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Abstract. Low-rank approximations are popular methods to reduce the high computational
cost of algorithms involving large-scale kernel matrices. The success of low-rank methods hinges on
the matrix rank of the kernel matrix, and in practice, these methods are effective even for high-
dimensional datasets. Their practical success motivates our analysis of the function rank, an upper
bound of the matrix rank. In this paper, we consider radial basis functions (RBF), approximate the
RBF kernel with a low-rank representation that is a finite sum of separate products, and provide
explicit upper bounds on the function rank and the Lo error for such approximations. Our three
main results are as follows. First, for a fixed precision, the function rank of RBFs, in the worst
case, grows polynomially with the data dimension. Second, precise error bounds for the low-rank
approximations in the Loo-norm are derived in terms of the function smoothness and the domain
diameters. And last, a group pattern in the magnitude of singular values for RBF kernel matrices is
observed and analyzed and is explained by a grouping of the expansion terms in the kernel’s low-rank
representation. Empirical results verify the theoretical results.
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1. Introduction. Kernel matrices [38, 7, 6] are widely used across fields includ-
ing machine learning, inverse problems, graph theory, and PDEs [39, 29, 20, 22, 21, 34].
The ability to generate data at the scale of millions and even billions has increased
rapidly, posing computational challenges to systems involving large-scale matrices.
The lack of scalability has made algorithms that accelerate matrix computations par-
ticularly important.

There have been algebraic algorithms proposed to reduce the computational bur-
den, mostly based on low-rank approximations of the matrix or certain submatri-
ces [39]. The singular value decomposition (SVD) [18] is optimal but has an undesir-
able cubic complexity. Many methods [25, 19, 23, 30, 9, 17, 8, 43] have been proposed
to accelerate the low-rank constructions with an acceptable loss of accuracy. The
success of these low-rank algorithms hinges on a large spectrum gap or a fast decay
of the spectrum of the matrix itself or its submatrices. However, to our knowledge,
there is no theoretical guarantee that these conditions always hold.

Nonetheless, algebraic low-rank techniques are effective in many cases where the
data dimension ranges from moderate to high, motivating us to study the growth
rate of matrix ranks in high dimensions. A precise analysis of the matrix rank is
nontrivial, and we turn to analyzing its upper bound, that is, the function rank of
kernels that will be defined in what follows. The function rank is the number of terms
in the minimal separable form of K(x,y), when K is approximated by a finite sum
of separate products h;(x)g;(y), where h; and g; are real-valued functions. If the
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function rank does not grow exponentially with the data dimension, neither will the
matrix rank.

If, however, we expand the multivariable function K(x,y) by expanding each
variable in turn using r function basis (per dimension), i.e.,

T
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where g,(c““) and h,(;’“), respectively, are the i,th function bases in dimension k for x
and y, then, the number of terms will be 2¢, which grows exponentially with the data
dimension. The exponential growth is striking in the sense that even for a moderate
dimension, a reasonable accuracy would be difficult to achieve. However, in practice,
people have observed much lower matrix ranks. A plausible reason is that both the
functions and the data of practical interest enjoy some special properties, which should
be considered when carrying out the analysis.

The aim of this paper, therefore, is to analytically describe the relationship be-
tween the function rank and the properties of the function and the data, including
measures of function smoothness, the data dimension, and the domain diameter. Such
relation has not been described before. We hope the conclusions of this paper on func-
tions can provide some theoretical foundations for the practical success of low-rank
matrix algorithms.

In this paper, we present three main results. First, we show that under common
smoothness assumptions and up to some precision, the function rank of radial basis
functions (RBF) kernels grows polynomially with increasing dimension d in the worst
case. Second, we provide explicit Lo, error bounds for the low-rank approximations
of RBF kernel functions. And last, we explain the observed “decay-plateau” behavior
of the singular values of smooth RBF kernel matrices.

1.1. Related work. There has been extensive interest in kernel properties in a
high-dimensional setting.

One line of research focuses on the spectrum of kernel matrices. There is a
rich literature on the smallest eigenvalues, mainly concerning matrix conditioning.
Several papers [1, 27, 31, 32] provided lower bounds for the smallest (in magnitude)
eigenvalues. Some work further studied the eigenvalue distributions. El Karoui [11]
obtained the spectral distribution in the limit by applying a second-order Taylor
expansion to the kernel function. In particular, Karoui considered kernel matrices
with the (i,)th entry K(x}x;/h?) and K(|x; — x;||3/h?) and showed that as data
dimension d — oo, the spectral property is the same as that of the covariance matrix
LXXT. Wathen and Zhu [40] described the eigenvalue distribution of RBF kernel
matrices more explicitly. Specifically, the authors provided formulas to calculate the
number of eigenvalues that decay like (1/h)?* as h — oo for a given k. This group
pattern in eigenvalues was observed earlier in [14] but with no explanation. The same
pattern also occurs in the coefficients of the orthogonal expansion in the RBF-QR
method proposed in [12]. There have also been studies focusing on the “flat-limit”
situation where h — oo [10, 33, 13].

Another line of research is on developing efficient methods for function expansion
and interpolation. The goal is to diminish the exponential dependence on the data
dimension introduced by a tensor-product based approach. Barthelmann, Novak, and
Ritter [2] considered polynomial interpolation on a sparse grid [15]. Sparse grids are
based on a high-dimensional multiscale basis and involve only O(N (log N)?~!) degrees
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of freedom, where N is the number of grid points in one coordinate direction at the
boundary. This is in contrast with the O(N9) degrees of freedom from tensor-product
grids. Barthelmann showed that when d — oo, the number of selected points grows
as O(d¥), where k is related to the function smoothness.

Trefethen [37] commented that to ensure a uniform resolution in all directions,
the Euclidean degree of a polynomial (defined as ||| for a multi-index ) may be
the most useful. He investigated the complexity of polynomials with degrees defined
by 1-, 2-, and oo-norms and concluded that by using the 2-norm we achieve similar
accuracy as with the co-norm, but with d! fewer points.

1.2. Main results. In this paper, we study RBFs. RBFs are functions whose
value depends only on the distance to the origin. In our manuscript, for convenience,
we will consider the form K(x,y) = f(||x — y||§) The square inside the argument of
f is to ensure that if f is smooth, then the RBF function is smooth as well. If we
instead use K(x,y) = f(||lx — y|l5) and pick f(u) = u, for example, the kernel K is
not differentiable when x =y.

We define the numerical function rank of a kernel K(x,y) related to error €, to
which we will frequently refer.

Re=min{r |3 {hi}iy g}, stV xy €RY,

Kiey) - Y aibhuty)| < o).

where h; and g; are real functions on R?, and the separable form >._, g;(x)h;(y) will
be referred to as a low-rank kernel or a low-rank representation of rank at most r.
Note that the rank definition concerns the function rank instead of the matrix rank.

Our two main results are as follows. First, we show that under common smooth-
ness assumptions of RBFs and for a fixed precision, the function rank for RBF ker-
nels is a polynomial function of the data dimension d. Specifically, the function rank
R = O(d?), where q is related to the low-rank approximation error. Furthermore,
precise and detailed error bounds will be proved.

Second, we observe that the singular values of RBF kernel matrices form groups
with plateaus. A pictorial example is in Figure 1. There are five groups (plateau) of
singular values with a sharp drop in magnitude between groups; the group cardinalities
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Fic. 1. Group patterns in singular values. The singular values are normalized and ordered s.t.
1=012>092>---2> 0on. The data were randomly generated in dimension 6 with default random seed
in MATLAB. The legend shows the data size and the kernel functions: Cauchy (1/(1+ ||z — yHg))

and Gaussian (exp(— ||z — yHg))
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are dependent on the data dimension but independent of the data size. We explain
this phenomenon by applying an appropriate analytic expansion of the function and
grouping expansion terms appropriately.

1.3. Organization. This paper is organized as follows. Section 2 presents our
theorems concerning the function rank of the approximation of the RBF kernel func-
tion and the L., error bound of the approximations. Section 3 provides the theorem
proofs. Section 4 shows that for a fixed precision, the polynomial growth rate of the
derived rank cannot be improved. Section 5 verifies our theorems experimentally. Fi-
nally, in section 6, we investigate and discuss the group pattern in the singular values
of RBF kernel matrices.

2. Main theorems. In this section, we present theorems concerning the func-
tion rank and function and data properties. Each theorem approximates the RBF
kernels in the L,,-norm with low-rank kernels where the function rank and the error
bound are given in explicit formulas. We briefly describe the theorems and then delve
into further details.

The first four theorems consider kernels with two types of smoothness assump-
tions, and for each type, we present the deterministic result and the probabilistic result
in two theorems, respectively. The probabilistic results take into account the concen-
tration of measure for large data dimensions. The separable form is obtained by ap-
plying a Chebyshev expansion of f(z) followed by a further expansion of z = ||x —y]||3.

The key advantage of this approach is that the accuracy of the expansion only
depends on |x — y||3 instead of (x,y), which lies in a d-dimensional space. Assume
we have expanded f(z) to order n with error e. Then, we substitute z = ||x — y||3,
expand the result, and rearrange the terms to identify the number of distinct separate
products of the form A(x)g(y) in the final representation. This number becomes our
upper bound on the function rank.

The theorems show that for a fixed precision, the function rank grows polyno-
mially with data dimension d, and that the L., error for low-rank approximations
decreases with decreasing diameter of the domain that contains x and y.

The last theorem considers kernels with finite smoothness assumptions. The
separable form is obtained by applying a Fourier expansion of f(z) followed by a
Taylor expansion on each Fourier term. Additional to what the previous theorems
suggest, the formulas for the error and the function rank capture subtler relations
between different parameters, and the theorem shows that the error decreases when
the diameter of the domain that either contains x or contains y decreases. Before
presenting our theorems, we introduce some notation.

Notation. Let E(-) and Var(-) denote the expectation and variance, respectively.
Let 267'9 + 726729

E, =: {z Y A 2/7 |9 € [O,QW)}
be the Bernstein ellipse defined on [—1, 1] with parameter p?, an open region bounded
by an ellipse. For an arbitrary interval, the ellipse is scaled and shifted and is referred
to as the transformed Bernstein ellipse. For instance, given an interval [a, b], let ¢(x)
be a linear mapping from [a,b] to [—1,1]. And the transformed Bernstein ellipse for
[a,b] is defined to be ¢~!(E,z2). In this case, the parameter p? still characterizes the
shape of the transformed Bernstein ellipse. Therefore, throughout this paper, when
we say a transformed Bernstein ellipse with parameter p?, we refer to the parameter of
the Bernstein ellipse defined on [—1,1]. Let the function domain be Qx xQy C RIxR?,
and we refer to Qx as the target domain and €1y as the source domain. We assume
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the domain is not a manifold, where lower ranks can be expected. Let the subdomain
containing the data of interest be Qx x Qy, C {y X Q.

The following theorems assume the bandwidth parameter b in ICp (x,y) = f(||x—
y||3/h?) to be fixed at 1. A scaled kernel K (x,y) will not be considered because it
can be handled by rescaling the data points instead. We start with some assumptions
on the kernel type, function domain, and probabilistic distribution that will be used
in the theorems, and then we present our theorems.

RBF kernel assumption. Consider a function f and kernel function K(x,y) =
f(||x—y||§) with x = (21,...,24) and y = (y1,...,y4). We assume that z; €
[0, D/V/d], yi € [0,D/Vd], where D is a constant independent of d. And this im-
plies ||x — y||3 < D%

Analytic assumption. f is analytic in [0, D?], and is analytically continuable to
a transformed Bernstein ellipse with parameter p% > 1, and |f(z)| < Cp inside the
ellipse.

Finite smoothness assumption. f and its derivatives through (=1 are abso-
lutely continuous on [0, D?] and the gth derivative has bounded total variation on

0,D%], V($£L) <V,

dxd

Probability distribution assumption. x; and y; are independent and identically
distributed (i.i.d.) random variables, with x;v/d € [0,D] and y;v/d € [0, D], and
their second moments exist. Let

1/2

Fi- (iE[(xi )" = (2Bl V)] - 2(Ble VD))

and .
o2 = ZVar[(xi — )2
i=1

Then, E,; € ©(1) with respect to d, i.e., the mean distance between pairs of points
neither goes to 0 nor oo with d. And o2 € ©(2) (a concentration of measure).

THEOREM 2.1. Suppose the RBF kernel assumption and the analytic assumption
hold. Then, for n > 0, the kernel K can be approximated in the Lo,-norm by a

low-rank kernel K of function rank at most R(n,d) = (";ﬁf),

R
(1) K(xy) =Y 0:(x)hi(y) + en = K(X,¥) + €n,
=1

where {g;}E | and {h;} 2., are two sequences of d-variable polynomials. And the error
term €, = €,(D) is bounded as

—2n
(2) len(D)| < 72020/)13 .
pH —1
D

Remark. If an approximation with a given maximal rank r is requested, we need
to select an n(r, d) such that (”("’gi_‘gdﬁ) < r. Then, we obtain an approximation with

—2n
D__ and function rank at most ("(T’ggd“) < r. The low-rank

2C
| < 20peg"
kernel IC is of order 2n, which can be revealed from the explicit form of K in the proof

error |e, (D) 74
(see section 3.2). For the space of d-variate polynomials with maximum total degree
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2n, the dimension is (2”;‘1). In contrast, our upper bound is ("51;2). When d > 4,
our formula becomes favorable for a large range of k.

COROLLARY 2.2. Under the same assumptions in Theorem 2.1 and with n fized,
the low-rank kernel approzimation, for a fized precision €, is achievable with a rank

proportional to d%, where c¢1 and co are positive constants.

The proofs of Theorem 2.1 and Corollary 2.2 can be found in sections 3.1, and
3.2, respectively.

Theorem 2.1 suggests that for some precision €, the function rank grows polyno-
mially with increasing data dimension d, i.e., R = O(d™), where n is determined by
the desired precision €, D, pp, and Cp. This can be seen from R = (";i;ﬂ) with n
fixed and d — oo. B _

For a fixed n and for a subdomain Qy U €y with diameter D < D, the error
bound decreases, namely in the following sense. In this case, the same function f on
the subdomain can be analytically extended to a Bernstein ellipse whose parameter
is larger than p?%, reducing the error bound in (2). Therefore, when the diameter of
the domain that contains our data decreases, we will observe a lower approximation
error for low-rank approximations with a fixed function rank, and similarly, we will
observe a lower function rank for low-rank approximations with a fixed accuracy.

Along the same line of reasoning, for a fixed kernel on a fixed domain, when the
point sets become denser, we should expect the function rank to remain unchanged
for a fixed precision. The result for function ranks turns out to be in perfect agree-
ment with the observations in practical situations on matrix ranks, assuming there
are sufficiently many points to make the matrix rank visible before reaching a given
precision.

We now turn to the case when d is large. Because we have assumed z; and y; to
be in [0, D/V/d], by concentration of measure, the values of ||x — y||3 will fall into a
small-sized subinterval of [0, D?] with high probability. Therefore, we are interested
in quantifying this probabilistic error bound.

THEOREM 2.3. Suppose the RBF kernel assumption and the analytic assumption
hold, and points x and y are sampled under the probability distribution involving D,
04, and Eq in the probability distribution assumption. We define function f(m—E?l) =
f(x). Then, f is analytic in [—E2,D? — E?], with the parameter of its transformed
Bernstein ellipse to be p2, > 1, and \f(x)| < Cp inside the ellipse. Defining the same
error €, as in Theorem 2.1,

R
. n+d+2

D = — . . =
B D) =Koy = S aeont), winn= (" 17),
we obtain that for 0 < § < D, with probability at least

—6td
4 1-2
@) P (203 d+ 8D252/3) ’
the error can be bounded by
2 D2(52, — 52 -n
(D, 8)| < ——— 20 ( (pDQ Pp )> .
D2(py — pp ) — 02 Y

And with the same probability, the distance of a sampled pair will fall into the following
interval:
Ix —yl3 € [E] - 6% E] + 6.
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The proof of Theorem 2.3 can be found in section 3.3.

In Theorem 2.3, as d — o0, § needs to decrease with d to maintain the same
probability. If we choose § = (%)1/4 with C' being a very large number, then the
probability remains close to 1 because 03 = @(%). Moreover, we can keep ¢, small
while reducing n, because § — 0. This means that for sufficiently large d and for a
given error, n goes down as d increases. Asymptotically, n reaches 0, and the function
rank reaches 1. On the other hand, for a fixed n, the error bound decreases when d
increases.

Note that 262 is the size of the subinterval where the values of ||x — YHg’S fall
into with probability given by (4). And, by concentration of measure, with the same
probability, the interval size 262 shrinks with increasing d. This is consistent with what
we have discussed that § needs to decrease with d to maintain the same probability.

The analytic assumption in Theorems 2.1 and 2.3 is very strong because many
RBFs are not infinitely differentiable when the domain contains zero. However, most
RBFs of practical interest are g-times differentiable. In the following theorem, we
weaken the analytic assumption to a finite-smoothness assumption and compute the
corresponding error bound.

THEOREM 2.4. Suppose the RBF kernel assumption and the finite smoothness
assumption hold. Then for n > q, the kernel IC can be approximated in the L.,-norm

by a low-rank kernel K of function rank at most R(n,d) = (";i;rz),

R
’C(X7y) = Zgl(x)hz(y) +en = E(Xay) + €n,

=1

where {g; }E | and {h;} 2, are two sequences of d-variable polynomials. And the error
term €, = €,(Vy, D, q) is bounded as

2V, D24

(5) len (Ve D, q)] < a2 — "

Remark. We can weaken the assumption of f(? having bounded total variation
to f(4=1) being Lipschitz continuous, and this does not impose assumptions on f(%).
With this weaker assumption, we obtain the same error rate O(n~7); however, the
trade-off is the absence of explicit constants in the upper bound (5).

The proof of Theorem 2.4 can be found in section 3.4.

Compared to Theorem 2.1, the convergence rate slows down from a nice geometric
convergence rate O(pp>") to an algebraic convergence rate O(n~%). Each time the
function becomes one derivative smoother (g increased by 1), the convergence rate
will also become one order faster. The domain diameter D affects the error bound

by D??, where ¢ represents the smoothness of the function. For a subdomain with
~ n2
diameter D, it is straightforward to obtain that the error is bounded by %,
and for a fixed n, a decrease in D will reduce the error.
We also consider the phenomenon of concentration of measure and present the
probabilistic result in the following theorem. z; and y; are i.i.d. random variables,

with |z;v/d| < D and |y;v/d| < D, and their second moments exist.

THEOREM 2.5. Suppose the RBF kernel assumption and the finite smoothness
assumption hold. We further assume x and 'y are sampled under the probability dis-
tribution involving D, Eg, and g4 in the probability distribution assumption. Defining
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the same €, as in Theorem 2.4,

R
(Vi 8.0) = Kxoy) = Y asC)ialy) it = (

=1

n+d+2
d+2 )

Then, for 0 < § < D, we obtain the bound

2V,624

len(Vg, 0,q)| < a2 —q)

with probability at least

1-2e —0%d
- X .
P\202d+8D%7/3

The proof of Theorem 2.5 can be found in section 3.4.

Up to now, we have only considered a single parameter D that characterizes the
domain. To make the error bound more informative as in response to subtler changes
of the domain, we also consider the diameters of the target domain Dy and of the
source domain Dy. The following theorem nicely quantifies the influences of Dy and
Dy, on the error. Our result theoretically offers critical insights and motivations for
many algorithms that take advantage of the low-rank property of submatrices, where
these submatrices usually relate to data clusters of small diameters.

THEOREM 2.6. Suppose the RBF kernel assumption holds, and there are Dy < D
and Dy < D such that ||x; — Xj|l2 < Dx and |ly; —y;ll2 < Dy.

Let fy(z) =Y, T o f(x+4nD?) be a 4D?-periodic extension of f(z), where T (-)!
is 1 on [—D?, D?] and smoothly decays to 0 outside of the interval. We assume that Ip

and its derivatives through f,Sq‘l) are continuous, and the qth derivative is piecewise
continuous with the total variation over one period bounded by V.
Then, for My, My > 0 with 9IM; < M;, the kernel K can be approzimated by a

low-rank kernel K of rank at most R(My, M;,d) = 4Mjy (ijd),

R
K(xy) =Y gi(x)hi(y) + enyn, = K(X,¥) + a1,
=1

And the error ey, v, = €nry v, (Dx, Dy, q, p) is bounded by

Dy Dy Mt“+ﬁ 2D\ ¢
D? wq \7Mys)

(eaty a1, (D Dy o)) < 1 (

The proof of Theorem 2.6 can be found in section 3.5.

In contrast to the previous theorems where the domain information only enters
the error as D, in Theorem 2.6, the diameters of the source domain D, and the target
( Dggy )Mt +1

domain Dy also appear in error. The form suggests that a decrease in

DB?" will reduce the error, which can be achieved when either the source or the target
domain has a smaller diameter. This property has motivated people to approach
matrix approximation problems by identifying low-rank blocks in a matrix, which is

partially achieved by partitioning the data into clusters of small diameters.

1See details in [5].
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The function rank still remains a polynomial growth and it grows as R = O(dM¢),
when My and M; are fixed and d — co. My represents the Fourier expansion order
of f, and each term in the expansion is further expanded into Taylor terms up to
order M;. We assumed M; to be the same across all the Fourier terms for simplicity.
If we decrease the Taylor order M; with increasing Fourier order to preserve more
information of low-order Fourier terms, then a lower error bound can be attained for
the same function rank.

Remark. We summarize the assumptions, error bounds and function ranks of the
theorems in Table 1 and discuss the similarities and differences in the function rank
and the error bound. We refer to Theorems 2.1 and 2.4 as the Chebyshev approach
and Theorem 2.6 as the Fourier—Taylor approach based on their proof techniques. The
function rank is determined by the data dimension and the expansion order, and it is
a power of the dimension, where the power is the expansion order and is different in
the Chebyshev approach and the Fourier—Taylor approach. The error bounds quantify
the influences from the expansion order and the domain diameter: a higher expansion
order reduces the error bound, and so does a smaller domain diameter. The domain
diameter occurs as a single parameter D in the Chebyshev approach but as Dy, Dy,
and D in the Fourier—Taylor approach.

From the practical viewpoint, the absence of exponential growth for the function
rank agrees with the practical situation where people observe lower matrix ranks for
high-dimension data. And the fact that decreasing Dx or D, reduces the error is
also in agreement with practice and, moreover, it provides insight into why point
clusterings followed by local interpolations often lead to a more memory efficient
approximation.

3. Theorem proofs. In this section, we prove the theorems in section 2. All the
proofs consist of three components: separating K(x,y) into a finite sum of products
of real-valued functions h;(x)g;(y), counting the terms to obtain an upper bound for
the function rank, and calculating the error bound. Similar techniques can be found
in [26, 33, 40, 44]. We describe the high-level procedure of the separation step; the
rest of the steps should be straightforward.

In the proofs of Theorems 2.1 and 2.4, the separable form was obtained by first
expanding the kernel into polynomials of z = ||x — y||* of a certain order to settle
the error bound and then expanding the terms ||x — Y||21. The key advantage of this
approach has been discussed at the beginning of section 2. We seek approximation
theorems in one dimension that provide optimal convergence rate and explicit error
bounds. Chebyshev theorems (Theorems 8.2 and 7.2 in [36]) are ideal choices. Analo-
gous results also exist, e.g., the classic Bernstein and Jackson approximation theorems
(p. 257 in [3]), but the downside is that they provide only an error rate rather than an
explicit formula, and moreover, they will not improve our results or simplify the proofs.

In the proof of Theorem 2.6, the separable form was obtained by first applying a
Fourier expansion on K to separate the cross term exp(x”y), then applying a Taylor
expansion on the cross term.

Before stating the detailed proofs, we introduce some notation that will be used.

Notation. For multi-index a = [, ..., 4] € N% and vector x = [z1,...,74] €
RY, we define || = a1 + g + -+ + ag, x* = a{'ay? - -x5? and the multinomial

m) _ m!

coefficient with || = m to be () = ATaclal

3.1. Proof of Theorem 2.1. We first introduce a lemma on the identity of
binomial coefficients.
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LEMMA 3.1. Ford € Z* and m € Z, the following identity holds:

zm: <k+d> _ (m+1+d)
— d d+1

Proof. The proof can be done by induction and follows that from Lemma 2.4 in
[41]. O

Proof. The proof consists of two components. First, we map the domain of f
o [0,2] (for the convenience of the proof) and approximate f with a Chebyshev
polynomial, and this settles the error. Second, we further separate terms ||x — y|? in
the polynomial and count the number of distinct terms to be an upper bound of the
function rank.

Approzimation by Chebyshev polynomials. We first linearly map the domain of f
to [0, 2] and denote the new function as f

©) Koxy) = Slx = y13) = F (g Ix = vI3 ) = 7o)

Because ||x —y||* € [0,D?], it follows that z € [0,2]. From our assumptions, f is
analytic in [0,2] and is analytically continuable to the open Bernstein ellipse with
parameter p% (consider a shifted ellipse).

According to Theorem 8.2 in [36] that follows from [24], for n > 0, we can ap-
proximate f by its Chebyshev truncations f,, in the Lo.-norm with error

QCDP—QTL
(7) len] < 1
PD

(8) Z e Ti(2) + €n,

L.
where ¢, = 2 L . f(zii\/%(;)dz, and Tj(z) is the Chebyshev polynomial of the first kind

of degree k defined by the relation:
(9) Ty (z) = cos(k@) with x = cos(0).

Rearranging the terms in (8) we obtain a polynomial of z = [|x — y]||*:

) n
(10) Koy) = F (g lx=vIE) = 3 g Ix = vl 4o
k=0

where aj depends on ¢ but is independent of x and y.
Separable form. We separate each term ||x —y||*" in (10) into a finite sum of
separate products:

l

||x—y||21=k20(l) 2)t- Z( ) Il (Za:y)

J=0

(11)

k

SHI3 Cria (%) (IyIP*7 y=),

k=0 j=0 |a|=l—k
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where Cy .o = (—2)17%(}) (’;) (*F). Substituting (11) into (10), we obtain a separable
form of K:

n l

12 Kx=33Y Y e (1Bl x=) (IyIP*2 5> + o,

1=0 k=0 j=0 |a|=l—k

where D o = %(72)1*’“ (,i) (’;) (l;k) is a constant independent of x and y. There-

fore, the function rank of IC can be upper bounded by the total number of separate

terms:
l
l—k+d-1 n+d+2
k+1 =
(+)< d—1 ) (d+2 >
1=0 k=0

n

where the equality follows from the result in Lemma 3.1. To summarize, we have
proved that K(x,y) can be approximated by the separable form in (12) in the Loo-
norm with rank at most

n+d+2
13 R(n,d) =
(13) = ("1157)
and approximation error
QCDP—QTL
PD
3.2. Proof of Corollary 2.2.
Proof. For a fixed kernel function and fixed n, we define two constants ¢; = p;Dc_Dl

and ca = log p2,. Then, the truncation error € can be rewritten as

B ZCDpBQ" _ene

-1

and equivalently,

—1
(15) n= _8A¢
C2

We relate function rank R to error € and dimension d. When d > n + 2, we obtain

n+d+2 2md" —logcye
(16) RZ( d+2 )S o ed

n ., . . .
where ¢, = % is a constant for a fixed n. Therefore, an € error is achievable with the
) —logcqe

function rank R proportional tod <2 . 0
3.3. Proof of Theorem 2.3.

Proof. We consider the concentration of measure phenomenon and apply concen-
tration inequalities to obtain a probabilistic error bound. The proof mostly follows
the proof of Theorem Theorem 2.1, and we will focus on computing the error bound
for a smaller domain.
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To simplify the proof, we consider a function f that is shifted by E2 such that

Fx=yl3) = flx - vz - E?)

and we will see later that this shift ensures the inputs for f to fall into an interval
that centers around 0 with some probability. f inherits the analyticity of f; therefore,
it is analytic on [—F32, D? — E?] and can be analytically extended to a transformed
Bernstein ellipse with parameter p%.

Let us denote z; = (z; — ;)% — E[(2; — v;)?] and we will shortly apply the concen-
tration inequality to z;. With the assumptions that z;v/d and y;v/d are i.i.d. random
variables where |z;v/d| < D and |y;Vd| < D, it follows that the z; are statistically
independent with mean zero and are bounded by %. By applying Bernstein’s in-
equality [4] on the sum of the z;, we conclude that for § > 0,

(17) P(\fo ||27E2|<52)>172ex __0d
Yli2 = Fal =0 ) = P\202d+8D22/3 )

where E? = Z?zl E[(z; — v:)?] is a constant. In other words, [|x — y||§ € [E% -
62, E2 + 6%] with probability at least

1-2e —0%d
— X .
P\202d+8D2%2/3

This also means that with the same probability in (17), the inputs for f will fall into
the interval [—42, §2].

Therefore, for a probability associated with ¢, we can turn to considering f on
the domain [—42,%]. We assume that f is analytically extended to a transformed
Bernstein ellipse with parameter p§, with the value of f (z) inside the ellipse bounded
by Cs. Following the same argument as in the proof for Theorem 2.1, we obtain that
for § > 0 and with probability in (17), the approximation error for x and y sampled
from the above distribution is bounded by

2Cs  _op
(18) |€n|§p§71p62 :

This sharper bound can be achieved with the same function rank as in (13) and with
the same low-rank representation as in (12) except for coefficients.

Next, we rewrite the upper bound in (18) with the parameters pp, Cp, and 8. If
we linearly map the domain of f from [—02, 2] to [~1,1], then the Bernstein ellipse
with parameter p2, will be scaled by 6%. We seek the largest pg such that the Bernstein
ellipse with parameter p? will be contained in the transformed Bernstein ellipse with
parameter §%,. In that case, the lengths of their semiminor axes match and the largest
p? satisfies

(19) P =5 =5 (6b— D)

and we obtain
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In the special case where 62 = D?, p? = p%,, we recover the error bound ;C_Dl "
D

To simplify the bound, we use the relation that pg > %2(/3% — ﬁBz). Substituting this
into (18), along with the fact that Cs < Cp, we obtain

20 <
20) S D)

2Cps? D5} =)\

02 '
Therefore, the function rank related to error ¢, remains (”g_‘i;z), and we have
proved our result. 0

3.4. Proof of Theorems 2.4 and 2.5.

Proof. The proof follows the same steps as those in Theorems 2.1 and 2.3; we
only need to establish that the error term in the Chebyshev expansion is bounded by

2
%. Consider (6). Because f(9) is piecewise continuous with its total variation
on [0, D?] bounded by V,, it follows that f(@ in (6) is piecewise continuous on [0, 2],

with its total variation on [0, 2] bounded as follows:
def D% qaf D24 a4 f D24
Vige | =Y (zq dq:cq> =5V ( dqx‘I) TG

Therefore, by Theorem 7.2 in [36], for n > g, the order-n Chebyshev expansion fn
approximates f in the L,,-norm with error bounded by

V() 2D
mq(n—q)7 ~ mq(2(n —q))¢’

len| <

The rest of the proof is identical to that of Theorem 2.1 for the deterministic result
and identical to that of Theorem 2.3 for the probabilistic result. ]

3.5. Proof of Theorem 2.6. We first introduce a lemma concerning the func-
tion rank of complex functions.

LEMMA 3.2. If a real-valued function IC can be approrimated by two sequences of
complez-valued functions, i.e.,

e x€Qy €y,

R
Kx,y) - Z Wi(x)0i(y)
i=1

where {U; (%)} and {®;(y)}e, are complez-valued functions, then there exist two
sequences of real-valued functions, {g;(x)}2, and {h;(y)}2, such that for R = 2R,,

R

Kx,y) — 3 g hiy)

i=1

<e, x€Qx,y€Qy.

Proof. Let Re(-) and Im(-) denote the real and imaginary parts of a complex
value, respectively. For each term, ¥;(x)®;(y), we rewrite it as

Vi(x)®i(y) = (Re (¥;(x)) Re (®:(y)) — Im (¥i(x)) Im (P;(y)))

(21) 11 (Re () Im (@) + Im (¥, (x)) Re (@,(y)).
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We can then construct the sequences of real-valued functions as follows:

(22) {gzi—l(x) =Re (V;(x)), g2i(x) = —Im (¥,(x)), i—19 R

The approximation error holds for the real-valued approximation:

R R,
(23) K(x,y) - Zgi(x)hi(}’) < |Kxy) - Z‘E(X)‘I’z()’) <e U

We now start the proof for Theorem 2.6.

Proof. The proof consists of three major parts: derivation of a separable form for
K(x,y), analysis on the truncation error, and estimation of the number of separable
terms. The first part is proceeded in three steps: Fourier expansion of the periodic
input function, Taylor expansion of each Fourier component, and finalization on the
overall separable form.

We denote by Qx the domain of x, and {2y the domain of y, with their centers
to be x. and y., respectively. To simplify the notation, we use f(-) to represent the
periodic function f,(-).

Fourier expansion. Let the Fourier expansion of f with error term ep be

My

(24) f(z) = Z a; exp(wjz) + €p,

Jj=—My

_ 1 2D2 . . . . 27 -
where a; = 157 [ 5 p2 f(2) exp(—wjz) dz is the Fourier coefficient and w = ;57 is a

constant. Each Fourier coefficient can be bounded by the infinity norm of function
f(2), ie., |aj| < ||f]lo- A detailed analysis of the error ex will be discussed in the

second major part of the proof. The fact that K(x,y) = f(||x —y|3) is a function

of z = ||x— Y||§ naturally requires a separation of z in order to proceed with the
separation of K(x,y). Adopting notation px = x—X,, py =y — ¥, and p. = X — Yo,
we rewrite z = [[x — y[l5 = [[px + pell” + oy ll* — 2pLp. — 2pL py and, therefore,

. . 2 . 2 -
(25) exp(wjz) = exp(wj ||px + pell”) exp(wi(llpylI” — 205 pe)) exp(—wj2p5 py) -

function of x only function of y only function of x and y

Taylor expansion. The last term in (25) still involves both x and y and needs to
be further separated. We apply a Taylor expansion to this term,

M (o T Vk
exp (—wj2plpy) =Y % + er(j)
(26) I )
=3 % > Ci) pP§ + er(d),
k=0 la|=k

where M; is the order of the Taylor expansion, er(j) is the corresponding truncation
error, and the last equality adopts the multi-index notation introduced earlier.
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Separable form. Combining (26), (25), and (24), we obtain

I\/If M,

(27) FE= > 3 > hja®gialy) +e

j=—M; k=0 |a|=k

(—12jw)*
hja(x) =a;———

gi.ay) = exp (willey|* - 208 pe) ) oS

k
(a) exp (ij llpx + pc||2) py and

are functions of x only and y only, respectively, and € is the overall error

My

(20) e= > ajexp (willex+ pel*) exp (willlpy | = 207 po) ) ex (i) + e
Jj=—My

A naive bound on € is given as

My

(30) el < > laller(i)] + ler| < 2M; 1£lloc max|ex ()] + ferl,
Jj=—My

where the first inequality used the fact that the absolute values of both exponential
terms are one.

Error analysis. According to (30), the total error consists of two parts, the
truncation errors from the Taylor expansion and those from the Fourier expansion.
We consider first the Taylor expansion errors. Applying the Lagrange remainder form,
we bound the Taylor part of the total error as
(—wj2pl py) MY
(M + 1)!
)Mt—&-l

2My [[fllo maxer (5)] = 2My || fo max

(2wM; py py
(M; +1)!

2eMs)M+2 /D D\ M
= e2(M, + 1)Mt1 " D2

M +1
< <DXDy> ¢
— D2 )
where the second inequality adopts the inequality e(2)" < n! with e being the Euler’s
constant, and the third inequality can be verified with our assumption 9M; < M,.

We then consider the Fourier expansion errors. According to Theorem 2 in [16],
the truncation error of the Fourier expansion, €g, can be bounded as follows:

\% V., (2D%\1
2 <-4 4
(32) er| < ot = 22 (FM) ,

< 2My |l fll

(31)

where V; is the total variation of the gth derivative of f(z) over one period.
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Therefore, the total error € in (27) can be bounded as

DD N\MT v /2D2\?
< xZy Za .
53) A< (Z20) 2 (5r)

Rank computation. Equation (27) is a separable form of K(x,y) in its complex
form with rank at most

M,
l+d-1 M, +d
(34) R, Mf;_g( d—l) Mf( d )

where the equality comes from Lemma 3.1. By Lemma 3.2, the kernel function can
be approximated by two sequences of real-valued functions {g;}1*; and {h;}[1 | with
rank at most

M,
(35) R(M¢, My, d) = 2R, < 4Mf( td+ d).

Note that when My and M; are fixed and d — oo, the rank grows as O(d™). ad

4. Optimality of the polynomial growth of the function rank. Corol-
lary 2.2 shows that asymptotically, for a given error ¢ and dimension d, the function
rank needed for a low-rank representation to approximate an analytic function with

error € is proportional to dm%;l We will show that up to some constant, this asymp-
totic rank has achieved the lower bound on the minimal number of interpolation points
needed for a linear operator to reach a required accuracy [42].

Wozniakowski stated in [42] that for a given € and d, the minimal number of inter-
polation points n = n(e, d), for a linear interpolation operator L, (f) = 2?21 flxj)e;
to approximate a function f that satisfies || f||x < 1 in the Lo-norm with precision e,
is bounded by

(36) n(e, d) > cedelos(e™h)

where ¢; € C([-1,1]%), and |[f[7 = Y ,en, (1 + 1*)*af[f] with a;[f] denoting the
Fourier coefficient of f.

We establish that the function rank in Theorem 2.1 is equivalent to n(e,d) de-
scribed above. We start with the assumptions. In Theorem 2.1, the analytic assump-
tion implies that || f||x < 1, and the Lo-norm error suggests the same results hold for
the Lo-norm error if we assume the volume of the domain is bounded by 1. We then
connect the number of points from a function interpolation to the number of terms
from a function expansion by the following formula:

(37) K(x,y) = Z K(xi,y)ci(x) + €.

Therefore, we have established the equivalence of the function rank in Theorem 2.1
and n(e, d), and we conclude that our function rank reaches the lower bound in (36)
asymptotically.

Related work. Barthelmann, Novak, and Ritter [2] considered a polynomial
interpolation on a sparse grid and showed that such interpolation could reach an
acceptable accuracy with the number of interpolation points growing polynomially
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with the data dimension. Specifically, consider a real-valued function f defined on
[—1,1]¢ with its derivative D®f being continuous for ||a||« < k. If we interpolate f
using the Smolyak formula [35], then the interpolation error in the 0-norm is bounded
by

(38) ca e N F(log N)FFDE=D] £,

where the norms || - ||p and || - ||x adopt the same notation as above. The number of
interpolation points used (see [28]) is

min(k,d)

(39) N=Nk+dd= > (’:)(“Z‘S)<<2k+dl+d>.

s=0

Consider N (k +d,d). When £ is fixed, and d — oo, the number of points used in
the Smolyak technique roughly behaves as O(d*). We use the same argument between
the lines of (37) to connect the number of function interpolation points and the number
of function expansion terms, and we conclude that the polynomial dependence on d
is consistent with our result in (12).

In the following section, we use the matrix rank to verify our theoretical results
on the function rank. We mentioned in section 1 that the function rank is an upper
bound of the matrix rank. Hence, we would expect the matrix rank related to the max
norm to grow polynomially with d as well. The low-rank representation of a kernel
function and its approximation error can be related to those of a kernel matrix defined
on the same domain in the following way. If a kernel function I can be approximated
by the separable form 2?:1 gi(x)hi(y) with Lo, error €, then for an n by n kernel
matrix K with entries K;; = KC(x;,y;), it is straightforward to construct a low-rank
representation GH” of K with rank at most R, where G;; = g;(x;) and H;; = h;(y;).
And, the matrix approximation error in the Frobenius, 2-, and maxnorm is bounded
by en, en, and €, respectively.

Now that the connections between matrix rank and function rank have been
established explicitly, we can move on to the numerical experiments.

5. Numerical experiments. In this section, we experimentally verify two main
results from our theorems: the polynomial growth of the numerical function rank
with the data dimension, and the influence of the diameters of {2x and €}, on the
approximation error. By the arguments before the beginning of this section, we will
use the matrix rank to verify the behavior on the function rank. We report the matrix
rank for various data distributions due to our worst-case error bounds.

5.1. Experimental settings. We consider first the data distribution in the ex-
periments. Generating data which is representative of the worst case is difficult. On
the one hand, sampling randomly from common distributions will cause the empirical
variance of the pairwise distances to decrease with d, due to concentration of mea-
sure; on the other hand, designing the points to achieve a large empirical variance
will require correlations among points and cause them to lie on a manifold. Both
methods will yield matrices with lower matrix ranks. Considering that the RBF's are
functions of the distances, we seek distributions of points in a unit cube of dimension
d such that the pairwise distances follow a probability distribution whose variance
decreases slower with d, and the points do not lie approximately on a manifold of the
domain.
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For a limited number of points that is imposed by the computational limit and
for large d, a fast decay of the empirical variance is observed for quasi-uniform dis-
tributions of points, e.g., using data generated from perturbed grid points or Halton
points. The pairwise distances of Halton points and uniform sampled points fell into
a small-sized subinterval of [0, \/3] that is away from the endpoint v/d, reducing the
range of observed distances, leading to spurious low ranks.

We propose a sampling distribution—which we call the endpoint distribution—to
encourage the occurrence of large distances that would otherwise not be covered with a
high probability. Specifically, for a random variable X, Pr(X = a) = Pr(X = b) = pq,
Pr(a < X <b) =1-2pg, Pr(X < a) =Pr(X > b) =0, where p; was selected by a
grid search to yield the largest rank for each d. The range of the covered domain is
much wider than using either Halton points or uniform sampling.

We consider next the numerical matrix rank that will be reported in the results.
The numerical matrix rank associated with tolerance tol is

Rip =min{r | |K — U.S, V.|| < tol | K|},

where U,., Sy, V,. are factors from the SVD of the matrix K. Depending on the choice
of the norm, the value of Ry, will vary. Our main focus is on the max norm, which
is consistent with the function infinity norm in the theorems. Theoretically, the max
error does not decrease monotonically with the matrix rank; however, we found that
for the RBF kernel matrices, the max error decreases in general with the matrix rank,
except for certain small, short-lived increases.

Throughout our experiments, we fix the number of points at 10,000. The kernel
used is the Gaussian kernel exp(—||x—y/||3/h?) with h = v/d. The data were generated
from the above endpoint distribution with endpoints to be 0 and 1. For each set of
dimension and tolerance, we report the mean and standard deviation of the numerical
matrix rank out of five independent runs.

5.2. Experimental results. Figure 2 shows the numerical matrix rank as a
function of data dimension subject to a fixed tolerance on three different data over-
lapping scenarios: source and target data both in [0, 1]¢; source data in [0,2/3]¢ and
target data in [1/3,1]¢; and source data in [0,1/2]? and target data in [1/2,1]¢. By
design, the ratio between Dy (or Dy,) of these scenarios is roughly 6 : 4 : 3 and they
are shown from top to bottom for each fixed tolerance in Figure 2.

The plots along each row verify that for a fixed n that represents the polynomial
order in the low-rank representation, the function rank grows as O(d™) with d. In our
experiments, we increase n by decreasing the approximation tolerance, according to
the relation between order n and error € in Theorem 2.1. We observe results consistent
with the order O(d").

The plots along each column verify that decreasing the domain diameter for either
Qx or Qy reduces the error bound. Theorem 2.6 suggests that Dy and D, influence
the error in the form of (%)Mt“. That is, to maintain a certain precision, a
smaller domain diameter allows M; to be smaller and consequently allows the rank
to be smaller. This relation of domain diameter and error bound is verified by our
experimental results when observing from top to bottom.

Figure 3 further reports the matrix rank related to different norms. In particular,
the matrix rank related to the Frobenius norm and the 2-norm increases with d in the
small-d regime, and in the large-d regime it decreases. This is an interesting observa-
tion. Regretfully, we cannot provide a clear explanation based on our theorems; we
will only describe our observation in the paper and leave the theory for future work.
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F1a. 2. Numerical rank versus data dimension with different sampling methods. The rank was
related to the max norm, and the data size was fized at 10,000. Subplots shared the same legend,
where “halton” is the Halton set; “unif” is uniform sampling; and “end point” is our proposed
sampling. Subplots considered different data scenarios, in which the regions containing the source
and target points either completely overlap ((a) to (c)), partially overlap ((d) to (f)), or do not
overlap ((g) to (i)).

To summarize, up to some precision, smooth RBF kernels behave like kernels
constructed by summations of products of functions of x and of y. For a fixed kernel
on a fixed domain, the maximal total degree of those products and the dimension
altogether determine the observed function rank in practice. And, the dimension
influence on the function rank is only a power of the dimension, and the power depends
on the accuracy. In addition, this is still the worst case scenario, attained for large
and regular point sets. The real-world data are often more structured and rarely
realize the worst case, and for a fixed kernel and the practical data, the low-rank
approximations would have lower function ranks, and hence the corresponding kernel
matrices would have lower matrix ranks.
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Fic. 3. Numerical rank versus data dimension with rank related to different norms. The data
size was fized at 10,000 and the data were sampled from our endpoint distribution. The legend lists
the choice of norms in the rank definition min{r | |K — U,S,V,T|| < tol | K|}, where “fro” is the
Frobenius norm; “two” is the 2-norm; and “max” is the max norm. The tolerance was fized at
1072

6. Group pattern of singular values. In this section, we reveal and explain a
group pattern in the singular values of RBF kernel matrices. Specifically, the singular
values form groups by their magnitudes, and the group cardinalities are dependent
on the data dimension and are independent of the data size.

If we order the singular values from large to small, then the indices where signifi-
cant decays occur can be described as (k'gd). This number is a cumulative sum of the
dimensions of the d-variate polynomial spaces arising in the terms of the truncated
power series kernel Zlal <k CcaX?y® up to order k, which is close to our separable
form of the kernel in a loose sense.

However, this formula fails to capture those less significant decays. We, therefore,
explain the group pattern based on Theorem 2.6 by an appropriate grouping of the
number of terms in the function’s separable form. For any RBF, consider the number
of separate terms n(My, M;) in its separable form:

My M; My M. My
k+d-— i+d
(40) ]\4f7 E E ng = E E ( + ): E (M]d+ >
7=0k=0 7=0 k=0 j=0

The two summations correspond to the Fourier expansion of the kernel function, and
the Taylor expansion of each Fourier term, respectively. Let ng denote the number
of separate terms in (pL py)’C that occurs in the kth order Taylor term. The observed
group cardinalities are described by a grouping of the terms in (40), whose order is
governed by the truncation error. One grouping example is

1o, 11, N2 | no, N | n3, N4
N—_—— N——
1st term of Fourier expansion 2nd term of Fourier expansion 1st term of Fourier expansion

The cardinality of the first, second, and third groups is ng + n1 + ns, ng + n1, and
n3+ny, respectively, a cumulative sum of which yields the decay indices. The formula
given by (40) generalizes that given by the dimension of the polynomial space. In the
special case where only the first-order Fourier term is considered, these two formulas
agree, namely, the number of the Taylor terms up to order k matches the dimension
of the d-variate polynomial space of maximum degree k.

6.1. Experimental verification. We experimentally verify the above claim.
Figure 4 shows the ratio of the ith largest singular value to the next smaller one.
We are interested in the group cardinality and the singular value decay amount, which
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altogether determine the matrix rank. The group cardinality is the distance between
two adjacent high-ratio indices, and the singular value decay amount is indicated by
the magnitudes of the ratio (the spike). These two quantities are independent of the
data size, suggesting that for a fixed kernel and a fixed precision, the numerical matrix
rank is independent of the data rank assuming the data does not lie in a manifold.
Additionally, this also verifies an earlier statement that as the point sets in a fixed
domain become denser, the rank and the error remain unchanged.

We study the group cardinality in detail. Consider Figure 4(a). We consider first
the groups separated by significant decays. The indices with ratios above 4 are as
follows, with the ratio shown in parentheses:

1(17.3), 4 (17.1), 10 (7.3), 20 (4.5).

The indices can be accurately described as the cumulative sum of the number of
separate terms in the following Taylor expansion terms from the first-order Fourier
term,

Oth , 1st , 2nd , 3rd

S S

1 term 3 terms 6 terms 10 terms

This term arrangement suggests that the polynomial approximation for the first-order
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Fourier term contributes to the significant gains in accuracy. We note that the higher-
order Fourier terms contribute as well, but with fewer accuracy gains.

We consider next the groups separated by less significant decays. The indices
with ratios above 2 are

1(17.3), 4 (17.1), 7 (2.3), 10 (7.3), 11 (2.3), 17 (3.5), 20 (4.6).

These subtler gains in accuracy may come from the contributions of other higher-order
expansion terms. One possible grouping is as follows, with the Fourier order and the
Taylor order shown in order in parentheses:

(1,0), (2,0),(3,0),(4,0), (1,1), (2,1), (5,0), (1,2), (3,1)
—— —— e e e

1 term 3 terms 3 terms 3 terms 1term 6 terms 3 terms

Applying a cumulative sum of the number of these terms yields the above indices.

Our explanation adopts the idea of the Fourier-Taylor approach instead of the
Chebyshev approach. The key reason is that the Fourier approach allows us to group
separate terms into finer sets that contribute to subtler error decays. The Chebyshev
approach considers ||x — yHQl as a unit, which has (lfifﬁl) separate terms, whereas the
Fourier approach considers (pL py)l as a unit, which only involves (lZi_ll) separate
terms.

6.2. Practical guidance. The group pattern in the singular values offers in-
sights to many phenomena in practice. One example is the threshold matrix ranks in
matrix approximations, namely, the input matrix rank has to increase beyond some
threshold to observe a further decay in the matrix approximation error. In practice,
our quantification for the group cardinalities can provide candidate matrix rank inputs
for algorithms that take input as a request matrix rank.

We examine the effectiveness of our guidance on two popular RBF kernel matrices
with different low-rank algorithms. We expect significant decays in the reconstruction
error around matrix rank R = ("}%). For the leverage-score Nystrdm method, we
oversample 30 and 60 columns for d = 6 and d = 8, respectively, and report the mean
of reconstruction error out of 5 independent runs. Figure 5 shows the reconstruction
error as a function of the approximation matrix rank. For all the algorithms, a
significant decay in error occurs at ranks 1, 7, and 28 for d = 6 and at ranks 1, 9, and
45 for d = 8, in perfect agreements with our expectation. Note there exist several
subtle perturbations and they may be caused by the data layouts and contributions
from other expansion terms.

7. Conclusions. Motivated by the practical success of low-rank algorithms for
RBF kernel matrices with high-dimensional datasets, we study the matrix rank of
RBF kernel matrices by analyzing its upper bound, that is, the function rank of RBF
kernels. Specifically, we approximate the RBF kernel by a finite sum of separate
products and quantify the upper bounds on the function ranks and the L., error for
such approximations in their explicit formats. Our three main results are as follows.

First, for a fixed precision, the function rank of an RBF is a power of data dimen-
sion d in the worst case, and the power is related to the precision. The exponential
growth for multivariate functions from a simple analysis is absent for RBFs.

Second, for a fixed function rank, the approximation error will be reduced when
the diameters of either the target domain or the source domain decrease.

Third, we observed group patterns in the magnitude of singular values of RBF
kernel matrices. We explained this by our analytic expansion of the kernel function.
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F1G. 5. Reconstruction error versus approximation rank. The legend represents low-rank al-
gorithms: “levscoreNys” is the leverage-score Nystrém method, “randSVD?” is the randomized SVD
with iteration parameter to be 2, and “SVD” is the exact SVD. The bandwidth parameter h was
set to be the maximum pairwise distance. A significant decay in error occurs at rank = (n;d)
(n=1,2,3) for all experiments.

Specifically, the number of singular values of the same magnitude can be computed
by an appropriate grouping of the separate terms in the function’s separable form.

Very commonly, the cardinality of the ith group is (i‘;i_ll).
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