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First-principles electronic band structure calculations are essential for understanding periodic
systems in condensed matter physics and materials science. We propose an accurate and parameter-
free method, called Hamiltonian transformation (HT), to calculate band structures in both density
functional theory (DFT) and post-DFT calculations with plane-wave basis sets. The cost of HT
is independent of the choice of the density functional and scales as O(NZNy log Ni,), where N,
and N, are the number of electrons and the number of k-points. Compared to the widely used
Wannier interpolation (WI), HT adopts an eigenvalue transformation to construct a spatial localized
representation of the spectrally truncated Hamiltonian. HT also uses a non-iterative algorithm to
change the basis sets to circumvent the construction of the maximally localized Wannier functions.
As a result, HT can significantly outperform WI in terms of the accuracy of the band structure
calculation. We also find that the eigenvalue transformation can be of independent interest, and
can be used to improve the accuracy of the WI for systems with entangled bands.

Introduction — Band structure plays a fundamental role
in condensed matter physics and materials science. In the
Kohn-Sham density functional theory (DFT) [1, 2], the
band structure calculations with k-point sampling consist
of two steps: Self-consistent field (SCF) electronic struc-
ture calculations to obtain the eigenvalues and Kohn-
Sham orbitals (eigenvectors) on a uniform k-point grid
{k}, and non-SCF calculations to obtain the eigenval-
ues on an additional nonuniform k-point grid (or path)
{q} for band structures. The accuracy and complexity
of band structure calculations strongly depend on the
choice of exchange-correlation functionals. For exam-
ple, calculations with local or semilocal functionals, such
as local density approximation (LDA) [3, 4] and gener-
alized gradient approximation (GGA)[5-7], scale up to
O(N2N}), where N, and Nj are the number of elec-
trons and the number of k-points, respectively. How-
ever, nonlocal functionals such as hybrid functionals [8—
10] and post-DFT calculations such as the GW approx-
imation [11-14], usually results in much larger compu-
tational cost (O(NZN?)[15] or higher). Though sev-
eral algorithms have been proposed to reduce the cost
of SCF calculations, such as interpolative separable den-
sity fitting (ISDF) [16-22], the resolution-of-the-identity
(RI) [23-27], adaptively compressed exchange (ACE) op-
erator [28, 29], the chain of spheres algorithm [30, 31] and
tensor hypercontraction (THC) [32-34], the subsequent
non-SCF band structure calculations remain expensive.
This becomes a bottleneck for band structure calcula-
tions beyond local or semilocal functionals in condensed
matter physics and materials science.

In addition to non-SCF calculations which constructs
the Hamiltonian implicitly through the SCF orbitals, one
can also construct the Hamiltonian Hy explicitly and

Fourier interpolating Hy from Hy:
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where R is the Bravais lattice vector. The success of
such an interpolation procedure relies on two assump-
tions: the size of the matrix is small, and matrix elements
are smooth in reciprocal space or localized in real space.
The Fourier interpolation can be directly performed using
a small basis set. When large basis sets such as plane-
waves are used, the Hamiltonian is often first projected
to a subspace spanned by the maximally localized Wan-
nier functions (MLWFs) [35-37], and the Fourier inter-
polation is then performed with respect to the projected
Hamiltonian matrix. This procedure is called Wannier
interpolation (WT).

The WI is a popular interpolation method in con-
densed matter physics and plays a key role in construct-
ing model Hamiltonians [38, 39] and computing various
physical observables of solids [40-42]. However, con-
structing MLWFs is a challenging nonlinear optimiza-
tion problem due to the existence of multiple local min-
ima [36], hence the results can be sensitive to initial
guesses and users may need detailed knowledge of the sys-
tem to provide the initial guess. Despite many progresses
in improving the robustness of numerical algorithms for
finding localized Wannier functions [43-48], constructing
MLWFs can still be challenging in a number of scenar-
ios, such as topological insulators [49, 50] and entangled
band structures [46, 51, 52].

In this Letter, we have two main contributions. First,
if we only keep the eigenpairs of the original Hamil-
tonian within a certain energy window, the resulting
spectrally truncated Hamiltonian can be more delocal-



ized than original Hamiltonian matrix. We introduce
an eigenvalue transformation to find a localized repre-
sentation of this spectrally truncated Hamiltonian. We
also find that the eigenvalue transformation introduced
here can be of independent interest, and can be used to
improve the accuracy of WI for systems with entangled
bands.

Second, WI finds a minimal set of orthogonal orbitals
that are smooth in k, so that the projected Hamiltonian
is spatially localized. However, for band structure calcu-
lations, we may entirely circumvent the construction of
MLWFs, and obtain instead a suitably larger but much
more localized Hamiltonian through changing basis sets,
thus improving the accuracy and efficiency of band struc-
ture calculations. This strategy can be particularly effec-
tive for entangled and/or topologically obstructed band
structures.

Our method is called Hamiltonian transformation
(HT), which is a combination of eigenvalue transfor-
mation and changing basis sets. It has a functional-
independent time complexity of O(N2Nylog(Ng)). As
an accurate, efficient, and parameter-free method for
band structure calculations, HT can be applied to both
DFT and post-DFT calculations.

Eigenvalue transformation — In addition to the well
known MLWF's which optimizes the basis functions, there
is another direction to localize Hamiltonian: eigenval-
ues. An example of 1-D atomic chain could show the
effect of eigenvalue transformation, whose Hamiltonian
T is the tridiagonal Toeplitz matrix [53]. Fig. 1(a) is T,
its main diagonal elements are 1, lower and upper diag-
onal elements are 0.5, other elements are 0. Atoms only
interact with nearest neighbours, which means T is lo-
calized. Fig. 1(b) is the eigenvalue spectrum of T. The
SCF calculation can only obtain the lowest few eigen-
values and corresponding eigenvectors, here we assume
only eigenvalues smaller than 1.5 is obtained. Fig. 1(c) is
the spectrally truncated Hamiltonian reconstructed from
SCF eigenvalues and eigenvectors, and Fig. 1(d) is its
eigenvalue spectrum. It is clear that the reconstructed T'
in Fig. 1(c) is no longer localized. In fact, the localized T
has nonlocal eigenvectors, and the eigenvectors oscillate
between positive and negative and cancel each other out
away from diagonal. When some eigenvalues are trun-
cated, the remaining corresponding eigenvectors cannot
cancel each other out, therefore the reconstructed 7T is
delocalized.

A key observation is that we can shift down the re-
maining eigenvalues by 1.5 to localize T', which is ver-
ified in Fig. 1(e) and (f). If we ignore elements whose
magnitude smaller than 0.01, the reconstructed 7' can
be taken as banded matrices with a band width of 20 in
Fig. 1(c) and a band width of 3 in Fig. 1(e). Note that
the eigenvalue spectrum is discontinuous before shifting
and is continuous after shifting. We may further expect
that a nonlinear transformation f which makes the eigen-
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Fig. 1. Transforming eigenvalues of tridiagonal Toeplitz ma-
trix could affect its localization. The matrices generated by
different eigenvalue spectra show different localization prop-
erties.

value spectrum smoother could generate a more localized
Hamiltonian.

To identify such a function f, the first step is define
decay radius r to quantitatively describe the localization
of the Hamiltonian with k-point sampling

r = sup {||R||2 : H}gx |Hg,ij| > t} , (2)

where ¢t > 0 is a threshold. Furthermore, we need a
functional F' which gives the upper bound of H;; after
transformation:

F(f,li = j|] = sup {|f(H)i| : H' = H,o(H) € [-1,1]},

(3)
where o is eigenvalue spectrum. Analyzing localization
property of a general Hermitian matrix is extremely dif-
ficult, but the task is easier for an infinite large system
whose Hamiltonian is a sparse matrix without k-point
sampling. In this case, for the Hamiltonian discretized
in real space, Eq. 2 can be simplified to

r=sup{|i —j|: [Hy| >t} (4)

For a banded Hermitian matrix H with eigenvalues in
the interval [—1, 1], we have (Supplemental Material ??):
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where 1,7 satisfy mk < |i — j| < m(k + 1), m is the
bandwidth of H, ¢ is a factor normalizing F[f, 0] to 1.
With F', we are able to verify the conjecture. It can be
shown that for sufficient large |i— j| and a n-differentiable
function f, |f(H);;| decays at least polynomially with a



rate ~ |i — j|~("*1) (Supplemental Material ??). The re-
sult does not require that f(H) actually decays polyno-
mially away from the main diagonal, but only that f(H)
is bounded above in a polynomially decaying manner.

Then we study the form of f. It will be shown later
that optimizing f is a multi-objective problem, and it is
hard to decide which form of f is the best, thus a practical
approach is designing a group of f and comparing their
effects. The f is designed by derivative:

r—e< —a
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Here ¢ is the maximum eigenvalue in the SCF calculation,
erf(x) is error function, a > 0 is a constant denoting the
width of transition region, n is to control the smoothness
of f, the larger, the smoother. Without loss of generality,
we assume € = 0 in the following discussion. The image of

o.n () is shown in Fig. 2(b), and f, ,,(2) can be obtained
by integral, whose formula is provided in Supplemental
Material ?? with image shown in Fig. 2(a).

(a) fan
‘1 | x
— n=1
n=2
n=3
— n=4
-0.5 X
(c) Flfank]

Discontinuous spectrum

Continuous but

Magnitude

1 1
5 10 15 20

1 )k

Distance from main diagonal

Fig. 2. Transform function and its effect. (a) Transform func-
tion fan(z). (b) fa,n(z). Transition region width a = 1. (c)
Decay properties of the m-banded Hermitian matrix H after
transformation, |fa,n(H)ij| < CanF[fan, k], mk < |i —j| <
m(k + 1), ca,n is a factor normalizes F[fq,n,0] to 1.

Substituting f,, into F' in Eq. 5, we can obtain the
results shown in Fig. 2(c). The black solid line is ob-
tained by setting ¢ = 0.5 in fj, that makes eigenvalue
spectrum discontinuous; it does not decay to 0 at all!
This phenomenon arises from approximating a discon-
tinuous function. No matter how large the supercell is,
there are always some extreme cases that a localized SCF

Hamiltonian have a decay radius proportional to the size
of supercell after spectral truncation. The black dashed
line is F[fo.n, k] with a continuous but not differentiable
spectrum; it decays fast when k < 2, but slower for
larger k. The colored solid lines are F[f1,,k]; here we
only plot the a = 1 case since nonzero a generate simi-
lar images of F' after scaling, but the larger a makes F
decreases faster (Supplemental Material ??). The col-
ored lines decay much faster than the black dashed line,
which means the transform function f;, works better
than shifting. When k is sufficient large, larger n makes
fin(x) smoother and makes F[fin,k] decreases faster,
which is in consistent with the conjecture. But when k
is small, smaller n makes F[fi ., k] decreases faster.

The decay radius r can be obtained from Fig. 2(c).
If we set threshold ¢t = 0.01, n = 1 corresponds to the
minimum r = 5m; if we set ¢ = 0.001, n = 3 generates
the minimum r = 8m, for m being the bandwidth of
H. There is a trade-off between decay radius and the
number of bands in choosing a and n. For larger a and
n, F[fan, k] decreases faster and have a smaller decay
radius, but f;}(x) is more ill-conditioned near 0 and
will introduce more error near the top bands, so that we
have to prepare more bands in the SCF calculation. On
the contrary, smaller ¢ and n make F|[f, ,, k| decrease
slower but could reduce the deformation of top bands.
Our experience shows that f, , performs well for n =3
and

a= 4(mlixx(eik) - mkin(sik)), (7)

where 7 is the band index of the top band.

Hamiltonian transformation — With the transforma-
tion of eigenvalues, the decay radius r; of eigenvalues-
truncated Hamiltonian H; is reduced to r3, as shown in
Fig. 3. But the size of f(Hy) is N, x N,., N, is the num-
ber of real space grids per unit cell, which is too large
for interpolation. Projecting Hamiltonian into subspace
spanned by N,, WFs could obtain a N,, x N,, Hamilto-
nian matrix, but the projection will increase decay radius
by 2r,, where r,, is the decay radius of WFs (proof in
Supplemental Material ??). The spreads of MLWF's con-
verge quite slowly with respect to k-point density [35],
which means r,, cannot be ignored.

Band structure interpolation does not necessarily re-
quire a minimal set of orbitals with a smooth gauge. We
can circumvent the construction of MLWFs and reduce
the size of the original Hamiltonian matrix by chang-
ing large plane-wave basis sets to a relatively small k-
independent numerical basis sets:

U = [thie, (1), -+ ey, (1)] = QC. (8)

Here vy, (r) is a N, x N, matrix (N, is the number of
bands) obtained by truncating orbitals from the super-
cell into the unit cell with R = 0, ¥ is obtained by
concatenating vy, (r) with a dimension of N, x NN, @
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Fig. 3. The sizes and decay radii of different Hamiltonians.
For interpolation, smaller matrix size is faster, and smaller
decay radius is more accurate.

is basis sets with IV,, orthonormal columns, and C' is new
orbitals (details in Supplemental Material ??). Through
this decomposition, the original N, x N, Hamiltonian
matrix is reduced to N, x N, without increasing decay
radius. When all valence bands are included, we find
that Ny, N,, N, along the z-axis of Fig. 3 typically sat-
isfies N,,/N, ~ 0.01 ~ 0.1, and N,,/N,, =~ 0.1 (details in
Supplemental Material ??). N, can be further reduced if
we discard some deep valence bands disentangling with
desired bands.

Combining eigenvalue transformation and changing
basis sets, we propose Hamiltonian transformation
method to calculate band structures, which is outlined
in Algorithm 1.

Algorithm 1: Hamiltonian transformation

Input : uniform grid {k}, nonuniform path {q},
eigenvalues {e;k}, eigenvectors {¢ix(r)}
Output: {eiq}

1. Change basis sets

U = [k, (r), ..., 1/)ka (r)] =QC
2. Transform eigenvalues
Eix = fleix)

3. Construct quasi-Hamiltonian
Mic(p, v) = 32 EncClirenCiliey
4. Fourier interpolate quasi-Hamiltonian
Mq(p,v) = 1\%C Zk,R M (p, V)ei(k_(vR
5. Diagonalize quasi-Hamiltonian
Mqg(p,v) =32, €iqCianCiaw
6. Recover eigenvalues

€iq = fﬁl(éiq)

Numerical results — Numerical tests are performed to
compare the accuracy and efficiency of HT and WI, and
the results are shown in Fig. 4. The detailed computa-
tional parameters are provided in Supplemental Mate-
rial 7?. Here the WI+trans method is a combination of
WI and transformation shown in Fig. 3, which transform
eigenvalues first, then perform WI and inverse transform
eigenvalues.

Fig. 4(a) and (b) are the band structures of silicon and
FeBs calculated by GW and Perdew-Burke-Ernzerhof

(PBE) [7] functional, respectively. FeBs is a topological
nontrivial Weyl semimetal [54]. Red points are bench-
marks, inteqp is a method in BerkeleyGW [55], which
requires the orbitals on fine k-point grids that cannot be
taken as a general band structure calculation method. In
both figures, WI (orange lines) show visible errors, but
the results get better with transformation (green lines),
and HT band structures (blue lines) are the best, which
agree well with red points. The transformation usually
causes some errors near top bands, which can be at-
tributed to the entanglement between the top bands and
higher missing bands. It can be resolved by setting a bit
more bands and discarding them later. The top bands
generated by HT have been discarded in Fig. 4(a).

Fig. 4(c) shows the mean absolute error (MAE) of the
lowest 8 bands of silicon with PBE functional. The n
comes from transform function f,,. The transforma-
tion improves the accuracy of WI significantly. HT is
more accurate than WI and WI+trans, and its accu-
racy can be improved systematically by increasing Nj.
These phenomena can be explained by decay radius. In
Fig. 3, the decay radii of WI, WI+trans and HT are
r1 + 27y, T2 + 2r, and ro, respectively, which satisfy
1+ 2ry > 19 + 21y > ro. A smaller decay radius cor-
responds to a more localized Hamiltonian, thus the in-
terpolation is more accurate. Furthermore, the MAEs of
HT in Fig. 4(c) show similar decay patterns as the lines
in Fig. 2(c), when Nj is small, smaller n has smaller
MAE; when Ny, is large, larger n has smaller MAE. This
similarity further verifies our theoretical derivations.

In Fig. 4(d), we build supercells based on the unit
cell of Sig, change the number of electrons and k-points
to test the time complexity of HT and WI. Parallel is
disabled here. The tested time complexity of HT is
O(NZ24N}1), which is slightly smaller than theoretical
value O(N3 Ny log(Ny)) (details in Supplemental Mate-
rial ?7?), since N, is not large enough. WI has a simi-
lar scaling to HT, but its prefactor is larger, since the
Wannier localization procedure converges very slowly for
entangled bands. Though N, is larger than IV, in Fig. 3,
HT circumvents MLWF's so it does not involve any opti-
mization and is faster.

Conclusion and Outlook — Hamiltonian transformation
is a parameter-free, functional-independent, fast and ac-
curate band structure calculation method. For band
structure calculations, HT can outperform WI using the
same number of k-points for SCF calculations. The
eigenvalue transformation can also be used to improve
the accuracy of WI for systems with entangled bands
to construct localized orbitals. Our current OpenMP
based implementation of Hamiltonian transformation is
already applicable to systems with hundreds of elec-
trons. Symmetry-adapted Hamiltonian transformation
and applications to the projector augmented wave (PAW)
method [56] with nonorthogonal orbitals will be our fu-
ture works.
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Fig. 4. The accuracy and efficiency of HT and WI. (a) GW band structure of silicon. (b) Band structures of Weyl semimetal
FeB>. (c) Mean absolute error of the lowest 8 bands of silicon. (d) Time complexity with respect to the number of electrons

(Ne) and SCF k-points (Ny); parallel is disabled.
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S1. DECAY PROPERTIES OF TRANSFORMATION

The basic idea of analyzing decay properties of a sparse matrix is approximating the transform function f using
polynomials and analyzing the expansion coefficients. Similar ideas were adopted to study the sparsity of density
matrix [1, 2].

Consider a m-banded matrix H such that:

1. H is a Hermitian matrix.
2. The eigenvalue spectrum o(H) is contained in the interval [—1, 1].
3. There is an integer m > 0, so that H;; =0 if |[¢ — j| > m.

Although H is limited to banded matrix here, our results in this section can be extended to general sparse matrices as
long as we associate H with a degree-limited and sparsely connected graph [2]. Therefore we can take the m-banded
matrix H as the SCF Hamiltonian.

We define the kth best approximation error of a transform function f € C[—1,1] as

Bu(f) = inf{ max | f(z) — p(a)] : p € Pk}, (s1)

—1<z<1

where Py, is the subspace of algebraic polynomials of degree at most k in C[—1,1]. Let 4,j indices satisfy mk <
|t — 7] < m(k+1), for any px € Pi, we have

[f(H)iz| = |[f (H) — pr(H)lij |

< FCH) = pe(H)]l, = max |£(z) = p()] (2)
< _max |f(x) = pr(2)]
which means that
[f(H)ij| < Ex(f). (S3)

In Eq. S2 we have used

|| Az||
[Aijl < D 1A512 = || Aejl, < sup 2 =14, (S4)
; z#£0 H:c||2

The exact expression of the optimal py, is unknown. While we can approximately achieve Ei(f) using Chebyshev
polynomials. Approximation theory guarantees that Chebyshev polynomials are nearly optimal. The error bounds
for the Chebyshev series are known for smooth functions [3, 4]. Here we calculate exact error bounds for some specific
functions.

* whuustc@Qustc.edu.cn
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The expression of f in the Chebyshev polynomials basis sets is

F(x) = goo+ D o), (35)
1=1
o = 2 /7r f(cosB) coslfdo, (S6)
T Jo

where Tj(x) is the Ith Chebyshev polynomial of the first kind. As a result, the decay properties of f(H) can be
estimated using

|f(H)ij| < Ex(f) < Z a1 (z)
I=k+1 re[~1,1]
o0 (S7)
_2 Z cosl@/ f(cost)coslt dt
i I=k+1 0 0€(0,n)

In numerical calculations, Eq. S5 is adopted to simplify Z;il to Zlf

S2. ANALYTICAL SOLUTION OF DECAY PROPERTIES

Here we provide an analytical solution of the decay properties of the m-banded matrix H with a simple transform
function

—(—x)" <0
n = ) S8
ule) {O " (59
where n € N.
According to Eq. S6,

2 s
Qapy = —*/ (—cos®)" cosl0db. (S9)

L

2

The closed-form of oy 4, is quite complicated, but it turns simpler when [ > n. In this case, it is easy to prove

2 sin(%’)
=27 S10
Qo =l ) ( )
2 cos(1x)
= —F S11
T @y (811)
and the recurrence relation
_n(n — 1)0([ n—2
n= A= J%in=2 S12
A (+n)l—n) (S12)
using integration by parts. Thus
0! si (I+n)m
Un mein(e ) s, (S13)

™= 1ol —n+2s)



We have

> aaTi(x)

I=k+1
 2n! i sin(%) cos(l +n)b
T izt —nt1 [Ti—o(l +25)
(S14)
_ 2n! i Sin(W) cos(2l +n+1)0
T =t [1h_ (20 +2s+1)
_2n! Z )" cos(20 +n + 1)6
o ||& Iie@+2s+1) ’
where g = [2=2+L |, |z] is floor function and k > n.
We can rewrite Eq. S14 using special function:
27,”! R i (_j)l+nei(2l+n+1)9
T = [ (2l +25s+1)
n! T(ly + %) |: 3 .
- V0T 2) g (2l0+n+1)0F 1.1 + l +n+2 2i0 (815)
2n7rr(zo+n+§) (Ll o+ntgi—e™)
n'r(lo —l— 3
F(1,1 + do4+n4 = =2,
2”77I‘(lo—|—n+ 0 oty ‘
where R is real part, I' is Gamma function, and F' is hypergeometric function defined as
)& (
F(a,b,c;2) Z o k:" (S16)
k=0
I'(a+k)
(a) = W. (S17)
It is clear to see that
3 i ZO —|— .
Fll+ o4+ 55 —e) o)k S18
(1,00 0oTn Zo lo + 12 + ( e™) (S18)
reaches the maximum when ¢ = 7 and all terms of the sum are positive. Thus we have
1,1 N
~2nal(lg + 1+ 3) Fa, °+ o+n i)
 nll(lo+3) 2lp+2n+1
C2nrD(lp +n+ 2) 2n (S19)
n!
T Ze (2l + 25 + 1)
(n—1)!
—— (k> 0).
Sthonzns kzn>0

Recall that mk < |i — j| < m(k + 1), for sufficient large |i — j|, | f(H)i;| decays at least polynomially with a rate
~ |i — j|7™. Note that f, is (n — 1)-differentiable.



S3. NUMERICAL SOLUTION OF DECAY PROPERTIES

With the help of numerical methods, we could study a group of more complicated transform functions:

x+a/2 x < —a
_m2  _nfCerie)?
fa,n(l‘) _ 2a(e” 4 7\6/;71 4a )+(2w+a)(erf(%)—erf(n(%‘i‘%))) Ca<2<0’ (820)
4erf(%) -
0 z>0
where erf(x) is error function.
The decay properties are calculated by
|fa,n(H)ij‘ < Ek(fa,n)
2 || — i
<= Z cos 19/ fan(cost)coslt dt (S21)
I=k+1 3 0e0,n]
:Ca,nF[fa,na k]7

where ¢, , is a factor normalizes F[f, ,0] to 1. Similar to f,, in Eq. S8, f, . also becomes smoother for larger n. We
choose a =1, a = % and a = 1, respectively, and the results are plotted in Fig. S1. Calculations are performed using

1
2 1
Mathematica [5].

(a) (b) (c)

Flf1,n.K] Flfosn.K] Flfo.25,n.K]

Fig. S1. The decay properties of transformed m-banded matrix H, |fa,n(H)ij| < ca,nF[fan, k], mk < |i — j| < m(k + 1), can
is a factor normalizes F[fa n,0] to 1. (a), (b) and (c) corresponds to a = 1, a = 3 and a = 1, respectively. Black dashed lines
are F[fon, k.

In Fig. S1, the black dashed lines are F[fo ,, k|, and colored solid lines are F[f, n, k] with a # 0, we can see that
H decays much faster after transformation. Comparing Fig. S1(a), (b) and (c), their images are similar after scaling,
but the larger a makes F[f, ,,, k| decreases faster. When k is sufficient large, larger n makes F[f, ,,, k] smoother and
makes H decreases faster, which is in consistent with the results of the analytical case. However, when k is small,
smaller n makes H decreases faster.

S4. PROJECTION OF WFS INCREASES DECAY RADIUS

All our discussions in this section are in the infinite large supercell instead of unit cell or finite supercell, and
only isotropic systems are considered for simplicity. Suppose a periodic system with Born—von Karman boundary
condition, its Hamiltonian is

H(r,x'), rr' eQ (522)
where Q! is supercell, and

lim  H(r,r')=0. (S23)

|[r—r’| =00



In the Wannier interpolation, we cannot utilize H directly since its multiplications with eigenvectors are quite time
consuming. In practice, only N, N, eigenvalues ¢;; and eigenvectors v; are available, where N, is the number of
bands, IV; is the number of SCF k-points. The Hamiltonian for Wannier interpolation is

=303 cactue ). (524)

i=1k=1
We choose a threshold ¢ > 0 and define the decay radius rg of H(r,r’) as
ro =sup{|r —r'| : |[H(r,x")| > t}, (S525)

and define the decay radius of H; as r; similarly.

The localization property of Hj is worse than H, which means r > rg. For the disentangled bands, H;(r,r’)
usually decays rapidly, the difference between ry and r; can be ignored. However, for the entangled bands, r; is
usually significantly larger than rg. Of course, we can define a new objective function that describes the locality
of Hamiltonian, then localize Hamiltonian with iterative methods to obtain the “maximally localized Hamiltonian”.
However, the size of Hamiltonian is large, and localizing the Hamiltonian is much more expensive than localizing
Wannier functions.

Wannier interpolation projects H; to the subspace spanned by ¢;x:

(™) i = Z/wm drdr' Vi, 03 (0) o (0, 1) (r) Vi o

,j=1
= / drdr’ ¢%,, (v)Hy (v, v ) i () (S26a)
Qlx Q!
b
= Z EikViika,im (S26b)

=1

where 1 < m,n < N, N, (< Np) is the number of Wannier bands, Vi i, is a k-dependent N, x N,, gauge matrix
combines disentanglement and maximal localization, ¢,k (r) is the Wannier-gauge Bloch states defined as

¢mk Z wzk Vk Jime- (827)

Eq. S26a and 526b are two equivalent expressions of H*". Eq. S26a is used in our following analysis, and Eq. S26b
is the actual formula adopted in the Wannier interpolation.
Considering the projected Hamiltonian in real space,

(™) = F (HR™) o = drdr’ (6, _g)(r) ® dur(r')) Hy(r,1'), (528)

1
VN Jaixat

where F~1! is inverse Fourier transform on the Bravais lattice vector R (not on r), ® is convolution along R. ¢,,r(r)
is Wannier function which satisfies

$mr(r) = F ! (dmi(r))

F Z e*Rp 1 (r), rel (S29)

The last equality of Eq. S28 can be proven by

1
T oo 22 (O () @ 0 (x)) ()

1 *
:\/77 - drdr’ Z QSm(_Rl)(I‘)¢n(R_R1)(I‘/)H1 (r,r")
X Rl

1 . .
=7 / drdr’ Z ¢>:nk1 (r)elkl'Rl ¢nk(r/)61k-(R—R1)H1 (r, I'/) (S30)
N, Qlx Q! Ri ok

:\/LNTZ/W . drdr’ ¥, (v)Hy (r, 1) i (r')e B
K x gt

:f—l(Hl\;van>mn.



We define the decay radius r,, of Wannier function ¢,,r(r) as
rw = sup{[r| : [¢mo(r)| = t}, (S31)

and define the truncated H; and q~$ as

Hi(r,r) = {éﬁ(r,r') I: - Z: i 2 ’ (S32)
B(x) = {ﬁ(” H e (33)

Thus
(™) i = (™) + O(1) = ﬁv /Q e (5, (1) @ () () £O(). (S34)

ﬁl"{an # 0 requires

r—r'| <r
r+Ry| <1y (S35)
|rI_R+R1| < Tw,

which means that
IR| < ry+ 2ry. (S36)

Strictly speaking, we only provide an upper bound here and cannot guarantee the upper bound is always reached.
The convolution of two functions may have a smaller decay radius if their spectra have non-intersecting supports.
However, the supports of Hamiltonian and Wannier functions in reciprocal space usually take up the whole cut-off
sphere and coincide with each other. We can expect Hg*" have a decay radius of r; + 2r,, in most cases.

S5. CHANGING BASIS SETS

To reduce the size of basis sets, we expand the original orbitals 1 in the auxiliary basis @, (r):

Yik(r) = i Qu(r)Ciky- (S37)

Here 1(r) = e*Tu;(r), but r is restricted to the unit cell with R = 0. Noting that Q,(r) is independent of k,
orbitals at all k-points share the same auxiliary basis, and changing to this basis sets will not affect the decay radius
of Hamiltonian.

Ny Ny NyNy N,

Ny Ny Np
’ M '
U, |V, [V, [¥ I:> Ny n’ |:> N,
fey | ko |Fhs [Fky NyNy

Fig. S2. Graphical representation of changing basis sets through QRCP. Equivalent to Eq. S38.

Changing basis sets is performed by QR factorization with column pivoting (QRCP) [6]:
Ul =QR < ¥ =QRII" =QC. (S38)



Fig. S2 is the graphical representation of Eq. S38, where ¥ is a N, x NN, matrix obtained by concatenating all ¥
along the N, dimension, @ is a N, x N, matrix whose columns are orthonormal, R is an upper triangular matrix,
and II is a permutation matrix. II permutes columns of ¥ such that the magnitudes of the diagonal elements of R are
in a nonincreasing ordering. The magnitudes of diagonal elements of R indicate the importance of the corresponding
rows of R and columns of (). We denote N, as the number of diagonal elements of R larger than a threshold. N, is
the numerical rank of space spanned by the lowest IV, orbitals of all k-points; it will tend to be a constant multiple
of N even if Ny, approaches infinity.
The Hamiltonian can be written as

Hi(r,v') =Y Qulr) Mic(p, v)Q5(x'), (S39)
%
Ny
Mic(p,v) = > eacCiruClicy- (540)
=1

Considering the Fourier interpolation of Eq. S39,

1 .
Hfl(ra rl) = F Z Hk(ra r/)el(kiq)R
kR

= 3 Q) 2 M ) I3 (s41)
HY kR
= Z Qlt(r)Mq(,Lt, I/)Qz (r/)_

We can see the Fourier interpolation of a N, x N, matrix Hy(r,r’) is simplified to that of a N, x N, matrix My (u,v).

When the projector augmented wave method (PAW) or ultrasoft pseudopotentials are adopted, orbitals are
nonorthogonal. Hamiltonian transformation method is still available as long as we replace 1 with S %wk, where S is
the overlap matrix independent of orbitals and k-points.

S6. THE SIZE OF N,

We perform some tests to study the relationship between N,, N,, N, and N,,. The system is silicon, generalized
gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) [7] functional is adopted, cutoff energy is 100 Ry.
n = 3 for transform function. The SCF FFT grid is 48 x 48 x 48, in HT we adopt a coarse grid for orbitals, which is
25 x 25 x 25, so N,. = 15625. Here we do not perform WI, but the mean absolute error (MAE) considers the lowest 8
bands, it is equivalent to N,, = 8.

We sort the diagonal values of R in QRCP according to their absolute values, assuming the largest as 1, and ignore
those smaller than ¢;. The relationship between ¢, N,, N, and MAE is shown in Fig. S3. If ¢ is fixed, N, tends to
a constant when Ny, is large enough. When IV, = 27, N, = 90 could reach the maximum accuracy; when IV, = 1000,
N, =~ 225 could reach the maximum accuracy. In this case, we have N, ~ 0.01N, and N, ~ 20N,,. In the QRCP
procedure we consider 14 bands, i.e. N = 14. If N is reduced to 10, N, can be smaller. N, /N, is also dependent of
cutoff energy, the higher cutoff energy corresponds to smaller N,/N,. From our experience, N, /N, ~ 0.01 ~ 0.1 in
most cases.

S7. COMPUTATIONAL METHODS

Our Hamiltonian transformation method is implemented in Quantum ESPRESSO [8-10], DFT calculations are
performed by Quantum ESPRESSO. The quasi-particle energy in the GW level is calculated by BerkeleyGW [11, 12].
Wannier interpolations are performed by Wannier90 [13].

We adopt optimized norm-conserving Vanderbilt (ONCV) [14] pseudopotential in all calculations. Selected columns
of the density matrix (SCDM) method [15-17] is used for Wannier interpolation if not specified otherwise. In
Fig. 7?(a), the unit cell of silicon contains two silicon atoms, k-point mesh is 5 x 5 x 5, cutoff energy is 25 Ry,
and we use sp® projection for Wannier interpolation. In Fig. ??(b), k-point mesh is 11 x 11 x 1, cutoff energy is
50 Ry, SCDM-p is 2, SCDM-¢ is 1. In Fig. ??(c), generalized gradient approximation of Perdew-Burke-Ernzerhof



(a) (b) 4
2754 /./-—-———' ° Je.
® ] \
A (3
250 ./ | '\. .
>
2254 @ 102 5
s 3 . .
200 @ . L \.
o i
3 -
2 =}
L N e .
‘ ® 1074 o\
150 c ] NN\,
. — P 1 —— &=0.001 \ Nd
125 o® e ° = E &=0.003 |, o
== &=001 =\ /
100 - 104 - —e— £:=0.03 \./«\
0g-9—0—0——0—° g i —e— £=0.1
T T T T T T T T T — T T T T
0 250 500 750 1000 102 103
Nk N/(

Fig. S3. The relationship between €, N,, Ny and MAE.

(GGA-PBE) [7] functional is adopted, cutoff energy is 100 Ry, SCDM-p is 10, SCDM-o is 2. The mean absolute error
(MAE) calculation considers k-points between I' and X. In Fig. ??(d), GGA-PBE functional is adopted, cutoff energy
is 10 Ry.

S8. TIME COMPLEXITY

The theoretical time complexity of Hamiltonian transformation is shown in Table S1. Its computational bottle-
neck lies in randomized QRCP and iterative diagonalization, which have time complexities of O(N(N, + NyNy))
and O(NﬁNqu), respectively. At present, randomized QRCP, NUFFT, and iterative diagonalization are not yet
implemented in our code. They are temporarily replaced by QRCP, matrix multiplication, and direct diagonalization,
respectively.

If we assume N,, N, Ny proportion to the number of electrons N, and N, is constant, the total time complexity
of Hamiltonian transformation is O(N2 Ny, log(Ny)). Here the log(Ny) term comes from fast Fourier transform, which
has a small preconstant and is neglectable in most cases.

Table S1. The theoretical time complexity of Hamiltonian transformation. NV, is the number of real space grids, IV, is the size
of new basis sets, N is the number of SCF k-points, N, and N, are the number of bands and k-points in the band structure
calculation.

Operation Algorithm Time complexity
Change basis sets Randomized QRCP O(NZ (N, + NyNy))
Build Hamiltonian Matrix multiplication O(N2NyNy)

Fourier interpolation Fast Fourier transform (FFT) O(N; Ny, log(Nk))
Nonuniform FFT (NUFFT) or butterfly factorization O(N/Nglog(Ny))
Diagonalization Iterative diagonalization O(NZNyN,)
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