCCSD with a CISD initialization, which
achieves a higher accuracy than MCVQE using
CISD with 2-UCCSD. The choice of initializa-
tion has a greater impact when the less expres-
sive 1-UCCSD ansatz is used and has little im-
pact when the ansatz is sufficiently expressive
to approximate the solution states well. The
third notable feature is that OptOrbMCVQE
typically outperforms OptOrbSSVQE when us-
ing the same ansatz and initialization, with the
one exception to this being when CISD and 2-
UCCSD are used. This effect is most notice-
able when the less expressive 1-UCCSD ansatz
is used.

4.4 BeH2

We now present the results for the first two en-
ergy levels of BeH2 with a linear geometry at
the near-equilibrium Be-H distance of 1.3264Å.
We find the full system with 14 spin-orbitals
and 6 electrons to be intractable for our com-
putational budget, so we freeze two electrons
in the Hartree-Fock orbitals with the lowest
energy and compare the active space energy
against that of FCI using the same frozen core

7



approximation. Because we do not wish for the
quality of the frozen core approximation across
different basis sets to influence the comparison
against FCI values, here we will only compare
the orbital optimized results starting with the
cc-pVQZ basis with an active space of 12 spin-
orbitals against FCI in the cc-pVQZ basis us-
ing an active space of 228 spin-orbitals. Be-
cause of the wide disparity in active space size,
we do not expect the orbital optimized tests to
approach chemical accuracy compared to FCI,
however we may still gain some insight as to
what portion of the full basis set energy is at-
tainable using a small active space and what
kind of improvement orbital optimization offers
over a naive approach which chooses a fixed ac-
tive space based on Hartree-Fock orbital ener-
gies. These results are given in Fig. 4.

0 2 4 6 8 10 12 14 16 18 20
outer l  p iterati n

0.00
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OptOrbSSVQE 2-UCCSD CIS
OptOrbMCVQE 2-UCCSD CISD
OptOrbMCVQE 2-UCCSD CIS
FCI (cc-pVQZ)

Figure 4: Convergence of orbital optimization
methods for BeH2 using 12 optimized spin-
orbitals as a function of the outer loop itera-
tion. ∆E is the difference between the average
energy and that of FCI in the cc-pVTZ basis.

5 Discussion and Conclu-

sions

In this paper we have proposed an orbital op-
timization scheme which uses a state-averaged
approach to compute excited states of electronic
structure Hamiltonians. We have shown that
this method can achieve more accurate results
than FCI using much larger fixed basis sets. We

have also investigated the effects of the choice
of quantum eigensolver, ansatz expressiveness,
and state initialization. While exceptions to
these trends can be found in our results, we
can make the following general observations:

• Increasing the ansatz expressiveness offers
the most significant effect among these
factors.

• MCVQE often offers an improvement in
accuracy over SSVQE for lower ansatz ex-
pressiveness. When higher expressiveness
is used, the difference is often less signifi-
cant.

• CIS initializations often offer an improve-
ment over Hartree-Fock initializations,
however the advantage of using CISD over
CIS is unclear. There are several in-
stances of CISD initialized tests achieving
a lower accuracy than their CIS (and even
Hartree-Fock) counterparts.

The first of these is not surprising. The
ansatz expressiveness is what primarily deter-
mines the variational flexibility of the quantum
eigensolver at each outer loop iteration. The
second observation can be explained by noting
that for a given initialization and ansatz, the so-
lution space of SSVQE is more restricted than
MCVQE. The solution space of SSVQE with
unequal weights consists of the low-lying eigen-
vectors themselves, whereas the solution space
of MCVQE consists of the subspace spanned
by the low-lying eigenvectors. MCVQE uti-
lizes a post-processing step involving a low-
dimensional diagonalization problem in this
subspace. This additional variational flexibil-
ity may ease the convergence process and allow
it to partially compensate for an insufficiently
expressive ansatz. The third point, while less
easily explained than the other two, can be con-
jectured about. While the initialization does
have an effect on ansatz expressiveness as it
determines which excitation operators in the
UCCSD ansatz act non-trivially, is not as vari-
ationally flexible as the parameterized ansatz
itself is. Furthermore, this state is computed in
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the initial basis set guess, which is usually low-
quality compared to the optimized basis set.
Thus there is no guarantee that CISD computed
in this initial basis will continue to be advanta-
geous over CIS for successive basis set rotations.
This is less likely to be the case when compared
to the Hartree-Fock initial state, which consists
of only one Slater determinant and remains the
same in the Jordan-Wigner qubit encoding for
all basis sets.

One compelling and well-motivated extension
of this work would be to take a state-specific or-
bital optimization approach rather than a state-
averaged one. State-specific orbital optimiza-
tion (as the name implies) optimizes a differ-
ent basis set for each excited state individually
rather than optimizing one basis set for an en-
semble of excited states by minimizing its aver-
age energy. State-specific orbital optimization
has been developed in the context of classical
orbital optimization algorithms,33 however this
particular method relies on a full CI expansion
of the wavefunction at every outer loop itera-
tion. In the quantum computing setting, such
an explicit wavefunction expansion (as opposed
to the expectation value of observables used
here) would involve exponentially costly tomog-
raphy and classical storage. These CI wavefunc-
tion expansions are used to compute the over-
lap of two different excited states in two dif-
ferent basis sets and uses them to enforce their
orthogonality. In the quantum computing set-
ting, one would have to develop a method which
can compute these overlaps without access to
CI expansions or which does not require over-
laps at all. This is an interesting problem and
will be a direction of future investigation.
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A Excited States Initializa-

tions and Ansatz Expres-

siveness

Here we test the effects of various initializa-
tion choices and levels of ansatz expressiveness
on the convergence of MCVQE and SSVQE
in a fixed minimal basis. These tests serve
to illustrate our motivation for our particular
choices in the orbital optimized tests in Sec-
tion 4 of the main text. By “initialization”
we mean the choice of non-parameterized sub-
circuit prepended to the parameterized ansatz.
The ansatz parameters themselves are initial-
ized to zero as this corresponds to the iden-
tity subcircuit. Thus, this allows us to ex-
plore various chemically motivated initializa-
tions. MCVQE is tested with configuration
interaction singles (CIS) and configuration in-
teraction singles and doubles (CISD) state ini-
tializations. SSVQE is tested with CIS and
CISD as well as an “excited Hartree-Fock” ini-
tialization used in a previous study by the
authors.31 This initialization applies single-
particle fermionic excitations to the Hartree-
Fock state and chooses the resulting Slater de-
terminants with the lowest energy to initialize
the circuit. Such states are orthogonal and can
thus be used with both MCVQE and SSVQE.
The ansatz expressiveness is varied by varying
the number of times the base UCCSD circuit

pattern is repeated, where we denote the cir-
cuit consisting of n UCCSD repetitions as n-
UCCSD.

Table 1 shows the final average energy accu-
racy for the first three states of H4 at a nearest
neighbor distance of 1.23 Å for various choices
of eigensolver, state initialization, and UCCSD
expressiveness. We can see that Hartree-Fock
and CIS initializations fail to produce an ac-
curacy greater than 10−2 Ha for any eigen-
solver or level of ansatz expressiveness. Fur-
thermore, increasing the ansatz expressiveness
offers no meaningful improvement for these ini-
tializations. On the other hand, the CISD ini-
tialization offers the ability to achieve greater
than chemical accuracy. With 2-UCCSD, both
eigensolvers fall just short of chemical accuracy,
but increasing the ansatz to 3 and 4-UCCSD
offers further improvements. Thus, we can see
that there is motivation for developing circuits
which correspond to CISD states.

We now compare the speed of convergence be-
tween MCVQE and SSVQE for the four test
instances in Fig. 5 which were able to sur-
pass chemical accuracy. Fig. 5 plots the state-
averaged energy accuracy as a function of the
number of objective function evaluations. We
can see that for all four instances, the state-
averaged energy plateaus for many iterations
before escaping and converging to (or closer to)
the global minimum. This is consistent with
previous studies which include SSVQE by the
authors.31 Notably, MCVQE is less prone to
this issue.

B CIS State Preparation

Here we give an example of how configura-
tion interaction singles (CIS) states can be pre-
pared as a quantum circuit on a quantum com-
puter using Givens rotations. It was proven
that Givens rotations form a universal set of
gates for chemically-motivated statevectors.42

The authors accomplish this constructively by
giving a procedure for preparing an arbitrary
state using Givens rotations controlled on the
states of multiple qubits. They comment that
for particular classes of states the resources in-
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Table 1: The final accuracy of the average energy for H4 for given choices of eigensolver, initializa-
tion, and UCCSD ansatz expressiveness.

Eigensolver Initialization UCCSD Repetitions

1-rep 2-rep 3-rep 4-rep

MCVQE CIS 4.25× 10−2 3.85× 10−2 3.70× 10−2 3.70× 10−2

MCVQE CISD 5.16× 10−3 2.16× 10−3 2.53× 10−4 3.73× 10−8

SSVQE HF 5.78× 10−2 4.67× 10−2 3.70× 10−2 3.70× 10−2

SSVQE CIS 4.26× 10−2 3.81× 10−2 3.70× 10−2 3.70× 10−2

SSVQE CISD 5.41× 10−3 2.45× 10−3 1.56× 10−4 3.67× 10−8

0 10000 20000 30000 40000 50000 60000 70000 80000
function evaluati n

10−5

10−4

10−3

10−2

ΔE
 (H

a)

MCVQE 3-UCCSD CISD
SSVQE 3-UCCSD CISD
MCVQE 4-UCCSD CISD
SSVQE 4-UCCSD CISD

Figure 5: Convergence of the state-averaged en-
ergy accuracy (∆E)

volved may be reduced by controlling the ro-
tation only on certain qubit subsets. What re-
mains to be done is to work out the details of
how to apply this idea to specific classes of CI
statevectors (CIS, CISD, CISDT, ect...) in a
way that is as gate-efficient as possible. Here we
give an example of how both dense and sparse
CIS statevectors can be mapped to quantum
circuits using Givens rotations.

We briefly note that the CIS state prepara-
tion circuit outlined in the MCVQE proposal
paper30 assumes a particular encoding where
the reference state from which electrons are be-
ing excited is encoded as the "all-zero" state
|00...0〉 where the qubit registers encode the
occupation number of orbitals unoccupied in
the reference state, but not those occupied in
the reference state. Thus, the singly-excited
wavefunction components contain no informa-
tion about the particular Hartree-Fock occu-

pied orbital from which the electron was ex-
cited. Here we seek a CIS state preparation cir-
cuit in the Jordan-Wigner encoding where the
reference state is the Hartree-Fock state and the
occupation number of orbitals occupied in this
state are included for all wavefunction compo-
nents. Thus, each singly-excited wavefunction
component does contain information about the
occupied Hartree-Fock orbital from which the
electron was excited.

The matrix representation of a Givens rota-
tion involving qubits n and m with angle θ is
given by:42

Gnm(θ) =









1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1









(10)

where the basis ordering is: |0〉m |0〉n, |0〉m |1〉n,
|1〉m |0〉n, |1〉m |1〉n. or notational convenience,
we will often omit the subscript n and m labels
on qubit registers. We can also make use of
Givens rotations controlled on the state of a
target qubit t, which we denote by CtGnm(θ).
This gate can be represented as:

CtGnm(θ) = |0〉 〈0|t ⊗ |ψ〉 〈ψ|mn (11)

+ |1〉 〈1|t ⊗Gnm(θ) |ψ〉 〈ψ|mn . (12)

We also note that we adopt the convention of
Qiskit where in the Jordan-Wigner encoding,
the qubits are ordered according to spin and
Hartree-Fock energy. Orbitals with the same
spin are ordered from right to left in ascending
Hartree-Fock energy. Thus, the relevant action
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of a Givens rotation is:

Gnm(θ) |01〉 = cos(θ) |01〉+ sin(θ) |10〉 (13)

We do not have to consider the action of Givens
rotations on the state |10〉 as we are only inter-
ested in exciting particles to orbitals of higher
energies from lower ones. The circuit notation
for the single-excitation Givens rotation is given
by:42

|0〉 G

|1〉 G

(14)

We want to construct a circuit from Givens ro-
tations which produces the state:

|CIS〉 = CHF |HF〉+
∑

p∈OHF,q∈UHF

Cq
p |φq ← φp〉

(15)
where |φq ← φp〉 means the computational ba-
sis state produced by exciting an electron from

orbital φp to orbital φq from the Hartree-Fock
ground state. OHF and UHF denote the set of or-
bitals occupied and unoccupied in the Hartree-
Fock state, respectively. We can solve for the
coefficients Cq

p classically then set them equal
to the parameterized coefficients of the wave-
function expansion produced by a circuit com-
prised of Givens rotations. This produces a set
of equations which can be solved to find the
Givens angles which produce the circuit that
prepares arbitrary CIS states.

B.1 Example 1: 3 particles, 6

spin-orbitals

We now give an example for the particular case
where we want to generate the CIS wavefunc-
tion with 6 spin-orbitals and 3 particles, where
all possible single-particle excitations are con-
sidered. The circuit for accomplishing this is
given by:

a |1〉 • • • • • • •

q5 |0〉 G G G

q4 |0〉 G G G G G G

q3 |0〉 G G G G G G

q2 |1〉 G P •

q1 |1〉 G •

q0 |1〉 G •

where the register labelled as a is an ancilla
qubit and those labelled as qi are data qubits
used to store the CIS state. CNOT gates with
an open dot instead of the typical filled dot de-
note a CNOT gate where the NOT operation is
controlled on the target qubit being in the state
|0〉 instead of |1〉. Although it is not explicitly
given in the circuit due to space constraints,
each Givens rotation has its own parameter.
The controlled phase gate P (implicitly P (λ))

is given in matrix form by:

P (λ) =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiλ









where the columns and rows are ordered as:
|00〉 , |01〉 , |10〉 , |11〉. We will see later that
we only need λ to be 0 or π. λ = 0
corresponds to a 2-qubit identity gate, in
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which case we could omit this gate entirely,
whereas λ = π corresponds to a controlled-
Z gate. We denote this gate as P in or-
der to keep full generality. The purpose of
the final sequence of CNOT gates is to disen-
tangle the ancilla qubit from the data qubits,
putting the final state in the form |CIS〉 ⊗
|0〉. Not applying this sequence of CNOTs re-
sults in a state of the form: CHF |HF〉 |1〉 +
|singly − excited − subspace〉 |0〉. From a to-
mography perspective, this CNOT sequence is
not strictly speaking necessary as taking the
partial trace over the ancilla subspace results
in the same state, but it simplifies wavefunc-
tion expansion notation. The final state of the
data qubits is given by:

|CIS〉 =eiλ cos θ32 cos θ
3
1 cos θ

3
0 |000111〉

+ cos θ32 cos θ
3
1 sin θ

3
0 cos θ

4
0 |001110〉

+ cos θ32 cos θ
3
1 sin θ

3
0 sin θ

4
0 cos θ

5
0 |010110〉

+ cos θ32 cos θ
3
1 sin θ

3
0 sin θ

4
0 sin θ

5
0 |100110〉

+ cos θ32 sin θ
3
1 cos θ

4
1 |001101〉

+ cos θ32 sin θ
3
1 sin θ

4
1 cos θ

5
1 |010101〉

+ cos θ32 sin θ
3
1 sin θ

4
1 sin θ

5
1 |100101〉

+ sin θ32 cos θ
4
2 |001011〉

+ sin θ32 sin θ
4
2 cos θ

5
2 |010011〉

+ sin θ32 sin θ
4
2 sin θ

5
2 |100011〉 .

(16)

We denote the angle which first adds the com-
ponent |φq ← φp〉 to the overall wavefunction
as θqp. By setting these coefficients equal to
those of the CI wavefunction expansion given in
Eq. 15, we arrive at the following set of equa-
tions:

eiλ cos θ32 cos θ
3
1 cos θ

3
0 = CHF

cos θ32 cos θ
3
1 sin θ

3
0 cos θ

4
0 = C3

0

cos θ32 cos θ
3
1 sin θ

3
0 sin θ

4
0 cos θ

5
0 = C4

0

cos θ32 cos θ
3
1 sin θ

3
0 sin θ

4
0 sin θ

5
0 = C5

0

cos θ32 sin θ
3
1 cos θ

4
1 = C3

1

cos θ32 sin θ
3
1 sin θ

4
1 cos θ

5
1 = C4

1

cos θ32 sin θ
3
1 sin θ

4
1 sin θ

5
1 = C5

1

sin θ32 cos θ
4
2 = C3

2

sin θ32 sin θ
4
2 cos θ

5
2 = C4

2

sin θ32 sin θ
4
2 sin θ

5
2 = C5

2 .

(17)

The recursive structure of this circuit allows us
to solve for all of these parameters analytically
in a recursive way. We can partition these 10
equations into 3 blocks of 3 equations and one
block with one equation according to the occu-
pied Hartree-Fock orbital from which the exci-
tations are generated. We start with p = 2 and
solve for θ52, θ

4
2, and θ32 in that order. This has

the solution:

θ52 = arctan

(

C5
2

C4
2

)

θ42 = arctan

(

1

cos θ52

C4
2

C3
2

)

θ32 = arcsin

(

C3
2

cos θ42

)

.

(18)

The equations corresponding to p = 1 are the
same in structure to those of p = 2, except that
the left hand side is multiplied by a constant
factor of cos θ32, a quantity that we solved for in
the p = 2 equations. We define α2 = cos θ32 and
divide both sides of these equations by α2. We
arrive at a second set of solutions:

θ51 = arctan

(

C5
1

C4
1

)

θ41 = arctan

(

1

cos(θ51)

C4
1

C3
1

)

θ31 = arcsin

(

1

α2

C3
1

cos(θ41)

)

.

(19)
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The p = 0 block of equations also has the
same form, but the left side is multiplied by
a factor of α1α2 = cos θ31 cos θ

3
2. We divide by

sides of each equation in this block by α1α2 and
arrive at the solution for this third block:

θ50 = arctan

(

C5
0

C4
0

)

θ40 = arctan

(

1

cos θ50

C4
0

C3
0

)

θ30 = arcsin

(

1

α1α2

C3
0

cos θ40

)

.

(20)

This leaves only the parameter λ for which to
solve. The magnitude of CHF will match that
of α2α1α0 due to the normalization condition,
but the two may differ by a factor of either +1
or −1. The parameter λ will determine this
phase. If the phase of the two quantities match,
then λ = 0 and the phase gate can be omitted
entirely. If the two differ by a phase of −1, then
λ = π.

B.2 Example 2: Sparse 2 Parti-

cles, 6 Spin-Orbitals

The previous example dealt with the particu-
lar case of 3 particles and 6 spin-orbitals where
every single-particle excitation from any occu-
pied Hartree-Fock orbital is possible. We now
give an example for a different number of par-
ticles and spin-orbitals for the case where the
CIS wavefunction is sparse and some of the co-
efficients are zero. This demonstrates that we
can also generate approximate CIS wavefunc-
tions at lower circuit depth in a straightfor-
ward, systematic way by omitting certain exci-
tations if their CI coefficients are below a spec-
ified threshold.

Here we suppose that we are preparing a CIS
state of a system with 2 particles and 6 spin-
orbitals, where φ1 can only be excited to {φ2,
φ5} and φ0 can only be excited to φ4. The cir-
cuit for doing so is given by:

a |1〉 • •

q5 |0〉 G

q4 |0〉 G

q3 |0〉

q2 |0〉 G G

q1 |1〉 G P •

q0 |1〉 G •

This results in the data qubits being put in
the state:

|CIS〉 =eiλ cos θ21 cos θ
4
0 |000011〉

+cos θ21 sin θ
4
0 |010010〉

+sin θ21 sin θ
5
1 |100001〉

+sin θ21 cos θ
5
1 |000101〉

(21)

This leads to the set of equations:

eiλ cos θ21 cos θ
4
0 = CHF

cos θ21 sin θ
4
0 = C4

0

sin θ21 cos θ
5
1 = C2

1

sin θ21 sin θ
5
1 = C5

1

(22)

We solve for θ51, θ
2
1, θ

4
0, and λ recursively in that
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order. The solution is given by:

θ51 = arctan

(

C5
1

C2
1

)

θ21 = arcsin

(

C2
1

cos θ51

)

θ40 = arcsin

(

C4
0

α1

)

eiλ =
CHF

α1α0

(23)

B.3 General Procedure

Based on the particular examples given, we can
observe a general procedure for any number of
particles and spin-orbitals. We first partition
the spin-orbitals into two sets OHF and UHF, the
set of spin-orbitals occupied and unoccupied in
the Hartree-Fock reference state, respectively.

For each φp ∈ OHF, we generate an ordered
set Lp of orbitals φq ∈ UHF for which the CI
amplitude Cq

p is not zero or is not below a de-
sired truncation threshold. These orbitals are
ordered in ascending Hartree-Fock energy. For
every spin-orbital in each Lp, we map the or-
bital indices q to new indices nq

p. This is simply
so that we may write down a general analyti-
cal expression for the gate sequence which re-
flects the fact we may not want or need the full,
dense CI wavefunction. nq

p is the index of the
list Lp which was mapped from the original in-
dex of the spin-orbital φq. e.g. the original set
of unoccupied orbitals from which a particular
occupied orbital may be given by {φ3, φ6, φ8},
but we map this ordered set to the list indices
{0, 1, 2}.

The general sequence of gates is given by:

|CIS〉 =





∏

φp∈OHF

CNOT(a, p)



CaP (λ)0

×

qmax−1
∏

φp∈OHF\{φ0}



XpCNOT(a, p)Xp

∏

φq∈Lp

CaGn
q

p,n
q

p+1





×X0CNOT(a, 0)X0

qmax−1
∏

φq∈L0

Gn
q

0
,n

q

0
+1(θ

q
0) |HF〉 |1〉a

(24)

The rightmost terms denote the fact that for
the set of excitations from the first occupied
spin-orbital, we do not have to apply the Givens
rotations conditioned on the state of the ancilla
qubit. Without loss of generality, we may take
φ0 to be the orbital which has the longest list
Lp of possible excited orbitals. This will reduce
the circuit depth as compiling controlled Givens
rotations into a sequence of 1 and 2-qubit ba-
sis gates will in general be more expensive than
regular Givens rotations. After this, we apply
a NOT gate to the ancilla qubit conditioned
on the state of the qubit from which we just
generated excitations being |0〉. This marks all
data qubit wavefunction components that are

not the Hartree-Fock component so that future
Givens rotations will not apply excitations to
these components. We then repeat this with
Givens rotations controlled on the state of the
ancilla for all the other Hartree-Fock occupied
orbitals. If there is an orbital for which there
are no possible excitations, we simply skip it.
We then apply a phase gate P (λ) to any of the
Hartree-Fock occupied orbitals conditioned on
the state of the ancilla. This applies the relative
phase eiλ to the Hartree-Fock component of the
wavefunction. Finally, for each of the Hartree-
Fock occupied orbitals, we apply a NOT gate
controlled on the state of the ancilla. This dis-
entangles the data qubits from the ancilla qubit
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so that the final result is a product state of these
registers.

Finally, we give a general procedure for map-
ping the CI coefficients Cq

p to the Givens ro-
tation angles θqp. In order to do this, we tem-
porarily re-index the CI coefficient indices in
the same way that we did for the general cir-
cuit expression. For each Lp, we map the orbital

indices q → nq
p. Here, Cn

q

p

p is the re-indexed CI
coefficient mapped from Cq

p for list Lp. The se-
quence of steps for this procedure can be given
by:

1. For each φp ∈ OHF (In the corresponding
order applied in the circuit):

(a) If length(Lp) = 1:

θn
q

p

p = arcsin

(

C
n
q

p

p
∏

p′<p αp′

)

(b) If length(Lp) = 2:

θn
q

p=1
p = arctan

(

C
n
q

p=1
p

C
n
q

p=0
p

)

θn
q

p=0
p = arcsin





1
∏

p′<p αp′

Cn
q

p=0

cos
(

θ
n
q

p=0
p

)





(c) If length(Lp) > 2:

θn
qmax
p

p = arctan

(

C
n
qmax
p

p

C
n
qmax
p −1

p

)

θn
qmax
p −1

p = arctan





1

cos
(

θ
n
qmax
p

p

)

C
n
qmax
p −1

p

C
n
qmax
p −2

p





...

θn
q

p

p = arctan





1

cos
(

θ
n
q

p+1
p

)

C
n
q

p

p

C
n
q

p−1
p





...

θn
q

p=0
p = arcsin





1
∏

p′<p αp′

Cn
q

p=0

cos
(

θ
n
q

p=0
p

)





2. Solve for λ:

λ =







0, if CHF∏
p
αp

= 1

π, if CHF∏
p
αp

= −1

Here, for the sake of notational convenience we
define

∏

p′<0 αp′ = 1.
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